What is an elegant way to find all the permutations of a string. E.g. permutation for ba, would be ba and ab, but what about longer string such as abcdefgh? Is there any Java implementation example?
public static void permutation(String str) {
permutation("", str);
}
private static void permutation(String prefix, String str) {
int n = str.length();
if (n == 0) System.out.println(prefix);
else {
for (int i = 0; i < n; i++)
permutation(prefix + str.charAt(i), str.substring(0, i) + str.substring(i+1, n));
}
}
(via Introduction to Programming in Java)
Use recursion.
Try each of the letters in turn as the first letter and then find all the permutations of the remaining letters using a recursive call.
The base case is when the input is an empty string the only permutation is the empty string.
Here is my solution that is based on the idea of the book "Cracking the Coding Interview" (P54):
/**
* List permutations of a string.
*
* #param s the input string
* #return the list of permutations
*/
public static ArrayList<String> permutation(String s) {
// The result
ArrayList<String> res = new ArrayList<String>();
// If input string's length is 1, return {s}
if (s.length() == 1) {
res.add(s);
} else if (s.length() > 1) {
int lastIndex = s.length() - 1;
// Find out the last character
String last = s.substring(lastIndex);
// Rest of the string
String rest = s.substring(0, lastIndex);
// Perform permutation on the rest string and
// merge with the last character
res = merge(permutation(rest), last);
}
return res;
}
/**
* #param list a result of permutation, e.g. {"ab", "ba"}
* #param c the last character
* #return a merged new list, e.g. {"cab", "acb" ... }
*/
public static ArrayList<String> merge(ArrayList<String> list, String c) {
ArrayList<String> res = new ArrayList<>();
// Loop through all the string in the list
for (String s : list) {
// For each string, insert the last character to all possible positions
// and add them to the new list
for (int i = 0; i <= s.length(); ++i) {
String ps = new StringBuffer(s).insert(i, c).toString();
res.add(ps);
}
}
return res;
}
Running output of string "abcd":
Step 1: Merge [a] and b:
[ba, ab]
Step 2: Merge [ba, ab] and c:
[cba, bca, bac, cab, acb, abc]
Step 3: Merge [cba, bca, bac, cab, acb, abc] and d:
[dcba, cdba, cbda, cbad, dbca, bdca, bcda, bcad, dbac, bdac, badc, bacd, dcab, cdab, cadb, cabd, dacb, adcb, acdb, acbd, dabc, adbc, abdc, abcd]
Of all the solutions given here and in other forums, I liked Mark Byers the most. That description actually made me think and code it myself.
Too bad I cannot voteup his solution as I am newbie.
Anyways here is my implementation of his description
public class PermTest {
public static void main(String[] args) throws Exception {
String str = "abcdef";
StringBuffer strBuf = new StringBuffer(str);
doPerm(strBuf,0);
}
private static void doPerm(StringBuffer str, int index){
if(index == str.length())
System.out.println(str);
else { //recursively solve this by placing all other chars at current first pos
doPerm(str, index+1);
for (int i = index+1; i < str.length(); i++) {//start swapping all other chars with current first char
swap(str,index, i);
doPerm(str, index+1);
swap(str,i, index);//restore back my string buffer
}
}
}
private static void swap(StringBuffer str, int pos1, int pos2){
char t1 = str.charAt(pos1);
str.setCharAt(pos1, str.charAt(pos2));
str.setCharAt(pos2, t1);
}
}
I prefer this solution ahead of the first one in this thread because this solution uses StringBuffer. I wouldn't say my solution doesn't create any temporary string (it actually does in system.out.println where the toString() of StringBuffer is called). But I just feel this is better than the first solution where too many string literals are created. May be some performance guy out there can evalute this in terms of 'memory' (for 'time' it already lags due to that extra 'swap')
A very basic solution in Java is to use recursion + Set ( to avoid repetitions ) if you want to store and return the solution strings :
public static Set<String> generatePerm(String input)
{
Set<String> set = new HashSet<String>();
if (input == "")
return set;
Character a = input.charAt(0);
if (input.length() > 1)
{
input = input.substring(1);
Set<String> permSet = generatePerm(input);
for (String x : permSet)
{
for (int i = 0; i <= x.length(); i++)
{
set.add(x.substring(0, i) + a + x.substring(i));
}
}
}
else
{
set.add(a + "");
}
return set;
}
All the previous contributors have done a great job explaining and providing the code. I thought I should share this approach too because it might help someone too. The solution is based on (heaps' algorithm )
Couple of things:
Notice the last item which is depicted in the excel is just for helping you better visualize the logic. So, the actual values in the last column would be 2,1,0 (if we were to run the code because we are dealing with arrays and arrays start with 0).
The swapping algorithm happens based on even or odd values of current position. It's very self explanatory if you look at where the swap method is getting called.You can see what's going on.
Here is what happens:
public static void main(String[] args) {
String ourword = "abc";
String[] ourArray = ourword.split("");
permute(ourArray, ourArray.length);
}
private static void swap(String[] ourarray, int right, int left) {
String temp = ourarray[right];
ourarray[right] = ourarray[left];
ourarray[left] = temp;
}
public static void permute(String[] ourArray, int currentPosition) {
if (currentPosition == 1) {
System.out.println(Arrays.toString(ourArray));
} else {
for (int i = 0; i < currentPosition; i++) {
// subtract one from the last position (here is where you are
// selecting the the next last item
permute(ourArray, currentPosition - 1);
// if it's odd position
if (currentPosition % 2 == 1) {
swap(ourArray, 0, currentPosition - 1);
} else {
swap(ourArray, i, currentPosition - 1);
}
}
}
}
Let's use input abc as an example.
