how to use a Task.Run in a static method - c#

I want to use a Task.Run in a static method. But when i m calling the task.run in static method it gets lost.
public static void TestLevel()
{
var UserSetting = Task.Run(async () =>
{
return await database.GetSettingByName("test");
}).Result.Value;
User objuser = new User();
objuser.usersetting = UserSetting;
}
When it is calling the task.run its not coming back.

I suspect you're calling this from a UI or ASP.NET request thread. In that case, it is the Result that is causing a deadlock, as I explain on my blog and in a recent MSDN article.
You should use await instead of Result:
public static async Task TestLevelAsync()
{
var UserSetting = await Task.Run(async () =>
{
return await database.GetSettingByName("test");
});
User objuser = new User();
objuser.usersetting = UserSetting.Value;
}
Also, consider following the Task-based asynchronous pattern. In this case, you would rename GetSettingByName to GetSettingByNameAsync and move any Task.Run usage into that method.

Related

How can I get the result of my work in a Task

I need to do a work in a Task (infinite loop for monitoring) but how can I get the result of this work?
My logic to do this stuff i wrong? This is a scope problem I think.
There is an example simplified:
The variable is "first" and I want "edit"
namespace my{
public class Program{
public static void Main(string[] args){
Logic p = new Logic();
Task t = new Task(p.process);
t.Start();
Console.WriteLine(p.getVar());// result="first"
}
}
public class Logic{
public string test = "first";
public void process(){
while(true){
//If condition here
this.test = "edit";
}
}
public String getVar(){
return this.test;
}
}
}
It can be done using custom event. In your case it can be something like:
public event Action<string> OnValueChanged;
Then attach to it
p.OnValueChanged += (newValue) => Console.WriteLine(newValue);
And do not forget to fire it
this.test = "edit";
OnValueChanged?.Invoke(this.test);
Tasks aren't threads, they don't need a .Start call to start them. All examples and tutorials show the use of Task.Run or Task.StartNew for a reason - tasks are a promise that a function will execute at some point in the future and produce a result. They will run on threads pulled from a ThreadPool when a Task Scheduler decides they should. Creating cold tasks and calling .Start doesn't guarantee they will start, it simply makes the code a lot more difficult to read.
In the simplest case, polling eg a remote HTTP endpoint could be as simple as :
public static async Task Main()
{
var client=new HttpClient(serverUrl);
while(true)
{
var response=await client.GetAsync(relativeServiceUrl);
if(!response.IsSuccessStatusCode)
{
//That was an error, do something with it
}
await Task.Delay(1000);
}
}
There's no need to start a new Task because GetAsync is asynchronous. WCF and ADO.NET also provide asynchronous execution methods.
If there's no asynchronous method to call, or if we need to perform some heavey work before the async call, we can use Task.Run to start a method in parallel and await for it to finish:
public bool CheckThatService(string serviceUrl)
{
....
}
public static async Task Main()
{
var url="...";
//...
while(true)
{
var ok=Task.Run(()=>CheckThatService(url));
if(!ok)
{
//That was an error, do something with it
}
await Task.Delay(1000);
}
}
What if we want to test multiple systems in parallel? We can start multiple tasks in parallel, await all of them to complete and check their results:
public static async Task Main()
{
var urls=new[]{"...","..."};
//...
while(true)
{
var tasks=urls.Select(url=>Task.Run(()=>CheckThatService(url));
var responses=await Task.WhenAll(tasks);
foreach(var response in responses)
{
///Check the value, due something
}
await Task.Delay(1000);
}
}
Task.WhenAll returns an array with the results in the order the tasks were created. This allows checking the index to find the original URL. A better idea would be to return the result and url together, eg using tuples :
public static (bool ok,string url) CheckThatService(string serviceUrl)
{
....
return (true,url);
}
The code wouldn't change a lot:
var tasks=urls.Select(url=>Task.Run(()=>CheckThatService(url));
var responses=await Task.WhenAll(tasks);
foreach(var response in responses.Where(resp=>!resp.ok))
{
///Check the value, due something
}
What if we wanted to store the results from all the calls? We can't use a List or Queue because they aren't thread safe. We can use a ConcurrentQueue instead:
ConcurrentQueue<string> _results=new ConcurrentQueue<string>();
public static (bool ok,string url) CheckThatService(string serviceUrl)
{
....
_results.Enqueue(someresult);
return (true,url);
}
If we want to report progress regularly we can use IProgress<T> as shown in Enabling Progress and Cancellation in Async APIs.
We could put all the monitoring code in a separate method/class that accepts an IProgress< T> parameter with a progress object that can report success, error messages and the URL that caused them, eg :
class MonitorDTO
{
public string Url{get;set;}
public bool Success{get;set;}
public string Message{get;set;}
public MonitorDTO(string ulr,bool success,string msg)
{
//...
}
}
class MyMonitor
{
string[] _urls=url;
public MyMonitor(string[] urls)
{
_urls=url;
}
public Task Run(IProgress<MonitorDTO> progress)
{
while(true)
{
var ok=Task.Run(()=>CheckThatService(url));
if(!ok)
{
_progress.Report(new MonitorDTO(ok,url,"some message");
}
await Task.Delay(1000);
}
}
}
This class could be used in this way:
public static async Task Maim()
{
var ulrs=new[]{....};
var monitor=new MyMonitor(urls);
var progress=new Progress<MonitorDTO>(pg=>{
Console.WriteLine($"{pg.Success} for {pg.Url}: {pg.Message}");
});
await monitor.Run(progress);
}
Enabling Progress and Cancellation in Async APIs shows how to use the CancellationTokenSource to implement another important part of a monitoring class - cancelling it. The monitoring method could check the status of a cancellation token periodically and stop monitoring when it's raised:
public Task Run(IProgress<MonitorDTO> progress,CancellationToken ct)
{
while(!ct.IsCancellationRequested)
{
//...
}
}
public static async Task Maim()
{
var ulrs=new[]{....};
var monitor=new MyMonitor(urls);
var progress=new Progress<MonitorDTO>(pg=>{
Console.WriteLine($"{pg.Success} for {pg.Url}: {pg.Message}");
});
var cts = new CancellationTokenSource();
//Not awaiting yet!
var monitorTask=monitor.Run(progress,cts.Token);
//Keep running until the first keypress
Console.ReadKey();
//Cancel and wait for the monitoring class to gracefully stop
cts.Cancel();
await monitorTask;
In this case the loop will exit when the CancellationToken is raised. By not awaiting on MyMonitor.Run() we can keep working on the main thread until an event occurs that signals monitoring should stop.
The getVar method is executed before the process method.
Make sure that you wait until your task is finished before you call the getVar method.
Logic p = new Logic();
Task t = new Task(p.process);
t.Start();
t.Wait(); // Add this line!
Console.WriteLine(p.getVar());
If you want to learn more about the Wait method, please check this link.

