I have this code:
https://dotnetfiddle.net/21G0of
Basically I am curious, about how to cast the object2 - ResponseErrorForSlack to the same format as is the object1 - it should be the same - as can be seen when I serialize both objects to JSON, but when I use JsonResult - the content of the object is different.
Code overview:
public class Program
{
public static void Main()
{
Dictionary<string, string> dict = new();
dict.Add("endOfShiftBlock" ,"End time must be later than start time!");
object object1 = new { response_action = "errors", errors = dict };
ResponseErrorForSlack object2 = new("errors", "endOfShiftBlock", "End time must be later than start time!");
string json1 = JsonConvert.SerializeObject(object1);
string json2 = JsonConvert.SerializeObject(object2);
Console.WriteLine("This is Json from Object1 :" + json1);
Console.WriteLine("This is Json from Object2 :" + json2);
Console.WriteLine();
JsonResult jr1 = new JsonResult(object1);
JsonResult jr2 = new JsonResult(object2);
Console.WriteLine("This is correct: " + jr1.Value);
Console.WriteLine("This is not correct: " + jr2.Value);
}
}
class ResponseErrorForSlack
{
public ResponseErrorForSlack(string responseAction,string blockId = null, string error = null)
{
ResponseAction = responseAction;
if(blockId is not null && error is not null)
{
Errors = new()
{
{ blockId, error }
};
}
}
public ResponseErrorForSlack(string responseAction, Dictionary<string, string> errors)
{
ResponseAction = responseAction;
if (errors is not null)
{
Errors = errors;
}
}
[JsonProperty("response_action")]
public string ResponseAction { get; set; }
[JsonProperty("errors")]
public Dictionary<string, string> Errors { get; set; }
}
What you see in your Console is the output of ToString().
Add the following override to your class ResponseErrorForSlack:
public override string ToString() {
return "Test";
}
and you will see following output:
This is Json from Object1 :{"response_action":"errors","errors":{"endOfShiftBlock":"End time must be later than start time!"}}
This is Json from Object2 :{"response_action":"errors","errors":{"endOfShiftBlock":"End time must be later than start time!"}}
This is correct: { response_action = errors, errors = System.Collections.Generic.Dictionary`2[System.String,System.String] }
This is not correct: Test
A check after your Console.WriteLines, shows up in output as well.
if (jr2.Value.GetType() == typeof(ResponseErrorForSlack))
{
Console.WriteLine("Yeah its correct");
}
When I deserialize a time string, using XmlSerializer.Deserialize, I expect it to take my local timezone into account so that a time string in the format
00:00:00.0000000+01:00
was parsed as 00:00, because I am in the timezone GMT+1.
Did I get that wrong?
Here is the code I am running to test xml deserialization:
using System;
using System.IO;
using System.Xml.Serialization;
using Microsoft.VisualStudio.TestTools.UnitTesting;
namespace Testing
{
[TestClass]
public class FooTest
{
[TestMethod]
public void Test()
{
var serializer = new XmlSerializer(typeof(Foo),
new XmlRootAttribute("Foo"));
var xml = "<Foo><TheTime>00:00:00.0000000+01:00</TheTime></Foo>";
var stream = new MemoryStream();
var writer = new StreamWriter(stream);
writer.Write(xml);
writer.Flush();
stream.Position = 0;
var f = (Foo) serializer.Deserialize(stream);
Assert.AreEqual("00:00", f.TheTime.ToShortTimeString()); // actual: 01:00
}
[Serializable]
public class Foo
{
[XmlElement(DataType = "time")]
public DateTime TheTime { get; set; }
}
}
}
Unfortunately, there is no built-in type that you can deserialize a xs:time value into when it includes an offset (which is optional in the XSD spec).
Instead, you'll need to define a custom type and implement the appropriate interfaces for custom serialization and deserialization. Below is a minimal TimeOffset struct that will do just that.