Start off with just the last element (c) in a set (["c"]), then add the second last element (b) to its front, end and every possible positions in the middle, making it ["bc", "cb"] and then in the same manner it will add the next element from the back (a) to each string in the set making it:
"a" + "bc" = ["abc", "bac", "bca"] and "a" + "cb" = ["acb" ,"cab", "cba"]
Thus entire permutation:
["abc", "bac", "bca","acb" ,"cab", "cba"]
Code:
public class Test
{
static Set<String> permutations;
static Set<String> result = new HashSet<String>();
public static Set<String> permutation(String string) {
permutations = new HashSet<String>();
int n = string.length();
for (int i = n - 1; i >= 0; i--)
{
shuffle(string.charAt(i));
}
return permutations;
}
private static void shuffle(char c) {
if (permutations.size() == 0) {
permutations.add(String.valueOf(c));
} else {
Iterator<String> it = permutations.iterator();
for (int i = 0; i < permutations.size(); i++) {
String temp1;
for (; it.hasNext();) {
temp1 = it.next();
for (int k = 0; k < temp1.length() + 1; k += 1) {
StringBuilder sb = new StringBuilder(temp1);
sb.insert(k, c);
result.add(sb.toString());
}
}
}
permutations = result;
//'result' has to be refreshed so that in next run it doesn't contain stale values.
result = new HashSet<String>();
}
}
public static void main(String[] args) {
Set<String> result = permutation("abc");
System.out.println("\nThere are total of " + result.size() + " permutations:");
Iterator<String> it = result.iterator();
while (it.hasNext()) {
System.out.println(it.next());
}
}
}
This one is without recursion
public static void permute(String s) {
if(null==s || s.isEmpty()) {
return;
}
// List containing words formed in each iteration
List<String> strings = new LinkedList<String>();
strings.add(String.valueOf(s.charAt(0))); // add the first element to the list
// Temp list that holds the set of strings for
// appending the current character to all position in each word in the original list
List<String> tempList = new LinkedList<String>();
for(int i=1; i< s.length(); i++) {
for(int j=0; j<strings.size(); j++) {
tempList.addAll(merge(s.charAt(i), strings.get(j)));
}
strings.removeAll(strings);
strings.addAll(tempList);
tempList.removeAll(tempList);
}
for(int i=0; i<strings.size(); i++) {
System.out.println(strings.get(i));
}
}
/**
* helper method that appends the given character at each position in the given string
* and returns a set of such modified strings
* - set removes duplicates if any(in case a character is repeated)
*/
private static Set<String> merge(Character c, String s) {
if(s==null || s.isEmpty()) {
return null;
}
int len = s.length();
StringBuilder sb = new StringBuilder();
Set<String> list = new HashSet<String>();
for(int i=0; i<= len; i++) {
sb = new StringBuilder();
sb.append(s.substring(0, i) + c + s.substring(i, len));
list.add(sb.toString());
}
return list;
}
Well here is an elegant, non-recursive, O(n!) solution:
public static StringBuilder[] permutations(String s) {
if (s.length() == 0)
return null;
int length = fact(s.length());
StringBuilder[] sb = new StringBuilder[length];
for (int i = 0; i < length; i++) {
sb[i] = new StringBuilder();
}
for (int i = 0; i < s.length(); i++) {
char ch = s.charAt(i);
int times = length / (i + 1);
for (int j = 0; j < times; j++) {
for (int k = 0; k < length / times; k++) {
sb[j * length / times + k].insert(k, ch);
}
}
}
return sb;
}
One of the simple solution could be just keep swapping the characters recursively using two pointers.
public static void main(String[] args)
{
String str="abcdefgh";
perm(str);
}
public static void perm(String str)
{ char[] char_arr=str.toCharArray();
helper(char_arr,0);
}
public static void helper(char[] char_arr, int i)
{
if(i==char_arr.length-1)
{
// print the shuffled string
String str="";
for(int j=0; j<char_arr.length; j++)
{
str=str+char_arr[j];
}
System.out.println(str);
}
else
{
for(int j=i; j<char_arr.length; j++)
{
char tmp = char_arr[i];
char_arr[i] = char_arr[j];
char_arr[j] = tmp;
helper(char_arr,i+1);
char tmp1 = char_arr[i];
char_arr[i] = char_arr[j];
char_arr[j] = tmp1;
}
}
}
python implementation
def getPermutation(s, prefix=''):
if len(s) == 0:
print prefix
for i in range(len(s)):
getPermutation(s[0:i]+s[i+1:len(s)],prefix+s[i] )
getPermutation('abcd','')
This is what I did through basic understanding of Permutations and Recursive function calling. Takes a bit of time but it's done independently.
public class LexicographicPermutations {
public static void main(String[] args) {
// TODO Auto-generated method stub
String s="abc";
List<String>combinations=new ArrayList<String>();
combinations=permutations(s);
Collections.sort(combinations);
System.out.println(combinations);
}
private static List<String> permutations(String s) {
// TODO Auto-generated method stub
List<String>combinations=new ArrayList<String>();
if(s.length()==1){
combinations.add(s);
}
else{
for(int i=0;i<s.length();i++){
List<String>temp=permutations(s.substring(0, i)+s.substring(i+1));
for (String string : temp) {
combinations.add(s.charAt(i)+string);
}
}
}
return combinations;
}}
which generates Output as [abc, acb, bac, bca, cab, cba].
