Subtract percentage in C# - c#

I'm trying to subtract percentage in C# using:
n = n - (n * 0.25);
but I'm getting an error:
"Cannot implicitly 'double' to 'int'. An explicit conversions exists
(are you missing a cast?)"

Your value n is an int.
When you multiply by 0.25( which is a double), the resulting value is a double that you try to assign to a int.
To solve it, you have to specify that you are aware that you will lose precision using "explicit conversion".
n = n - (int)(n * 0.25);
Doing (Type)value is called "to cast value to Type". This is exactly what the error message suggest you to do.
Or, if you don't want to keep the precision, declare n not as an int but as a double. In this case, you will not have to cast n * 0.25 to int.

If you don't want to switch back and forwards between int and double types you could just use:
n = (n * 75) / 100
if your answer ever has decimals they'll be lost though

Your variable n must be an integer, but the result of your calculation is a double, since it involves multiplication by a double (0.25).
You can cast the result back to an int like this:
n = (int)(n - (n * 0.25));

I'm assuming that n is an integer type then, say int, as you don't give a clue to that. In which case the easiest solution is to do:
n = Convert.ToInt32(n - (n * 0.25));
Or you can cast:
n = (int)(n - (n * 0.25));

Check the type of variable 'n'.
Either 'n' should be of double type.
Or
Use explicit cast to convert to int.
int n = (int)(n - (n * 0.25));

you must cast result to int
n=(int)(n-(n*0.25));

try:
n = n - (int)((double)n * 0.25);
note: by doing this you wont have numbers behind the point in the n result.

I guess this could be an issue with the type of n being int it least needs to be double
hence when you have n = n - (n * 0.25) the result is a double
if you want to cast it as int then beware of rounding since it would not always be ending in .00
Also i think this would be better n = n * 0.75

Your n variable is an int. When you try to multiple with 0.25, 0.25 is double, so result will be double. You should cast it manually because there is no Implicit Numeric Conversion for double to int. You have to use Explicit Numeric Conversion for them.
From --> To
double --> sbyte , byte, short, ushort, int, uint, long, ulong, char, float, or decimal
You should convert your right expression to int.
int n = 100;
n = (int) (n - (n * 0.25));
Console.WriteLine(n);
Here is a DEMO.
And remember;
Explicit numeric conversion may cause loss of precision.
When you convert from a double value to an integral type, the value is truncated. If the resulting integral value is outside the range of the destination value, the result depends on the overflow checking context.

The best way would be to do
n = n - n/4;
If you want a percentage to be a whole number between 0 and 100, otherwise you should declare n to be a double by replacing int n with double n.
No costly conversion will occur in the proposed assignment. Note that n/4 is an integer because both operands (n and 4) are integers, causing no promotions, thus using integer division.
Explanation
This is type promotion, n is multiplied by a double, which promotes n*0.25 automatically to a double. A primitive can only be promoted into a higher rank, not demoted to a lower rank. A primitive x is of a higher rank then another primitive y if it can hold all values of y without causing loss of precision. A double can hold all values of an integer, but an integer can, for example, not hold 0.1. So you are trying to promote and demote. See MSDN library for more information.
Note:
Casting from a double to an int causes the value to be truncated, that is all decimals after the 'dot' will be erased, so -2.5 becomes -2 and 1.5 becomes 1. Integer division, as used above also rounds to zero, making this assignment equal with your assignment. But avoiding any costly conversions.

Related

Explicit conversion confusion in C# [duplicate]