[XmlSchemaProvider("GetSchema")]
public struct TimeOffset : IXmlSerializable
{
public DateTime Time { get; set; }
public TimeSpan Offset { get; set; }
public static XmlQualifiedName GetSchema(object xs)
{
return new XmlQualifiedName("time", "http://www.w3.org/2001/XMLSchema");
}
XmlSchema IXmlSerializable.GetSchema()
{
// this method isn't actually used, but is required to be implemented
return null;
}
void IXmlSerializable.ReadXml(XmlReader reader)
{
var s = reader.NodeType == XmlNodeType.Element
? reader.ReadElementContentAsString()
: reader.ReadContentAsString();
if (!DateTimeOffset.TryParseExact(s, "HH:mm:ss.FFFFFFFzzz",
CultureInfo.InvariantCulture, DateTimeStyles.None, out var dto))
{
throw new FormatException("Invalid time format.");
}
this.Time = dto.DateTime;
this.Offset = dto.Offset;
}
void IXmlSerializable.WriteXml(XmlWriter writer)
{
var dto = new DateTimeOffset(this.Time, this.Offset);
writer.WriteString(dto.ToString("HH:mm:ss.FFFFFFFzzz", CultureInfo.InvariantCulture));
}
public string ToShortTimeString()
{
return this.Time.ToString("HH:mm", CultureInfo.InvariantCulture);
}
}
With this defined, you can now change the type of Foo.TheTime in your code to be a TimeOffset and your test will pass. You can also remove the DataType="time" in the attribute, as it's declared in the object itself via the GetSchema method.
In one of my C# projects I use a WCF data contract serializer for serialization to XML. The framework however consists of multiple extension modules that may be loaded or not, dependent on some startup configuration (I use MEF in case it matters). In the future the list of modules may potentially grow and I fear that this situation may someday pose problems with module-specific data. As I understand I can implement a data contract resolver to bidirectionally help the serializer locate types, but what happens if the project contains data it cannot interpret because the associated module is not loaded?
I am looking for a solution that allows me to preserve existing serialized data in cases where not the full set of modules is loaded (or even available). I think of this as a way to tell the de-serializer "if you don't understand what you get, then don't try to serialize it, but please keep the data somewhere so that you can put it back when serializing the next time". I think my problem is related to round-tripping, but I wasn't very successful (yet) in finding a hint on how to deal with such a case where complex types may be added or removed between serialization actions.
Minimal example:
Suppose I start my application with the optional modules A, B and C and produce the following XML (AData, BData and CData are in a collection and may be all derived from a common base class):
<Project xmlns="http://schemas.datacontract.org/2004/07/TestApplication" xmlns:i="http://www.w3.org/2001/XMLSchema-instance">
<Data>
<ModuleData i:type="AData">
<A>A</A>
</ModuleData>
<ModuleData i:type="BData">
<B>B</B>
</ModuleData>
<ModuleData i:type="CData">
<C>C</C>
</ModuleData>
</Data>
</Project>
In case I skip module C (containing the definition of CData) and load the same project, then the serializer fails because it has no idea how to deal with CData. If I can somehow manage to convince the framework to keep the data and leave it untouched until someone opens the project again with module C, then I win. Of course I could implement dynamic data structures for storing extension data, e.g., key-value trees, but it would be neat to use the existing serialization framework also in extension modules. Any hint on how to achieve this is highly appreciated!
The example code to produce the above output is as follows:
using System;
using System.IO;
using System.Collections.Generic;
using System.Runtime.Serialization;
namespace TestApplication
{
// common base class
[DataContract]
public class ModuleData : IExtensibleDataObject
{
public virtual ExtensionDataObject ExtensionData { get; set; }
}
[DataContract]
public class AData : ModuleData
{
[DataMember]
public string A { get; set; }
}
[DataContract]
public class BData : ModuleData
{
[DataMember]
public string B { get; set; }
}
[DataContract]
public class CData : ModuleData
{
[DataMember]
public string C { get; set; }
}
[DataContract]
[KnownType(typeof(AData))]
[KnownType(typeof(BData))]
public class Project
{
[DataMember]
public List<ModuleData> Data { get; set; }
}
class Program
{
static void Main(string[] args)
{
// new project object
var project1 = new Project()
{
Data = new List<ModuleData>()
{
new AData() { A = "A" },
new BData() { B = "B" },
new CData() { C = "C" }
}
};
// serialization; make CData explicitly known to simulate presence of "module C"
var stream = new MemoryStream();
var serializer1 = new DataContractSerializer(typeof(Project), new[] { typeof(CData) });
serializer1.WriteObject(stream, project1);
stream.Position = 0;
var reader = new StreamReader(stream);
Console.WriteLine(reader.ReadToEnd());
// deserialization; skip "module C"
stream.Position = 0;
var serializer2 = new DataContractSerializer(typeof(Project));
var project2 = serializer2.ReadObject(stream) as Project;
}
}
}
I also uploaded a VS2015 solution here.