Basic logic behind it is
For each character, consider it as 1st character & find the combinations of remaining characters. e.g. [abc](Combination of abc)->.
a->[bc](a x Combination of (bc))->{abc,acb}
b->[ac](b x Combination of (ac))->{bac,bca}
c->[ab](c x Combination of (ab))->{cab,cba}
And then recursively calling each [bc],[ac] & [ab] independently.
Use recursion.
when the input is an empty string the only permutation is an empty string.Try for each of the letters in the string by making it as the first letter and then find all the permutations of the remaining letters using a recursive call.
import java.util.ArrayList;
import java.util.List;
class Permutation {
private static List<String> permutation(String prefix, String str) {
List<String> permutations = new ArrayList<>();
int n = str.length();
if (n == 0) {
permutations.add(prefix);
} else {
for (int i = 0; i < n; i++) {
permutations.addAll(permutation(prefix + str.charAt(i), str.substring(i + 1, n) + str.substring(0, i)));
}
}
return permutations;
}
public static void main(String[] args) {
List<String> perms = permutation("", "abcd");
String[] array = new String[perms.size()];
for (int i = 0; i < perms.size(); i++) {
array[i] = perms.get(i);
}
int x = array.length;
for (final String anArray : array) {
System.out.println(anArray);
}
}
}
this worked for me..
import java.util.Arrays;
public class StringPermutations{
public static void main(String args[]) {
String inputString = "ABC";
permute(inputString.toCharArray(), 0, inputString.length()-1);
}
public static void permute(char[] ary, int startIndex, int endIndex) {
if(startIndex == endIndex){
System.out.println(String.valueOf(ary));
}else{
for(int i=startIndex;i<=endIndex;i++) {
swap(ary, startIndex, i );
permute(ary, startIndex+1, endIndex);
swap(ary, startIndex, i );
}
}
}
public static void swap(char[] ary, int x, int y) {
char temp = ary[x];
ary[x] = ary[y];
ary[y] = temp;
}
}
Java implementation without recursion
public Set<String> permutate(String s){
Queue<String> permutations = new LinkedList<String>();
Set<String> v = new HashSet<String>();
permutations.add(s);
while(permutations.size()!=0){
String str = permutations.poll();
if(!v.contains(str)){
v.add(str);
for(int i = 0;i<str.length();i++){
String c = String.valueOf(str.charAt(i));
permutations.add(str.substring(i+1) + c + str.substring(0,i));
}
}
}
return v;
}
Let me try to tackle this problem with Kotlin:
fun <T> List<T>.permutations(): List<List<T>> {
//escape case
if (this.isEmpty()) return emptyList()
if (this.size == 1) return listOf(this)
if (this.size == 2) return listOf(listOf(this.first(), this.last()), listOf(this.last(), this.first()))
//recursive case
return this.flatMap { lastItem ->
this.minus(lastItem).permutations().map { it.plus(lastItem) }
}
}
Core concept: Break down long list into smaller list + recursion
Long answer with example list [1, 2, 3, 4]:
Even for a list of 4 it already kinda get's confusing trying to list all the possible permutations in your head, and what we need to do is exactly to avoid that. It is easy for us to understand how to make all permutations of list of size 0, 1, and 2, so all we need to do is break them down to any of those sizes and combine them back up correctly. Imagine a jackpot machine: this algorithm will start spinning from the right to the left, and write down
return empty/list of 1 when list size is 0 or 1
handle when list size is 2 (e.g. [3, 4]), and generate the 2 permutations ([3, 4] & [4, 3])
For each item, mark that as the last in the last, and find all the permutations for the rest of the item in the list. (e.g. put [4] on the table, and throw [1, 2, 3] into permutation again)
Now with all permutation it's children, put itself back to the end of the list (e.g.: [1, 2, 3][,4], [1, 3, 2][,4], [2, 3, 1][, 4], ...)
import java.io.IOException;
import java.util.ArrayList;
import java.util.Scanner;
public class hello {
public static void main(String[] args) throws IOException {
hello h = new hello();
h.printcomp();
}
int fact=1;
public void factrec(int a,int k){
if(a>=k)
{fact=fact*k;
k++;
factrec(a,k);
}
else
{System.out.println("The string will have "+fact+" permutations");
}
}
public void printcomp(){
String str;
int k;
Scanner in = new Scanner(System.in);
System.out.println("enter the string whose permutations has to b found");
str=in.next();
k=str.length();
factrec(k,1);
String[] arr =new String[fact];
char[] array = str.toCharArray();
while(p<fact)
printcomprec(k,array,arr);
// if incase u need array containing all the permutation use this
//for(int d=0;d<fact;d++)
//System.out.println(arr[d]);
}
int y=1;
int p = 0;
int g=1;
int z = 0;
public void printcomprec(int k,char array[],String arr[]){
for (int l = 0; l < k; l++) {
for (int b=0;b<k-1;b++){
for (int i=1; i<k-g; i++) {
char temp;
String stri = "";
temp = array[i];
array[i] = array[i + g];
array[i + g] = temp;
for (int j = 0; j < k; j++)
stri += array[j];
arr[z] = stri;
System.out.println(arr[z] + " " + p++);
z++;
}
}
char temp;
temp=array[0];
array[0]=array[y];
array[y]=temp;
if (y >= k-1)
y=y-(k-1);
else
y++;
}
if (g >= k-1)
g=1;
else
g++;
}
}
/** Returns an array list containing all
* permutations of the characters in s. */
public static ArrayList<String> permute(String s) {
ArrayList<String> perms = new ArrayList<>();
int slen = s.length();
if (slen > 0) {
// Add the first character from s to the perms array list.