Does anyone know why integer division in C# returns an integer and not a float?
What is the idea behind it? (Is it only a legacy of C/C++?)
In C#:
float x = 13 / 4;
//== operator is overridden here to use epsilon compare
if (x == 3.0)
print 'Hello world';
Result of this code would be:
'Hello world'
Strictly speaking, there is no such thing as integer division (division by definition is an operation which produces a rational number, integers are a very small subset of which.)
While it is common for new programmer to make this mistake of performing integer division when they actually meant to use floating point division, in actual practice integer division is a very common operation. If you are assuming that people rarely use it, and that every time you do division you'll always need to remember to cast to floating points, you are mistaken.
First off, integer division is quite a bit faster, so if you only need a whole number result, one would want to use the more efficient algorithm.
Secondly, there are a number of algorithms that use integer division, and if the result of division was always a floating point number you would be forced to round the result every time. One example off of the top of my head is changing the base of a number. Calculating each digit involves the integer division of a number along with the remainder, rather than the floating point division of the number.
Because of these (and other related) reasons, integer division results in an integer. If you want to get the floating point division of two integers you'll just need to remember to cast one to a double/float/decimal.
See C# specification. There are three types of division operators
Integer division
Floating-point division
Decimal division
In your case we have Integer division, with following rules applied:
The division rounds the result towards zero, and the absolute value of
the result is the largest possible integer that is less than the
absolute value of the quotient of the two operands. The result is zero
or positive when the two operands have the same sign and zero or
negative when the two operands have opposite signs.
I think the reason why C# use this type of division for integers (some languages return floating result) is hardware - integers division is faster and simpler.
Each data type is capable of overloading each operator. If both the numerator and the denominator are integers, the integer type will perform the division operation and it will return an integer type. If you want floating point division, you must cast one or more of the number to floating point types before dividing them. For instance:
int x = 13;
int y = 4;
float x = (float)y / (float)z;
or, if you are using literals:
float x = 13f / 4f;
Keep in mind, floating points are not precise. If you care about precision, use something like the decimal type, instead.
Since you don't use any suffix, the literals 13 and 4 are interpreted as integer:
Manual:
If the literal has no suffix, it has the first of these types in which its value can be represented: int, uint, long, ulong.
Thus, since you declare 13 as integer, integer division will be performed:
Manual:
For an operation of the form x / y, binary operator overload resolution is applied to select a specific operator implementation. The operands are converted to the parameter types of the selected operator, and the type of the result is the return type of the operator.
The predefined division operators are listed below. The operators all compute the quotient of x and y.
Integer division:
int operator /(int x, int y);
uint operator /(uint x, uint y);
long operator /(long x, long y);
ulong operator /(ulong x, ulong y);
And so rounding down occurs:
The division rounds the result towards zero, and the absolute value of the result is the largest possible integer that is less than the absolute value of the quotient of the two operands. The result is zero or positive when the two operands have the same sign and zero or negative when the two operands have opposite signs.
If you do the following:
int x = 13f / 4f;
You'll receive a compiler error, since a floating-point division (the / operator of 13f) results in a float, which cannot be cast to int implicitly.
If you want the division to be a floating-point division, you'll have to make the result a float:
float x = 13 / 4;
Notice that you'll still divide integers, which will implicitly be cast to float: the result will be 3.0. To explicitly declare the operands as float, using the f suffix (13f, 4f).
Might be useful:
double a = 5.0/2.0;
Console.WriteLine (a); // 2.5
double b = 5/2;
Console.WriteLine (b); // 2
int c = 5/2;
Console.WriteLine (c); // 2
double d = 5f/2f;
Console.WriteLine (d); // 2.5
It's just a basic operation.
Remember when you learned to divide. In the beginning we solved 9/6 = 1 with remainder 3.
9 / 6 == 1 //true
9 % 6 == 3 // true
The /-operator in combination with the %-operator are used to retrieve those values.
The result will always be of type that has the greater range of the numerator and the denominator. The exceptions are byte and short, which produce int (Int32).
var a = (byte)5 / (byte)2; // 2 (Int32)
var b = (short)5 / (byte)2; // 2 (Int32)
var c = 5 / 2; // 2 (Int32)
var d = 5 / 2U; // 2 (UInt32)
var e = 5L / 2U; // 2 (Int64)
var f = 5L / 2UL; // 2 (UInt64)
var g = 5F / 2UL; // 2.5 (Single/float)
var h = 5F / 2D; // 2.5 (Double)
var i = 5.0 / 2F; // 2.5 (Double)
var j = 5M / 2; // 2.5 (Decimal)
var k = 5M / 2F; // Not allowed
There is no implicit conversion between floating-point types and the decimal type, so division between them is not allowed. You have to explicitly cast and decide which one you want (Decimal has more precision and a smaller range compared to floating-point types).
As a little trick to know what you are obtaining you can use var, so the compiler will tell you the type to expect:
int a = 1;
int b = 2;
var result = a/b;
your compiler will tell you that result would be of type int here.