Your problem is that you have a polymorphic known type hierarchy, and you would like to use the round-tripping mechanism of DataContractSerializer to read and save "unknown" known types, specifically XML elements with an xsi:type type hint referring to a type not currently loaded into your app domain.
Unfortunately, this use case simply isn't implemented by the round-tripping mechanism. That mechanism is designed to cache unknown data members inside an ExtensionData object, provided that the data contract object itself can be successfully deserialized and implements IExtensibleDataObject. Unfortunately, in your situation the data contract object cannot be constructed precisely because the polymorphic subtype is unrecognized; instead the following exception gets thrown:
System.Runtime.Serialization.SerializationException occurred
Message="Error in line 4 position 6. Element
'http://www.Question45412824.com:ModuleData' contains data of the
'http://www.Question45412824.com:CData' data contract. The
deserializer has no knowledge of any type that maps to this contract.
Add the type corresponding to 'CData' to the list of known types - for
example, by using the KnownTypeAttribute attribute or by adding it to
the list of known types passed to DataContractSerializer."
Even if I try to create a custom generic collection marked with [CollectionDataContract] that implements IExtensibleDataObject to cache items with unrecognized contracts, the same exception gets thrown.
One solution is to take advantage of the fact that your problem is slightly less difficult than the round-tripping problem. You (the software architect) actually know all possible polymorphic subtypes. Your software does not, because it isn't always loading the assemblies that contain them. Thus what you can do is load lightweight dummy types instead of the real types when the real types aren't needed. As long as the dummy types implement IExtensibleDataObject and have the same data contract namespace and name and the real types, their data contracts will be interchangeable with the "real" data contracts in polymorphic collections.
Thus, if you define your types as follows, adding a Dummies.CData dummy placeholder:
public static class Namespaces
{
// The data contract namespace for your project.
public const string ProjectNamespace = "http://www.Question45412824.com";
}
// common base class
[DataContract(Namespace = Namespaces.ProjectNamespace)]
public class ModuleData : IExtensibleDataObject
{
public ExtensionDataObject ExtensionData { get; set; }
}
[DataContract(Namespace = Namespaces.ProjectNamespace)]
public class AData : ModuleData
{
[DataMember]
public string A { get; set; }
}
[DataContract(Namespace = Namespaces.ProjectNamespace)]
public class BData : ModuleData
{
[DataMember]
public string B { get; set; }
}
[DataContract(Namespace = Namespaces.ProjectNamespace)]
[KnownType(typeof(AData))]
[KnownType(typeof(BData))]
public class Project
{
[DataMember]
public List<ModuleData> Data { get; set; }
}
[DataContract(Namespace = Namespaces.ProjectNamespace)]
public class CData : ModuleData
{
[DataMember]
public string C { get; set; }
}
namespace Dummies
{
[DataContract(Namespace = Namespaces.ProjectNamespace)]
public class CData : ModuleData
{
}
}
You will be able to deserialize your Project object using either the "real" CData or the "dummy" version, as shown with the test below:
class Program
{
static void Main(string[] args)
{
new TestClass().Test();
}
}
class TestClass
{
public virtual void Test()
{
// new project object
var project1 = new Project()
{
Data = new List<ModuleData>()
{
new AData() { A = "A" },
new BData() { B = "B" },
new CData() { C = "C" }
}
};
// serialization; make CData explicitly known to simulate presence of "module C"
var extraTypes = new[] { typeof(CData) };
var extraTypesDummy = new[] { typeof(Dummies.CData) };
var xml = project1.SerializeXml(extraTypes);
ConsoleAndDebug.WriteLine(xml);
// Demonstrate that the XML can be deserialized with the dummy CData type.
TestDeserialize(project1, xml, extraTypesDummy);
// Demonstrate that the XML can be deserialized with the real CData type.
TestDeserialize(project1, xml, extraTypes);
try
{
// Demonstrate that the XML cannot be deserialized without either the dummy or real type.