perms.add(Character.toString(s.charAt(0)));
// Repeat for all additional characters in s.
for (int i = 1; i < slen; ++i) {
// Get the next character from s.
char c = s.charAt(i);
// For each of the strings currently in perms do the following:
int size = perms.size();
for (int j = 0; j < size; ++j) {
// 1. remove the string
String p = perms.remove(0);
int plen = p.length();
// 2. Add plen + 1 new strings to perms. Each new string
// consists of the removed string with the character c
// inserted into it at a unique location.
for (int k = 0; k <= plen; ++k) {
perms.add(p.substring(0, k) + c + p.substring(k));
}
}
}
}
return perms;
}
Here is a straightforward minimalist recursive solution in Java:
public static ArrayList<String> permutations(String s) {
ArrayList<String> out = new ArrayList<String>();
if (s.length() == 1) {
out.add(s);
return out;
}
char first = s.charAt(0);
String rest = s.substring(1);
for (String permutation : permutations(rest)) {
out.addAll(insertAtAllPositions(first, permutation));
}
return out;
}
public static ArrayList<String> insertAtAllPositions(char ch, String s) {
ArrayList<String> out = new ArrayList<String>();
for (int i = 0; i <= s.length(); ++i) {
String inserted = s.substring(0, i) + ch + s.substring(i);
out.add(inserted);
}
return out;
}
We can use factorial to find how many strings started with particular letter.
Example: take the input abcd. (3!) == 6 strings will start with every letter of abcd.
static public int facts(int x){
int sum = 1;
for (int i = 1; i < x; i++) {
sum *= (i+1);
}
return sum;
}
public static void permutation(String str) {
char[] str2 = str.toCharArray();
int n = str2.length;
int permutation = 0;
if (n == 1) {
System.out.println(str2[0]);
} else if (n == 2) {
System.out.println(str2[0] + "" + str2[1]);
System.out.println(str2[1] + "" + str2[0]);
} else {
for (int i = 0; i < n; i++) {
if (true) {
char[] str3 = str.toCharArray();
char temp = str3[i];
str3[i] = str3[0];
str3[0] = temp;
str2 = str3;
}
for (int j = 1, count = 0; count < facts(n-1); j++, count++) {
if (j != n-1) {
char temp1 = str2[j+1];
str2[j+1] = str2[j];
str2[j] = temp1;
} else {
char temp1 = str2[n-1];
str2[n-1] = str2[1];
str2[1] = temp1;
j = 1;
} // end of else block
permutation++;
System.out.print("permutation " + permutation + " is -> ");
for (int k = 0; k < n; k++) {
System.out.print(str2[k]);
} // end of loop k
System.out.println();
} // end of loop j
} // end of loop i
}
}
//insert each character into an arraylist
static ArrayList al = new ArrayList();
private static void findPermutation (String str){
for (int k = 0; k < str.length(); k++) {
addOneChar(str.charAt(k));
}
}
//insert one char into ArrayList
private static void addOneChar(char ch){
String lastPerStr;
String tempStr;
ArrayList locAl = new ArrayList();
for (int i = 0; i < al.size(); i ++ ){
lastPerStr = al.get(i).toString();
//System.out.println("lastPerStr: " + lastPerStr);
for (int j = 0; j <= lastPerStr.length(); j++) {
tempStr = lastPerStr.substring(0,j) + ch +
lastPerStr.substring(j, lastPerStr.length());
locAl.add(tempStr);
//System.out.println("tempStr: " + tempStr);
}
}
if(al.isEmpty()){
al.add(ch);
} else {
al.clear();
al = locAl;
}
}
private static void printArrayList(ArrayList al){
for (int i = 0; i < al.size(); i++) {
System.out.print(al.get(i) + " ");
}
}
//Rotate and create words beginning with all letter possible and push to stack 1
//Read from stack1 and for each word create words with other letters at the next location by rotation and so on
/* eg : man
1. push1 - man, anm, nma
2. pop1 - nma , push2 - nam,nma
pop1 - anm , push2 - amn,anm
pop1 - man , push2 - mna,man
*/
public class StringPermute {
static String str;
static String word;
static int top1 = -1;
static int top2 = -1;
static String[] stringArray1;
static String[] stringArray2;
static int strlength = 0;
public static void main(String[] args) throws IOException {
System.out.println("Enter String : ");
InputStreamReader isr = new InputStreamReader(System.in);
BufferedReader bfr = new BufferedReader(isr);
str = bfr.readLine();
word = str;
strlength = str.length();
int n = 1;
for (int i = 1; i <= strlength; i++) {
n = n * i;
}
stringArray1 = new String[n];
stringArray2 = new String[n];
push(word, 1);
doPermute();
display();
}
public static void push(String word, int x) {
if (x == 1)
stringArray1[++top1] = word;
else
stringArray2[++top2] = word;
}
public static String pop(int x) {
if (x == 1)
return stringArray1[top1--];
else
return stringArray2[top2--];
}
public static void doPermute() {
for (int j = strlength; j >= 2; j--)
popper(j);
}
public static void popper(int length) {
// pop from stack1 , rotate each word n times and push to stack 2
if (top1 > -1) {
while (top1 > -1) {
word = pop(1);
for (int j = 0; j < length; j++) {
rotate(length);