Method timeout without creating new thread

How I can implement timeout for a block of code in asp.net application without using Task or Thread? I don't want create new threads because HttpContext will be NULL in another threads.
For example, following code will not work
var task = Task.Run(() =>
{
var test = MethodWithContext();
});
if (!task.Wait(TimeSpan.FromSeconds(5)))
throw new Exception("Timeout");
object MethodWithContext()
{
return HttpContext.Current.Items["Test"]; // <--- HttpContext is NULL
}
EDIT:
I don't want pass current context to method, because I will have a lot of nested methods inside method... so a lot of refactor must be done for this solution
EDIT2:
I have realized that I can assign current context to variable before creating new task and replace HttpContext in task with this variable. This will be safe?
var ctx = HttpContext.Current;
var task = Task.Run(() =>
{
HttpContext.Current = ctx;
var test = MethodWithContext();
});
if (!task.Wait(TimeSpan.FromSeconds(5)))
throw new Exception("Timeout");
object MethodWithContext()
{
return HttpContext.Current.Items["Test"]; // now works correctly
}
You will need to pass the context of you main thread like this:
var task = Task.Run(() =>
{
// Takes the context of you current thread an passes it to the other thread.
var test = MethodWithContext(HttpContext.Current);
});
if (!task.Wait(TimeSpan.FromSeconds(5)))
throw new Exception("Timeout");
void object MethodWithContext(HttpContext ctx)
{
// Now we are operating on the context of you main thread.
return ctx.Items["Test"];
}
But the question is still:
Why do you want to create a task for this?
After starting the task you are simply waiting for its completion. You could just call your method synchronously. Although I am not sure how to limit the execution to 5 seconds if you do that.
As you have mentioned in the comments you'd like to get rid of the additional parameter because you have more than one method. This is how I'd do it:
public void YourOriginalMethod()
{
YourUtilityClass util = new YourUtilityClass(HttpContext.Current);
var task = Task.Run(() =>
{
var test = util.MethodWithContext();
});
if (!task.Wait(TimeSpan.FromSeconds(5)))
throw new Exception("Timeout");
}
public class YourUtilityClass
{
private readonly HttpContext _ctx;
public YourUtilityClass(HttpContext ctx)
{
if(ctx == null)
throw new ArgumentNullException(nameof(ctx));
_ctx = ctx;
}
public void object MethodWithContext()
{
return _ctx.Items["Test"];
}
// You can add more methods here...
}