TestDeserialize(project1, xml, new Type[0]);
Assert.IsTrue(false);
}
catch (AssertionFailedException ex)
{
Console.WriteLine("Caught unexpected exception: ");
Console.WriteLine(ex);
throw;
}
catch (Exception ex)
{
ConsoleAndDebug.WriteLine(string.Format("Caught expected exception: {0}", ex.Message));
}
}
public void TestDeserialize<TProject>(TProject project, string xml, Type[] extraTypes)
{
TestDeserialize<TProject>(xml, extraTypes);
}
public void TestDeserialize<TProject>(string xml, Type[] extraTypes)
{
var project2 = xml.DeserializeXml<TProject>(extraTypes);
var xml2 = project2.SerializeXml(extraTypes);
ConsoleAndDebug.WriteLine(xml2);
// Assert that the incoming and re-serialized XML are equivalent (no data was lost).
Assert.IsTrue(XNode.DeepEquals(XElement.Parse(xml), XElement.Parse(xml2)));
}
}
public static partial class DataContractSerializerHelper
{
public static string SerializeXml<T>(this T obj, Type [] extraTypes)
{
return obj.SerializeXml(new DataContractSerializer(obj == null ? typeof(T) : obj.GetType(), extraTypes));
}
public static string SerializeXml<T>(this T obj, DataContractSerializer serializer)
{
serializer = serializer ?? new DataContractSerializer(obj == null ? typeof(T) : obj.GetType());
using (var textWriter = new StringWriter())
{
var settings = new XmlWriterSettings { Indent = true };
using (var xmlWriter = XmlWriter.Create(textWriter, settings))
{
serializer.WriteObject(xmlWriter, obj);
}
return textWriter.ToString();
}
}
public static T DeserializeXml<T>(this string xml, Type[] extraTypes)
{
return xml.DeserializeXml<T>(new DataContractSerializer(typeof(T), extraTypes));
}
public static T DeserializeXml<T>(this string xml, DataContractSerializer serializer)
{
using (var textReader = new StringReader(xml ?? ""))
using (var xmlReader = XmlReader.Create(textReader))
{
return (T)(serializer ?? new DataContractSerializer(typeof(T))).ReadObject(xmlReader);
}
}
}
public static class ConsoleAndDebug
{
public static void WriteLine(object s)
{
Console.WriteLine(s);
Debug.WriteLine(s);
}
}
public class AssertionFailedException : System.Exception
{
public AssertionFailedException() : base() { }
public AssertionFailedException(string s) : base(s) { }
}
public static class Assert
{
public static void IsTrue(bool value)
{
if (value == false)
throw new AssertionFailedException("failed");
}
}
Another solution would be to replace your List<ModuleData> with a custom collection that implements IXmlSerializable and handles the polymorphic serialization entirely manually, caching the XML for unknown polymorphic subtypes in a list of unknown elements. I wouldn't recommend that however since even straightforward implementations of IXmlSerializable can be quite complex, as shown here and, e.g., here.
Following dbc's wonderful suggestion of using dummies to exploit the roundtripping mechanism to do the job, I made the solution more generic by generating the dummy types on the fly as needed.
The core of this solution is the following simple function that internally invokes the C# compiler:
private Type CreateDummyType(string typeName, string typeNamespace)
{
var className = $"DummyClass_{random_.Next()}";
var code = $"[System.Runtime.Serialization.DataContract(Name=\"{typeName}\", Namespace=\"{typeNamespace}\")] public class {className} : ModuleData {{}}";
using (var provider = new CSharpCodeProvider())
{
var parameters = new CompilerParameters();
parameters.ReferencedAssemblies.Add("System.Runtime.Serialization.dll");
parameters.ReferencedAssemblies.Add(GetType().Assembly.Location); // this assembly (for ModuleData)
var results = provider.CompileAssemblyFromSource(parameters, code);
return results.CompiledAssembly.GetType(className);
}
}
I combined this with a DataContractResolver that takes care of any unknown types and generates dummies as needed to preserve their data during subsequent (de)serializations.