push(word, 2);
}
}
}
// pop from stack2 , rotate each word n times w.r.t position and push to
// stack 1
else {
while (top2 > -1) {
word = pop(2);
for (int j = 0; j < length; j++) {
rotate(length);
push(word, 1);
}
}
}
}
public static void rotate(int position) {
char[] charstring = new char[100];
for (int j = 0; j < word.length(); j++)
charstring[j] = word.charAt(j);
int startpos = strlength - position;
char temp = charstring[startpos];
for (int i = startpos; i < strlength - 1; i++) {
charstring[i] = charstring[i + 1];
}
charstring[strlength - 1] = temp;
word = new String(charstring).trim();
}
public static void display() {
int top;
if (top1 > -1) {
while (top1 > -1)
System.out.println(stringArray1[top1--]);
} else {
while (top2 > -1)
System.out.println(stringArray2[top2--]);
}
}
}
Another simple way is to loop through the string, pick the character that is not used yet and put it to a buffer, continue the loop till the buffer size equals to the string length. I like this back tracking solution better because:
Easy to understand
Easy to avoid duplication
The output is sorted
Here is the java code:
List<String> permute(String str) {
if (str == null) {
return null;
}
char[] chars = str.toCharArray();
boolean[] used = new boolean[chars.length];
List<String> res = new ArrayList<String>();
StringBuilder sb = new StringBuilder();
Arrays.sort(chars);
helper(chars, used, sb, res);
return res;
}
void helper(char[] chars, boolean[] used, StringBuilder sb, List<String> res) {
if (sb.length() == chars.length) {
res.add(sb.toString());
return;
}
for (int i = 0; i < chars.length; i++) {
// avoid duplicates
if (i > 0 && chars[i] == chars[i - 1] && !used[i - 1]) {
continue;
}
// pick the character that has not used yet
if (!used[i]) {
used[i] = true;
sb.append(chars[i]);
helper(chars, used, sb, res);
// back tracking
sb.deleteCharAt(sb.length() - 1);
used[i] = false;
}
}
}
Input str: 1231
Output list: {1123, 1132, 1213, 1231, 1312, 1321, 2113, 2131, 2311, 3112, 3121, 3211}
Noticed that the output is sorted, and there is no duplicate result.
Recursion is not necessary, even you can calculate any permutation directly, this solution uses generics to permute any array.
Here is a good information about this algorihtm.
For C# developers here is more useful implementation.
public static void main(String[] args) {
String word = "12345";
Character[] array = ArrayUtils.toObject(word.toCharArray());
long[] factorials = Permutation.getFactorials(array.length + 1);
for (long i = 0; i < factorials[array.length]; i++) {
Character[] permutation = Permutation.<Character>getPermutation(i, array, factorials);
printPermutation(permutation);
}
}
private static void printPermutation(Character[] permutation) {
for (int i = 0; i < permutation.length; i++) {
System.out.print(permutation[i]);
}
System.out.println();
}
This algorithm has O(N) time and space complexity to calculate each permutation.
public class Permutation {
public static <T> T[] getPermutation(long permutationNumber, T[] array, long[] factorials) {
int[] sequence = generateSequence(permutationNumber, array.length - 1, factorials);
T[] permutation = generatePermutation(array, sequence);
return permutation;
}
public static <T> T[] generatePermutation(T[] array, int[] sequence) {
T[] clone = array.clone();
for (int i = 0; i < clone.length - 1; i++) {
swap(clone, i, i + sequence[i]);
}
return clone;
}
private static int[] generateSequence(long permutationNumber, int size, long[] factorials) {
int[] sequence = new int[size];
for (int j = 0; j < sequence.length; j++) {
long factorial = factorials[sequence.length - j];
sequence[j] = (int) (permutationNumber / factorial);
permutationNumber = (int) (permutationNumber % factorial);
}
return sequence;
}
private static <T> void swap(T[] array, int i, int j) {
T t = array[i];
array[i] = array[j];
array[j] = t;
}
public static long[] getFactorials(int length) {
long[] factorials = new long[length];
long factor = 1;
for (int i = 0; i < length; i++) {
factor *= i <= 1 ? 1 : i;
factorials[i] = factor;
}
return factorials;
}
}
My implementation based on Mark Byers's description above:
static Set<String> permutations(String str){
if (str.isEmpty()){
return Collections.singleton(str);
}else{
Set <String> set = new HashSet<>();
for (int i=0; i<str.length(); i++)
for (String s : permutations(str.substring(0, i) + str.substring(i+1)))
set.add(str.charAt(i) + s);
return set;
}
}
Permutation of String:
public static void main(String args[]) {
permu(0,"ABCD");
}
static void permu(int fixed,String s) {
char[] chr=s.toCharArray();
if(fixed==s.length())
System.out.println(s);
for(int i=fixed;i<s.length();i++) {
char c=chr[i];
chr[i]=chr[fixed];
chr[fixed]=c;
permu(fixed+1,new String(chr));
}
}
Here is another simpler method of doing Permutation of a string.