Task.WaitAll() hangs in console application

I have a console application in which I need to retrieve some data from 4 different sites. I placed each HTTP request in a task and I wait for them all to complete.
It was working when I only had to get data from 2 sites. but then I needed to add other sources of data and when adding 3 or more requests, the Task.WaitAll() hangs.
Below is my code.
The reason I ended up using Task.WaitAll() was because I need to stop and prevent the console application from exiting - i.e. I need to perform other tasks only after all the HTTP requests come back with data.
using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.IO;
using System.Linq;
using System.Net;
using System.Text;
using System.Threading.Tasks;
namespace ConsoleApp1
{
class Program
{
static Task[] tasks = new Task[3];
static void Main(string[] args)
{
try
{
Run();
}
catch (System.Exception ex)
{
}
}
public static async void Run()
{
//works when using one or two tasks
tasks[0] = HttpExtensions.GetMyData("http://www.w3.org/TR/PNG/iso_8859-1.txt");
tasks[1] = HttpExtensions.GetMyData("http://www.w3.org/TR/PNG/iso_8859-1.txt");
//fails when add 3 or more task
tasks[2] = HttpExtensions.GetMyData("http://www.w3.org/TR/PNG/iso_8859-1.txt");
//tasks[3] = HttpExtensions.GetMyData("http://www.w3.org/TR/PNG/iso_8859-1.txt");
Task.WaitAll(tasks);
var result4 = ((Task<Stream>)tasks[2]).Result;
}
}
public static class HttpExtensions
{
public static Stopwatch sw;
public static long http_ticks = 0;
public static Task<HttpWebResponse> GetResponseAsync(this HttpWebRequest request)
{
var taskComplete = new TaskCompletionSource<HttpWebResponse>();
request.BeginGetResponse(asyncResponse =>
{
try
{
HttpWebRequest responseRequest = (HttpWebRequest)asyncResponse.AsyncState;
HttpWebResponse someResponse = (HttpWebResponse)responseRequest.EndGetResponse(asyncResponse);
taskComplete.TrySetResult(someResponse);
}
catch (WebException webExc)
{
HttpWebResponse failedResponse = (HttpWebResponse)webExc.Response;
taskComplete.TrySetResult(failedResponse);
}
}, request);
return taskComplete.Task;
}
public static async Task<Stream> GetMyData(string urlToCall)
{
HttpWebRequest request = (HttpWebRequest)WebRequest.Create(urlToCall);
request.Method = HttpMethod.Get;
HttpWebResponse response = (HttpWebResponse)await request.GetResponseAsync();
//using (var sr = new StreamReader(response.GetResponseStream()))
//{
return response.GetResponseStream();
//}
}
}
public static class HttpMethod
{
public static string Head { get { return "HEAD"; } }
public static string Post { get { return "POST"; } }
public static string Put { get { return "PUT"; } }
public static string Get { get { return "GET"; } }
public static string Delete { get { return "DELETE"; } }
public static string Trace { get { return "TRACE"; } }
public static string Options { get { return "OPTIONS"; } }
public static string Connect { get { return "CONNECT"; } }
public static string Patch { get { return "PATCH"; } }
}
}
There a number of concerns.
First, as I mentioned in the comments above, by not returning a Task you are more or less hanging your application since it can't tell when the Task is completed.
However, once you change the Run() method to return a task, you need to invoke it via a Task.Run call in your Main method.
Second, you are over-complicating your code by using WebClient. Switch to HttpClient and take advantage of its natural async/await API.
Third, you aren't actually awaiting anything in your Run() method so changing it to a task does nothing since you aren't awaiting a result which will cause it to run synchronously (no pun intended). Update your method to await a result.
Finally, WaitAll blocks the thread, which may not be what you want. You can use WhenAll instead and await that call, allowing your application to release the thread while your tasks run.