For completeness I put the recent iteration of the sample code here:
using System;
using System.IO;
using System.Collections.Generic;
using System.Runtime.Serialization;
using System.Diagnostics;
using System.Xml;
using System.Xml.Linq;
using Microsoft.CSharp;
using System.CodeDom.Compiler;
public static class Namespaces
{
public const string BaseNamespace = "http://www.Question45412824.com";
public const string ProjectNamespace = BaseNamespace + "/Project";
public const string ExtensionNamespace = BaseNamespace + "/Extension";
}
// common base class
[DataContract(Namespace = Namespaces.ProjectNamespace)]
public class ModuleData : IExtensibleDataObject
{
public ExtensionDataObject ExtensionData { get; set; }
}
[DataContract(Namespace = Namespaces.ProjectNamespace)]
public class AData : ModuleData
{
[DataMember]
public string A { get; set; }
}
[DataContract(Namespace = Namespaces.ProjectNamespace)]
public class BData : ModuleData
{
[DataMember]
public string B { get; set; }
}
[DataContract(Namespace = Namespaces.ProjectNamespace)]
[KnownType(typeof(AData))]
[KnownType(typeof(BData))]
public class Project
{
[DataMember]
public List<ModuleData> Data { get; set; }
}
[DataContract(Namespace = Namespaces.ProjectNamespace)]
internal class CSubData : ModuleData
{
[DataMember]
public string Name { get; set; }
}
[DataContract(Namespace = Namespaces.ExtensionNamespace)]
public class CData : ModuleData
{
[DataMember]
public ModuleData C { get; set; }
}
class Program
{
static void Main(string[] args)
{
new TestClass().Test();
}
}
class TestClass
{
public virtual void Test()
{
// new project object
var project1 = new Project()
{
Data = new List<ModuleData>()
{
new AData() { A = "A" },
new BData() { B = "B" },
new CData() { C = new CSubData() { Name = "C" } }
}
};
// serialization; make CData explicitly known to simulate presence of "module C"
var extraTypes = new[] { typeof(CData), typeof(CSubData) };
ConsoleAndDebug.WriteLine("\n== Serialization with all types known ==");
var xml = project1.SerializeXml(extraTypes);
ConsoleAndDebug.WriteLine(xml);
ConsoleAndDebug.WriteLine("\n== Deserialization and subsequent serialization WITH generic resolver and unknown types ==");
TestDeserialize(project1, xml, new GenericDataContractResolver());
ConsoleAndDebug.WriteLine("\n== Deserialization and subsequent serialization WITHOUT generic resolver and unknown types ==");
try
{
// Demonstrate that the XML cannot be deserialized without the generic resolver.
TestDeserialize(project1, xml, new Type[0]);
Assert.IsTrue(false);
}
catch (AssertionFailedException ex)
{
Console.WriteLine("Caught unexpected exception: ");
Console.WriteLine(ex);
throw;
}
catch (Exception ex)
{
ConsoleAndDebug.WriteLine(string.Format("Caught expected exception: {0}", ex.Message));
}
}
public void TestDeserialize<TProject>(TProject project, string xml, Type[] extraTypes)
{
TestDeserialize<TProject>(xml, extraTypes);
}
public void TestDeserialize<TProject>(string xml, Type[] extraTypes)
{
var project2 = xml.DeserializeXml<TProject>(extraTypes);
var xml2 = project2.SerializeXml(extraTypes);
ConsoleAndDebug.WriteLine(xml2);
// Assert that the incoming and re-serialized XML are equivalent (no data was lost).
Assert.IsTrue(XNode.DeepEquals(XElement.Parse(xml), XElement.Parse(xml2)));
}
public void TestDeserialize<TProject>(TProject project, string xml, DataContractResolver resolver)
{
TestDeserialize<TProject>(xml, resolver);
}
public void TestDeserialize<TProject>(string xml, DataContractResolver resolver)
{
var project2 = xml.DeserializeXml<TProject>(resolver);
var xml2 = project2.SerializeXml(resolver);
ConsoleAndDebug.WriteLine(xml2);
// Assert that the incoming and re-serialized XML are equivalent (no data was lost).