public class Solution4 {
public static void main(String[] args) {
String a = "Protijayi";
per(a, 0);
}
static void per(String a , int start ) {
//bse case;
if(a.length() == start) {System.out.println(a);}
char[] ca = a.toCharArray();
//swap
for (int i = start; i < ca.length; i++) {
char t = ca[i];
ca[i] = ca[start];
ca[start] = t;
per(new String(ca),start+1);
}
}//per
}
A java implementation to print all the permutations of a given string considering duplicate characters and prints only unique characters is as follow:
import java.util.Set;
import java.util.HashSet;
public class PrintAllPermutations2
{
public static void main(String[] args)
{
String str = "AAC";
PrintAllPermutations2 permutation = new PrintAllPermutations2();
Set<String> uniqueStrings = new HashSet<>();
permutation.permute("", str, uniqueStrings);
}
void permute(String prefixString, String s, Set<String> set)
{
int n = s.length();
if(n == 0)
{
if(!set.contains(prefixString))
{
System.out.println(prefixString);
set.add(prefixString);
}
}
else
{
for(int i=0; i<n; i++)
{
permute(prefixString + s.charAt(i), s.substring(0,i) + s.substring(i+1,n), set);
}
}
}
}
String permutaions using Es6
Using reduce() method
const permutations = str => {
if (str.length <= 2)
return str.length === 2 ? [str, str[1] + str[0]] : [str];
return str
.split('')
.reduce(
(acc, letter, index) =>
acc.concat(permutations(str.slice(0, index) + str.slice(index + 1)).map(val => letter + val)),
[]
);
};
console.log(permutations('STR'));
In case anyone wants to generate the permutations to do something with them, instead of just printing them via a void method:
static List<int[]> permutations(int n) {
class Perm {
private final List<int[]> permutations = new ArrayList<>();
private void perm(int[] array, int step) {
if (step == 1) permutations.add(array.clone());
else for (int i = 0; i < step; i++) {
perm(array, step - 1);
int j = (step % 2 == 0) ? i : 0;
swap(array, step - 1, j);
}
}
private void swap(int[] array, int i, int j) {
int buffer = array[i];
array[i] = array[j];
array[j] = buffer;
}
}
int[] nVector = new int[n];
for (int i = 0; i < n; i++) nVector [i] = i;
Perm perm = new Perm();
perm.perm(nVector, n);
return perm.permutations;
}
I need a C# function that takes 2 strings as an input and return an array of all possible combinations of strings.
private string[] FunctionName(string string1, string string2)
{
//code
}
The strings input will be in the following format:
string1: basement
string2: a*fa
Now what I need is all combinations of possible strings using the characters in String2 (ignoring the * symbols), and keeping them in the same character position like this:
baaement, baaefent, baaefena, basefent, basemena, etc.
EDIT:
This is not homework. I need this function for a piece of a program I am doing.
The following is the code I have so far but it has some bugs.
static List<string> combinations = new List<string>();
static void Main(string[] args)
{
//include trimming of input string
string FoundRes = "incoming";
string AltRes = "*2*45*78";
List<int> loc = new List<int>();
string word = "";
for (int i = 0; i < AltRes.Length; i++)
{
if (AltRes[i] != '*')
{
loc.Add(i);
word += AltRes[i];
}
}
generate(word);
string[] aaa = InsertSymbol(FoundRes, loc.ToArray(), AltRes, combinations);
Console.WriteLine("input string: " + FoundRes);
Console.WriteLine("Substitute string: " + AltRes);
Console.WriteLine("============Output============");
for (int j = 0; j < aaa.Length; j++)
{
Console.WriteLine(aaa[j]);
}
Console.ReadKey();
}//
private static void generate(string word)
{
// Add this word to combination results set
if (!combinations.Contains(word))
combinations.Add(word);
// If the word has only one character, break the recursion
if (word.Length == 1)
{
if (!combinations.Contains(word))
combinations.Add(word);
return;
}
// Go through every position of the word
for (int i = 0; i < word.Length; i++)
{
// Remove the character at the current position
// call this method with the String
generate(word.Substring(0, i) + word.Substring(i + 1));
}
}//
private static string[] InsertSymbol(string orig, int[] loc, string alternative, List<string> Chars)
{
List<string> CombinationsList = new List<string>();
string temp = "";
for (int i = 0; i < Chars.Count; i++)
{
temp = orig;
for (int j = 0; j < Chars[i].Length; j++)
{
string token = Chars[i];
if (alternative.IndexOf(token[j]) == loc[j])
{
temp = temp.Remove(loc[j], 1);
temp = temp.Insert(loc[j], token[j].ToString());
// int pos = sourceSubst.IndexOf(token[j]);
// sourceSubst = sourceSubst.Remove(pos, 1);
// sourceSubst = sourceSubst.Insert(pos, ".");
}
else
{
temp = temp.Remove(alternative.IndexOf(token[j]), 1);
temp = temp.Insert(alternative.IndexOf(token[j]), token[j].ToString());
}
}
CombinationsList.Add(temp);
}
return CombinationsList.ToArray();
}//
It does sound like homework. As a suggestion, I would ignore the first parameter and focus on getting all possible permutations of the second string. What's turned off, what's turned on, etc. From that list, you can easily come up with a method of swapping out characters of the first string.
On that note, I'm in the uncomfortable position of having a function ready to go but not wanting to post it because of the homework implication. I'd sure love for somebody to review it, though! And technically, there's two functions involved because I just happened to already have a generic function to generate subsets lying around.
Edit: OP says it isn't homework, so here is what I came up with. It has been refactored a bit since the claim of two functions, and I'm more than open to criticism.