How do I to calculate percent and round the result? [duplicate]

Does anyone know why integer division in C# returns an integer and not a float?
What is the idea behind it? (Is it only a legacy of C/C++?)
In C#:
float x = 13 / 4;
//== operator is overridden here to use epsilon compare
if (x == 3.0)
print 'Hello world';
Result of this code would be:
'Hello world'
Strictly speaking, there is no such thing as integer division (division by definition is an operation which produces a rational number, integers are a very small subset of which.)
While it is common for new programmer to make this mistake of performing integer division when they actually meant to use floating point division, in actual practice integer division is a very common operation. If you are assuming that people rarely use it, and that every time you do division you'll always need to remember to cast to floating points, you are mistaken.
First off, integer division is quite a bit faster, so if you only need a whole number result, one would want to use the more efficient algorithm.
Secondly, there are a number of algorithms that use integer division, and if the result of division was always a floating point number you would be forced to round the result every time. One example off of the top of my head is changing the base of a number. Calculating each digit involves the integer division of a number along with the remainder, rather than the floating point division of the number.
Because of these (and other related) reasons, integer division results in an integer. If you want to get the floating point division of two integers you'll just need to remember to cast one to a double/float/decimal.
See C# specification. There are three types of division operators
Integer division
Floating-point division
Decimal division
In your case we have Integer division, with following rules applied:
The division rounds the result towards zero, and the absolute value of
the result is the largest possible integer that is less than the
absolute value of the quotient of the two operands. The result is zero
or positive when the two operands have the same sign and zero or
negative when the two operands have opposite signs.
I think the reason why C# use this type of division for integers (some languages return floating result) is hardware - integers division is faster and simpler.
Each data type is capable of overloading each operator. If both the numerator and the denominator are integers, the integer type will perform the division operation and it will return an integer type. If you want floating point division, you must cast one or more of the number to floating point types before dividing them. For instance:
int x = 13;
int y = 4;
float x = (float)y / (float)z;
or, if you are using literals:
float x = 13f / 4f;
Keep in mind, floating points are not precise. If you care about precision, use something like the decimal type, instead.
Since you don't use any suffix, the literals 13 and 4 are interpreted as integer:
Manual:
If the literal has no suffix, it has the first of these types in which its value can be represented: int, uint, long, ulong.
Thus, since you declare 13 as integer, integer division will be performed:
Manual:
For an operation of the form x / y, binary operator overload resolution is applied to select a specific operator implementation. The operands are converted to the parameter types of the selected operator, and the type of the result is the return type of the operator.
The predefined division operators are listed below. The operators all compute the quotient of x and y.
Integer division:
int operator /(int x, int y);
uint operator /(uint x, uint y);
long operator /(long x, long y);
ulong operator /(ulong x, ulong y);
And so rounding down occurs:
The division rounds the result towards zero, and the absolute value of the result is the largest possible integer that is less than the absolute value of the quotient of the two operands. The result is zero or positive when the two operands have the same sign and zero or negative when the two operands have opposite signs.
If you do the following:
int x = 13f / 4f;
You'll receive a compiler error, since a floating-point division (the / operator of 13f) results in a float, which cannot be cast to int implicitly.
If you want the division to be a floating-point division, you'll have to make the result a float:
float x = 13 / 4;
Notice that you'll still divide integers, which will implicitly be cast to float: the result will be 3.0. To explicitly declare the operands as float, using the f suffix (13f, 4f).
Might be useful:
double a = 5.0/2.0;
Console.WriteLine (a); // 2.5
double b = 5/2;
Console.WriteLine (b); // 2
int c = 5/2;
Console.WriteLine (c); // 2
double d = 5f/2f;
Console.WriteLine (d); // 2.5
It's just a basic operation.
Remember when you learned to divide. In the beginning we solved 9/6 = 1 with remainder 3.
9 / 6 == 1 //true
9 % 6 == 3 // true
The /-operator in combination with the %-operator are used to retrieve those values.
The result will always be of type that has the greater range of the numerator and the denominator. The exceptions are byte and short, which produce int (Int32).
var a = (byte)5 / (byte)2; // 2 (Int32)
var b = (short)5 / (byte)2; // 2 (Int32)
var c = 5 / 2; // 2 (Int32)
var d = 5 / 2U; // 2 (UInt32)
var e = 5L / 2U; // 2 (Int64)
var f = 5L / 2UL; // 2 (UInt64)
var g = 5F / 2UL; // 2.5 (Single/float)
var h = 5F / 2D; // 2.5 (Double)
var i = 5.0 / 2F; // 2.5 (Double)
var j = 5M / 2; // 2.5 (Decimal)
var k = 5M / 2F; // Not allowed
There is no implicit conversion between floating-point types and the decimal type, so division between them is not allowed. You have to explicitly cast and decide which one you want (Decimal has more precision and a smaller range compared to floating-point types).
As a little trick to know what you are obtaining you can use var, so the compiler will tell you the type to expect:
int a = 1;
int b = 2;
var result = a/b;
your compiler will tell you that result would be of type int here.