Assert.IsTrue(XNode.DeepEquals(XElement.Parse(xml), XElement.Parse(xml2)));
}
}
public static partial class DataContractSerializerHelper
{
public static string SerializeXml<T>(this T obj, Type[] extraTypes)
{
return obj.SerializeXml(new DataContractSerializer(obj == null ? typeof(T) : obj.GetType(), extraTypes));
}
public static string SerializeXml<T>(this T obj, DataContractResolver resolver)
{
return obj.SerializeXml(new DataContractSerializer(obj == null ? typeof(T) : obj.GetType(), null, int.MaxValue, false, false, null, resolver));
}
public static string SerializeXml<T>(this T obj, DataContractSerializer serializer)
{
serializer = serializer ?? new DataContractSerializer(obj == null ? typeof(T) : obj.GetType());
using (var textWriter = new StringWriter())
{
var settings = new XmlWriterSettings { Indent = true };
using (var xmlWriter = XmlWriter.Create(textWriter, settings))
{
serializer.WriteObject(xmlWriter, obj);
}
return textWriter.ToString();
}
}
public static T DeserializeXml<T>(this string xml, DataContractResolver resolver)
{
return xml.DeserializeXml<T>(new DataContractSerializer(typeof(T), null, int.MaxValue, false, false, null, resolver));
}
public static T DeserializeXml<T>(this string xml, Type[] extraTypes)
{
return xml.DeserializeXml<T>(new DataContractSerializer(typeof(T), extraTypes));
}
public static T DeserializeXml<T>(this string xml, DataContractSerializer serializer)
{
using (var textReader = new StringReader(xml ?? ""))
using (var xmlReader = XmlReader.Create(textReader))
{
return (T)(serializer ?? new DataContractSerializer(typeof(T))).ReadObject(xmlReader);
}
}
}
public static class ConsoleAndDebug
{
public static void WriteLine(object s)
{
Console.WriteLine(s);
Debug.WriteLine(s);
}
}
public class AssertionFailedException : System.Exception
{
public AssertionFailedException() : base() { }
public AssertionFailedException(string s) : base(s) { }
}
public static class Assert
{
public static void IsTrue(bool value)
{
if (value == false)
throw new AssertionFailedException("failed");
}
}
class GenericDataContractResolver : DataContractResolver
{
private static readonly Random random_ = new Random();
private static readonly Dictionary<Tuple<string, string>, Type> toType_ = new Dictionary<Tuple<string, string>, Type>();
private static readonly Dictionary<Type, Tuple<string, string>> fromType_ = new Dictionary<Type, Tuple<string, string>>();
private Type CreateDummyType(string typeName, string typeNamespace)
{
var className = $"DummyClass_{random_.Next()}";
var code = $"[System.Runtime.Serialization.DataContract(Name=\"{typeName}\", Namespace=\"{typeNamespace}\")] public class {className} : ModuleData {{}}";
using (var provider = new CSharpCodeProvider())
{
var parameters = new CompilerParameters();
parameters.ReferencedAssemblies.Add("System.Runtime.Serialization.dll");
parameters.ReferencedAssemblies.Add(GetType().Assembly.Location); // this assembly (for ModuleData)
var results = provider.CompileAssemblyFromSource(parameters, code);
return results.CompiledAssembly.GetType(className);
}
}
// Used at deserialization; allows users to map xsi:type name to any Type
public override Type ResolveName(string typeName, string typeNamespace, Type declaredType, DataContractResolver knownTypeResolver)
{
var type = knownTypeResolver.ResolveName(typeName, typeNamespace, declaredType, null);
// resolve all unknown extension datasets; all other should be explicitly known.
if (type == null && declaredType == typeof(ModuleData) && typeNamespace == Namespaces.ExtensionNamespace)
{
// if we already have this type cached, then return the cached one
var typeNameAndNamespace = new Tuple<string, string>(typeName, typeNamespace);
if (toType_.TryGetValue(typeNameAndNamespace, out type))
return type;
// else compile the dummy type and remember it in the cache
type = CreateDummyType(typeName, typeNamespace);
toType_.Add(typeNameAndNamespace, type);
fromType_.Add(type, typeNameAndNamespace);
}
return type;
}
// Used at serialization; maps any Type to a new xsi:type representation
public override bool TryResolveType(Type type, Type declaredType, DataContractResolver knownTypeResolver, out XmlDictionaryString typeName, out XmlDictionaryString typeNamespace)
{
if (knownTypeResolver.TryResolveType(type, declaredType, null, out typeName, out typeNamespace))
return true; // known type
// is the type one of our cached dummies?
var typeNameAndNamespace = default(Tuple<string, string>);
if (declaredType == typeof(ModuleData) && fromType_.TryGetValue(type, out typeNameAndNamespace))
{
typeName = new XmlDictionaryString(XmlDictionary.Empty, typeNameAndNamespace.Item1, 0);
typeNamespace = new XmlDictionaryString(XmlDictionary.Empty, typeNameAndNamespace.Item2, 0);
return true; // dummy type
}
return false; // unknown type
}
}
I know that the same problem is faced by a lot of people in one way or another but what I'm confused about is that how come Newtonsoft JSON Serializer is able to correctly handle this case while JavaScriptSerializer fails to do so.