Below is a complete, working example of my recommended modifications, simplified to show a working program. The Main method recommendation is taken from https://social.msdn.microsoft.com/Forums/vstudio/en-US/fe9acdfc-66cd-4b43-9460-a8053ca51885/using-new-asyncawait-in-console-app?forum=netfxbcl
class Program
{
static Task[] tasks = new Task[3];
static HttpClient _client = new HttpClient();
static void Main(string[] args)
{
Console.WriteLine("Main start");
Task t = Run();
t.ContinueWith((str) =>
{
Console.WriteLine(str.Status.ToString());
Console.WriteLine("Main end");
});
t.Wait();
}
public static async Task Run()
{
tasks[0] = GetMyData("http://www.w3.org/TR/PNG/iso_8859-1.txt");
tasks[1] = GetMyData("http://www.w3.org/TR/PNG/iso_8859-1.txt");
tasks[2] = GetMyData("http://www.w3.org/TR/PNG/iso_8859-1.txt");
await Task.WhenAll(tasks);
var result4 = (await (Task<Stream>)tasks[2]);
}
public static async Task<Stream> GetMyData(string urlToCall)
{
return await _client.GetStreamAsync(urlToCall);
}
}
I think the issue is more of understanding Task and async await; and I may be wrong so apologies up front.
Task is a managed thread that goes into a thread pool. Task has a Task.Result of Type T.
You can create a Task and then Start it and then Wait it. (Never a good idea to start and then immediately wait a task but for understanding...)
var task = new Task(() => DoWork());
task.Start();
task.Wait();
The task will perform the DoWork() method in a new thread.
The calling thread will BLOCK at task.Wait();
You can also give a Task a ContinueWith Action that will perform the remaining work on the calling thread.
var task = new Task(() => DoWorkOnNewThread());
task.ContinueWith(() => MainThreadWork());
task.Start(); //Notice no more task.Wait();
So, if you're following that little bit then you can sort of use async await correctly.
The async keyword tells the compiler to wrap all remaing code AFTER reaching the await keyword WHERE A GetAwaiter() is returned. This is important because until you actually create a task (preferably started also) and return it then you have no GetAwaiter();
private Task DoWorkAsync()
{
var task = new Task(() => DoWork());
task.Start();
return task;
}
private async void Method()
{
//Main thread code...
await DoWorkAsync(); //Returns to whoever called Method()
//More main thread code to be QUEUED to run AFTER DoWorkAsync is complete.
//This portion of code, when compiled, is essentially wrapped in the ContinueWith(...
}
So if you're still following along then here's the kicker. You're on the same thread UNTIL you return a GetAwaiter() which is only found in a Task. If the Task has never started then you'll await that Task forever technically. So here's some comments showing the thread transitions.
private Task DoWorkAsync()
{
Debug.WriteLine("Still on main thread")
var task = new Task(() =>
{
Debug.WriteLine("On background thread");
});
task.Start(); //On main thread.
return task; //On main thread.
}
private async void Method()
{
Debug.WriteLine("On main thread");
await DoWorkAsync(); //returns to caller after DoWorkAsync returns Task
Debug.WriteLine("Back on main thread"); //Works here after the task DoWorkAsync returned is complete
}
An easier way to return the task running is to return Task.Run(() => DoWork()); If you look at the return value of Run it is Task and that task has already been started.
Forgive me if this isn't what you wanted but I felt like there is more of a confusion about using async await correctly than there is confusion about your code. I may be wrong but I felt that if you could understand more about the Task itself and how async await works you would see your issue. If this isn't what you're looking for I'll delete the answer.