using System;
using System.Collections.Generic;
using System.Text;
class Program
{
static void Main()
{
string original = "phenomenal";
string pattern = "*xo**q*t**";
string[] replacements = StringUtility.GetReplacementStrings(original, pattern, true);
foreach (string replacement in replacements)
Console.WriteLine(replacement);
Console.Read();
}
public static class StringUtility
{
public static string[] GetReplacementStrings(string original, string pattern, bool includeOriginal)
{
// pattern and original might not be same length
int maxIndex = Math.Max(original.Length, pattern.Length);
List<int> positions = GetPatternPositions(pattern, maxIndex, '*');
List<int[]> subsets = ArrayUtility.CreateSubsets(positions.ToArray());
List<string> replacements = GenerateReplacements(original, pattern, subsets);
if (includeOriginal)
replacements.Insert(0, original);
return replacements.ToArray();
}
private static List<string> GenerateReplacements(string original, string pattern, List<int[]> subsets)
{
List<string> replacements = new List<string>();
char[] temp = new char[original.Length];
foreach (int[] subset in subsets)
{
original.CopyTo(0, temp, 0, original.Length);
foreach (int index in subset)
{
temp[index] = pattern[index];
}
replacements.Add(new string(temp));
}
return replacements;
}
private static List<int> GetPatternPositions(string pattern, int maxIndex, char excludeCharacter)
{
List<int> positions = new List<int>();
for (int i = 0; i < maxIndex; i++)
{
if (pattern[i] != excludeCharacter)
positions.Add(i);
}
return positions;
}
}
public static class ArrayUtility
{
public static List<T[]> CreateSubsets<T>(T[] originalArray)
{
List<T[]> subsets = new List<T[]>();
for (int i = 0; i < originalArray.Length; i++)
{
int subsetCount = subsets.Count;
subsets.Add(new T[] { originalArray[i] });
for (int j = 0; j < subsetCount; j++)
{
T[] newSubset = new T[subsets[j].Length + 1];
subsets[j].CopyTo(newSubset, 0);
newSubset[newSubset.Length - 1] = originalArray[i];
subsets.Add(newSubset);
}
}
return subsets;
}
}
}
since it's hopw work I'd only suggest some way to solve the problem rather than writing the code.
if you loop the second parameter every time you hit a letter you'll have to options either use the letter from the first argument or the letter from the second. collect all these optins together with the index. keep a list of the parts from the first argument that will never change. iterate thorugh those two lists to created all the possible permutations
Decimal to Binary converted code is stolon copied from here.
static void Main()
{
string string1 = "basement";
string string2 = "**a*f**a";
string[] result = GetCombinations(string1, string2);
foreach (var item in result)
{
Console.WriteLine(item);
}
}
private static string[] GetCombinations(string string1, string string2)
{
var list = new List<List<char>> { new List<char>(), new List<char>() };
var cl = new List<char>();
List<string> result = new List<string>();
for (int i = 0; i < string1.Length; i++)
{
if (string2[i] == '*')
{
cl.Add(string1[i]);
}
else
{
list[0].Add(string1[i]);
list[1].Add(string2[i]);
}
}
int l = list[0].Count;
for (int i = 0; i < (Int64)Math.Pow(2.0,l); i++)
{
string s = ToBinary(i, l);
string ss = "";
int x = 0;
int y = 0;
for (int I = 0; I < string1.Length; I++)
{
if (string2[I] == '*')
{
ss += cl[x].ToString();
x++;
}
else
{
ss += (list[int.Parse(s[y].ToString())][y]);
y++;
}
}
result.Add(ss);
}
return result.ToArray<string>();
}
public static string ToBinary(Int64 Decimal, int width)
{
Int64 BinaryHolder;
char[] BinaryArray;
string BinaryResult = "";
while (Decimal > 0)
{
BinaryHolder = Decimal % 2;
BinaryResult += BinaryHolder;
Decimal = Decimal / 2;
}
BinaryArray = BinaryResult.ToCharArray();
Array.Reverse(BinaryArray);
BinaryResult = new string(BinaryArray);
var d = width - BinaryResult.Length;
if (d != 0) for (int i = 0; i < d; i++) BinaryResult = "0" + BinaryResult;
return BinaryResult;
}
which password cracker do you want to program? :)
how about
if string2 contains '*'
foreach(char ch in string1)
replace first * with ch,
execute FunctionName
else
print string2
I have a string value that its length is 5000 + characters long , i want to split this into 76 characters long with a new line at the end of each 76 characters. how woudld i do this in c#?
If you're writing Base64 data, try writing
Convert.ToBase64String(bytes, Base64FormattingOptions.InsertLineBreaks);
This will insert a newline every 76 characters
A side on this, if you want StringBuilder versus string performance the best article is the codeproject one found here.
(This doesn't show string size however)
In a nutshell, StringBuilder isn't faster until a threshold is met with the string length (or repeated contactenation), which you're well under, so stick the regular string concatenation and String methods.
Try this:
s = Regex.Replace(s, #"(?<=\G.{76})", "\r\n");
EDIT: Apparently, this is the slowest method of all those posted so far. I wonder how it does if you pre-compile the regex:
Regex rx0 = new Regex(#"(?<=\G.{76})");
s = rx0.Replace(s, "\r\n"); // only time this portion
Also, how does it compare to a straight matching approach?
Regex rx1 = new Regex(".{76}");
s = rx1.Replace(s, "$0\r\n"); // only time this portion
I've always wondered how expensive those unbounded lookbehinds are.