I'm going to use the same code sample used in one of the other stackoverflow thread (JavascriptSerializer serializing property twice when "new" used in subclass)
void Main()
{
System.Web.Script.Serialization.JavaScriptSerializer serializer = new System.Web.Script.Serialization.JavaScriptSerializer();
var json = serializer.Serialize(new Limited());
Limited status = serializer.Deserialize<Limited>(json); --> throws AmbiguousMatchException
}
public class Full
{
public String Stuff { get { return "Common things"; } }
public FullStatus Status { get; set; }
public Full(bool includestatus)
{
if(includestatus)
Status = new FullStatus();
}
}
public class Limited : Full
{
public new LimitedStatus Status { get; set; }
public Limited() : base(false)
{
Status = new LimitedStatus();
}
}
public class FullStatus
{
public String Text { get { return "Loads and loads and loads of things"; } }
}
public class LimitedStatus
{
public String Text { get { return "A few things"; } }
}
But if I use Newtonsoft Json Serializer, everythings works fine. Why? And is it possible to achieve the same using JavaScriptSerializer?
void Main()
{
var json = JsonConvert.SerializeObject(new Limited());
Limited status = JsonConvert.DeserializeObject<Limited>(json); ----> Works fine.
}
The reason this works in Json.NET is that it has specific code to handle this situation. From JsonPropertyCollection.cs:
/// <summary>
/// Adds a <see cref="JsonProperty"/> object.
/// </summary>
/// <param name="property">The property to add to the collection.</param>
public void AddProperty(JsonProperty property)
{
if (Contains(property.PropertyName))
{
// don't overwrite existing property with ignored property
if (property.Ignored)
return;
JsonProperty existingProperty = this[property.PropertyName];
bool duplicateProperty = true;
if (existingProperty.Ignored)
{
// remove ignored property so it can be replaced in collection
Remove(existingProperty);
duplicateProperty = false;
}
else
{
if (property.DeclaringType != null && existingProperty.DeclaringType != null)
{
if (property.DeclaringType.IsSubclassOf(existingProperty.DeclaringType))
{
// current property is on a derived class and hides the existing
Remove(existingProperty);
duplicateProperty = false;
}
if (existingProperty.DeclaringType.IsSubclassOf(property.DeclaringType))
{
// current property is hidden by the existing so don't add it
return;
}
}
}
if (duplicateProperty)
throw new JsonSerializationException("A member with the name '{0}' already exists on '{1}'. Use the JsonPropertyAttribute to specify another name.".FormatWith(CultureInfo.InvariantCulture, property.PropertyName, _type));
}
Add(property);
}
As you can see above, there is specific code here to prefer derived class properties over base class properties of the same name and visibility.
JavaScriptSerializer has no such logic. It simply calls Type.GetProperty(string, flags)
PropertyInfo propInfo = serverType.GetProperty(memberName,
BindingFlags.Instance | BindingFlags.IgnoreCase | BindingFlags.Public);
This method is documented to throw an exception in exactly this situation:
Situations in which AmbiguousMatchException occurs include the following:
A type contains two indexed properties that have the same name but different numbers of parameters. To resolve the ambiguity, use an overload of the GetProperty method that specifies parameter types.
A derived type declares a property that hides an inherited property with the same name, using the new modifier (Shadows in Visual Basic). To resolve the ambiguity, include BindingFlags.DeclaredOnly to restrict the search to members that are not inherited.
I don't know why Microsoft didn't add logic for this to JavaScriptSerializer. It's really a very simple piece of code; perhaps it got eclipsed by DataContractJsonSerializer?
You do have a workaround, which is to write a custom JavaScriptConverter:
public class LimitedConverter : JavaScriptConverter
{
const string StuffName = "Stuff";
const string StatusName = "Status";
public override object Deserialize(IDictionary<string, object> dictionary, Type type, JavaScriptSerializer serializer)
{
var limited = new Limited();
object value;
if (dictionary.TryGetValue(StuffName, out value))
{
// limited.Stuff = serializer.ConvertToType<string>(value); // Actually it's get only.