Entity object inside Async and Await process

I'm trying to use Async and Await for upload process. I created a small code to see if it works.
class Program
{
static void Main(string[] args)
{
for (int i = 0; i < 5; i++)
{
TestAsync().Wait();
}
}
public static async Task TestAsync()
{
await Task.Run(() => {
Thread.Sleep(1000);
var context = new CommonEntities();
context.AddToDummies(new Dummy { TimeStamp = DateTime.Now, Caption = "Async" });
context.SaveChanges();
});
}
}
But for some reason, it never gets to Console.WriteLine. If I replaced var context = new EntityObject(); with var stringBuilder = new StringBuilder(); then it worked.
The idea is that I will create a method which has many complex procedures of saving and updating database as well as calling a webservice and store the result to database etc. Let say that method is called MethodA.
public static async void test()
{
await Task.Run(() => MethodA());
}
But before going further, I am stuck in this simple test. Any idea why that is?
You shouldn't be using async void anywhere other than an event handler.
async void doesn't allow the caller to wait (asynchronously or otherwise) for the operation to complete, it just moves on. In your case it reaches the end of Main and the application ends before you get a chance to reach the Console.WriteLine.
You need to change TestAsync to return a Task and wait for it in Main:
static void Main()
{
TestAsync().Wait();
}
public static async Task TestAsync()
{
await Task.Run(() =>
{
var objectContext = new CommonEntities();
Console.WriteLine("Processed");
});
}

Using async/await with Dispatcher.BeginInvoke()

I have a method with some code that does an await operation:
public async Task DoSomething()
{
var x = await ...;
}
I need that code to run on the Dispatcher thread. Now, Dispatcher.BeginInvoke() is awaitable, but I can't mark the lambda as async in order to run the await from inside it, like this:
public async Task DoSomething()
{
App.Current.Dispatcher.BeginInvoke(async () =>
{
var x = await ...;
}
);
}
On the inner async, I get the error:
Cannot convert lambda expression to type 'System.Delegate' because it is not a delegate type.
How can I work with async from within Dispatcher.BeginInvoke()?
The other answer may have introduced an obscure bug. This code:
public async Task DoSomething()
{
App.Current.Dispatcher.Invoke(async () =>
{
var x = await ...;
});
}
uses the Dispatcher.Invoke(Action callback) override form of Dispatcher.Invoke, which accepts an async void lambda in this particular case. This may lead to quite unexpected behavior, as it usually happens with async void methods.
You are probably looking for something like this:
public async Task<int> DoSomethingWithUIAsync()
{
await Task.Delay(100);
this.Title = "Hello!";
return 42;
}
public async Task DoSomething()
{
var x = await Application.Current.Dispatcher.Invoke<Task<int>>(
DoSomethingWithUIAsync);
Debug.Print(x.ToString()); // prints 42
}
In this case, Dispatch.Invoke<Task<int>> accepts a Func<Task<int>> argument and returns the corresponding Task<int> which is awaitable. If you don't need to return anything from DoSomethingWithUIAsync, simply use Task instead of Task<int>.
Alternatively, use one of Dispatcher.InvokeAsync methods.
I think you can use below code and then depends of place use it with async and await or without to fire and forget:
public static Task FromUiThreadAsync(Action action)
{
TaskCompletionSource<bool> tcs = new TaskCompletionSource<bool>();
Dispatcher disp = GetUiDispatcher();
disp.Invoke(DispatcherPriority.Background, new Action(() =>
{
try
{
action();
tcs.SetResult(true);
}
catch (Exception ex)
{
tcs.SetException(ex);
}
}));
return tcs.Task;
}
Use Dispatcher.Invoke()
public async Task DoSomething()
{
App.Current.Dispatcher.Invoke(async () =>
{
var x = await ...;
});
}
(Edit: This answer is wrong, but I'll fix it soon)
Declare this
public async Task DoSomethingInUIThreadAsync(Func<Task> p)
{
await Application.Current.Dispatcher.Invoke(p);
}
Use like this
string someVar = "XXX";
DoSomethingInUIThreadAsync(()=>{
await Task.Run(()=> {
Thread.Sleep(10000);
Button1.Text = someVar;
});
});
DoSomethingInUIThreadAsync receives a delegate that returns a Task, Application.Current.Dispatcher.Invoke accepts a Func callback that can be awaited.

Categories

Resources