A little uglier ... but much faster ;) (this version took 161 ticks... Aric's took 413)
I posted my test code on my blog. http://hackersbasement.com/?p=134
(I also found StringBuilder to be much slower than string.Join)
http://hackersbasement.com/?p=139 <= updated results
string chopMe = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789";
Stopwatch sw = new Stopwatch();
sw.Start();
char[] chopMeArray = chopMe.ToCharArray();
int totalLength = chopMe.Length;
int partLength = 12;
int partCount = (totalLength / partLength) + ((totalLength % partLength == 0) ? 0 : 1);
int posIndex = 0;
char[] part = new char[partLength];
string[] parts = new string[partCount];
int get = partLength;
for (int i = 0; i < partCount; i++)
{
get = Math.Min(partLength, totalLength - posIndex);
Array.Copy(chopMeArray, posIndex, part, 0, get);
parts[i] = new string(part, 0, get);
posIndex += partLength;
}
var output = string.Join("\r\n", parts) + "\r\n";
sw.Stop();
Console.WriteLine(sw.ElapsedTicks);
public static string InsertNewLine(string s, int len)
{
StringBuilder sb = new StringBuilder(s.Length + (int)(s.Length/len) + 1);
int start = 0;
for (start=0; start<s.Length-len; start+=len)
{
sb.Append(s.Substring(start, len));
sb.Append(Environment.NewLine);
}
sb.Append(s.Substring(start));
return sb.ToString();
}
where s would be your input string and len the desired line length (76).
string[] FixedSplit(string s, int len)
{
List<string> output;
while (s.Length > len)
{
output.Add(s.Substring(0, len) + "\n");
s.Remove(0, len);
}
output.Add(s + "\n");
return output.ToArray();
}
public static IEnumerable<string> SplitString(string s, int length)
{
var buf = new char[length];
using (var rdr = new StringReader(s))
{
int l;
l = rdr.ReadBlock(buf, 0, length);
while (l > 0)
{
yield return (new string(buf, 0, l)) + Environment.NewLine;
l = rdr.ReadBlock(buf, 0, length);
}
}
}
Then to put them back together:
string theString = GetLongString();
StringBuilder buf = new StringBuilder(theString.Length + theString.Length/76);
foreach (string s in SplitString(theString, 76) { buf.Append(s); }
string result = buf.ToString();
Or you could do this:
string InsertNewLines(string s, int interval)
{
char[] buf = new char[s.Length + (int)Math.Ceiling(s.Length / (double)interval)];
using (var rdr = new StringReader(s))
{
for (int i=0; i<buf.Length-interval; i++)
{
rdr.ReadBlock(buf, i, interval);
i+=interval;
buf[i] = '\n';
}
if (i < s.Length)
{
rdr.ReadBlock(buf, i, s.Length - i);
buf[buf.Length - 1] = '\n';
}
}
return new string(buf);
}
One more.... (first time through slowish, subsequent runs, similar to the faster times posted above)
private void button1_Click(object sender, EventArgs e)
{
string chopMe = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789";
Stopwatch sw = new Stopwatch();
sw.Start();
string result = string.Join("\r\n", ChopString(chopMe).ToArray());
sw.Stop();
MessageBox.Show(result + " " + sw.ToString());
}
public IEnumerable<string> ChopString(string s)
{
int i = 0;
while (i < s.Length)
{
yield return i + PARTLENGTH <= s.Length ? s.Substring(i,PARTLENGTH) :s.Substring(i) ;
i += PARTLENGTH;
}
}
Edit: I was curious to see how fast substring was...
The string is 5000 characters... I don't think speed is really of the essence unless you're doing this thousands or maybe even millions of times, especially when the OP didn't even mention speed being important. Premature optimization?
I would probably use recursion as it will, in my opinion, lead to the simplest code.
This may not be syntatically correct, as I know .NET but not C#.
String ChunkString(String s, Integer chunkLength) {
if (s.Length <= chunkLength) return s;
return String.Concat(s.Substring(0, chunkLength),
ChunkString(s.Substring(chunkLength)));
}
mostly for the fun of it, here's a different solution implemented as extension method to string:
(\r\n used explicitly so will only support that format for newline);
public static string Split(this string str, int len)
{
char org = str.ToCharArray();
int parts = str.Length / len + (str.Length % len == 0 ? 0 : 1);
int stepSize = len + newline.Length;
char[] result = new char[parts * stepSize];
int resLen = result.Length;
for (int i =0;i<resLen ;i+stepSize)
{
Array.Copy(org,i*len,result,i*stepSize);
resLen[i++] = '\r';
resLen[i++] = '\n';
}
return new string(result);
}
In the end, this would be what I would use, I think
static string fredou()
{
string s = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789";
int partLength = 12;
int stringLength = s.Length;
StringBuilder n = new StringBuilder(stringLength + (int)(stringLength / partLength) + 1);
int chopSize = 0;
int pos = 0;
while (pos < stringLength)
{
chopSize = (pos + partLength) < stringLength ? partLength : stringLength - pos;
n.Append(s , pos, chopSize);
n.Append("\r\n");
pos += chopSize;
}
return n.ToString();
}
by looking at AppendLine under reflector:
<ComVisible(False)> _
Public Function AppendLine(ByVal value As String) As StringBuilder
Me.Append(value)
Return Me.Append(Environment.NewLine)
End Function
Public Shared ReadOnly Property NewLine As String
Get
Return ChrW(13) & ChrW(10)
End Get
End Property
For me, speed wise, doing it manually > AppendLine
I'm spliting the string by 35
var tempstore ="12345678901234567890123456789012345";
for (int k = 0; k < tempstore.Length; k += 35)
{
PMSIMTRequest.Append(tempstore.Substring(k, tempstore.Length - k > 35 ? 35 : tempstore.Length - k));
PMSIMTRequest.Append(System.Environment.NewLine);
}
messagebox.Show(PMSIMTRequest.tostring());
#M4N's answer is very good , but I think while statement is easier to understand than for statement.
public static string InsertNewLine(string source, int len = 76)
{
var sb = new StringBuilder(source.Length + (int)(source.Length / len) + 1);
var start = 0;
while ((start + len) < source.Length)
{
sb.Append(source.Substring(start, len));
sb.Append(Environment.NewLine);
start += len;
}
sb.Append(source.Substring(start));
return sb.ToString();
}