}
if (dictionary.TryGetValue(StatusName, out value))
{
limited.Status = serializer.ConvertToType<LimitedStatus>(value);
}
return limited;
}
public override IDictionary<string, object> Serialize(object obj, JavaScriptSerializer serializer)
{
var limited = (Limited)obj;
if (limited == null)
return null;
var dict = new Dictionary<string, object>();
if (limited.Stuff != null)
dict.Add(StuffName, limited.Stuff);
if (limited.Status != null)
dict.Add(StatusName, limited.Status);
return dict;
}
public override IEnumerable<Type> SupportedTypes
{
get { return new [] { typeof(Limited) } ; }
}
}
And then use it like:
try
{
System.Web.Script.Serialization.JavaScriptSerializer serializer = new System.Web.Script.Serialization.JavaScriptSerializer();
serializer.RegisterConverters(new JavaScriptConverter[] { new LimitedConverter() });
var json = serializer.Serialize(new Limited());
Debug.WriteLine(json);
var status = serializer.Deserialize<Limited>(json);
var json2 = serializer.Serialize(status);
Debug.WriteLine(json2);
}
catch (Exception ex)
{
Debug.Assert(false, ex.ToString()); // NO ASSERT.
}
I want to deserialize a JSON message received from TCP/IP in my C# application. I have really simple classes with one or two Properties at most, but they are derived. For example:
public class SemiCommand
{
public SemiCommand()
{
UID = string.Empty;
}
public SemiCommand(string uid)
{
UID = uid;
}
public string UID
{
get;
set;
}
public new string ToString()
{
return new JavaScriptSerializer().Serialize(this);
}
}
public class ResponseCommand : SemiCommand
{
protected const string DEFAULT_INFO = "OK";
public ResponseCommand()
{
UID = string.Empty;
Info = DEFAULT_INFO;
}
public ResponseCommand(string uid)
{
UID = uid;
Info = DEFAULT_INFO;
}
public string Response
{
get;
set;
}
public string Info
{
get;
set;
}
public class GetInfoResponseCommand : ResponseCommand
{
public GetInfoResponseCommand()
: base()
{
Response = "GetInfoResponse";
}
public List<ClientProcess> Processes
{
get;
set;
}
}
I made a few attempts with DataMember and DataContract attributes to solve my problem, but it didn't fix it.
The problem lies here:
private Type[] _deserializationTypes = new Type[] { typeof(StartProcessesRequestCommand), typeof(RequestCommand) };
public RequestCommand TranslateTCPMessageToCommand(string messageInString)
{
RequestCommand requestCommand = null;
for (int i = 0; i < _deserializationTypes.Length; i++)
{
try
{
requestCommand = TryDeserialize(_deserializationTypes[i], messageInString);
break;
}
catch
{
}
}
if (requestCommand == null || (requestCommand != null && requestCommand.Command == string.Empty))
{
throw new System.Runtime.Serialization.SerializationException("Unable to deserialize received message");
}
else
{
return requestCommand;
}
}
If i want to deserialize with a proper format, containing all the necessary properties, it works:
This works: {"Response":"SomeResponse","Info":"Information","UID":"123"}
However, this also works: {"nonexistingProperty":"value"}
The second one also creates a RequestCommand with property values set to null.
1st question: How can I force my messagetranslator function to make RequestCommand only if it receives all of the required properties
2nd question: If i have multiple command types which are derived from one or more ancestors, how is it possible, to deserialize it automatically from the "deepest" class if the received properties allow it.
EDIT:
I serialize/deserialize with these two
private RequestCommand TryDeserialize(Type type, string messageInString)
{
JavaScriptSerializer js = new JavaScriptSerializer();
return (RequestCommand)js.Deserialize(messageInString, type);
}
public string TranslateCommandToTCPMessage(ResponseCommand command)
{
JavaScriptSerializer js = new JavaScriptSerializer();
return js.Serialize(command);
}
The break in the try catch supposed to end the loop if the TrySerialize doesn't throw an exception, therefore the deserialization was successful.
If you actually used DataContractJsonSerializer, and you decorated the members / types in question with DataMember / DataContract, you can actually get this to happen. To do this, you can decorate ALL data members with [IsRequired=true]. This would throw an exception if the members weren't present on the wire.
Another option you have is to use IObjectReference, which let you translate one object to another post-serialization, and you can do this depending on what is deserialized from the wire.