I am trying to simplify the following C# code but if I use a variable instead of a hard value for the transform it doesn't execute [duplicate]

Does anyone know why integer division in C# returns an integer and not a float?
What is the idea behind it? (Is it only a legacy of C/C++?)
In C#:
float x = 13 / 4;
//== operator is overridden here to use epsilon compare
if (x == 3.0)
print 'Hello world';
Result of this code would be:
'Hello world'
Strictly speaking, there is no such thing as integer division (division by definition is an operation which produces a rational number, integers are a very small subset of which.)
While it is common for new programmer to make this mistake of performing integer division when they actually meant to use floating point division, in actual practice integer division is a very common operation. If you are assuming that people rarely use it, and that every time you do division you'll always need to remember to cast to floating points, you are mistaken.
First off, integer division is quite a bit faster, so if you only need a whole number result, one would want to use the more efficient algorithm.
Secondly, there are a number of algorithms that use integer division, and if the result of division was always a floating point number you would be forced to round the result every time. One example off of the top of my head is changing the base of a number. Calculating each digit involves the integer division of a number along with the remainder, rather than the floating point division of the number.
Because of these (and other related) reasons, integer division results in an integer. If you want to get the floating point division of two integers you'll just need to remember to cast one to a double/float/decimal.
See C# specification. There are three types of division operators
Integer division
Floating-point division
Decimal division
In your case we have Integer division, with following rules applied:
The division rounds the result towards zero, and the absolute value of
the result is the largest possible integer that is less than the
absolute value of the quotient of the two operands. The result is zero
or positive when the two operands have the same sign and zero or
negative when the two operands have opposite signs.
I think the reason why C# use this type of division for integers (some languages return floating result) is hardware - integers division is faster and simpler.
Each data type is capable of overloading each operator. If both the numerator and the denominator are integers, the integer type will perform the division operation and it will return an integer type. If you want floating point division, you must cast one or more of the number to floating point types before dividing them. For instance:
int x = 13;
int y = 4;
float x = (float)y / (float)z;
or, if you are using literals:
float x = 13f / 4f;
Keep in mind, floating points are not precise. If you care about precision, use something like the decimal type, instead.
Since you don't use any suffix, the literals 13 and 4 are interpreted as integer:
Manual:
If the literal has no suffix, it has the first of these types in which its value can be represented: int, uint, long, ulong.
Thus, since you declare 13 as integer, integer division will be performed:
Manual:
For an operation of the form x / y, binary operator overload resolution is applied to select a specific operator implementation. The operands are converted to the parameter types of the selected operator, and the type of the result is the return type of the operator.
The predefined division operators are listed below. The operators all compute the quotient of x and y.
Integer division:
int operator /(int x, int y);
uint operator /(uint x, uint y);
long operator /(long x, long y);
ulong operator /(ulong x, ulong y);
And so rounding down occurs:
The division rounds the result towards zero, and the absolute value of the result is the largest possible integer that is less than the absolute value of the quotient of the two operands. The result is zero or positive when the two operands have the same sign and zero or negative when the two operands have opposite signs.
If you do the following:
int x = 13f / 4f;
You'll receive a compiler error, since a floating-point division (the / operator of 13f) results in a float, which cannot be cast to int implicitly.
If you want the division to be a floating-point division, you'll have to make the result a float:
float x = 13 / 4;
Notice that you'll still divide integers, which will implicitly be cast to float: the result will be 3.0. To explicitly declare the operands as float, using the f suffix (13f, 4f).
Might be useful:
double a = 5.0/2.0;
Console.WriteLine (a); // 2.5
double b = 5/2;
Console.WriteLine (b); // 2
int c = 5/2;
Console.WriteLine (c); // 2
double d = 5f/2f;
Console.WriteLine (d); // 2.5
It's just a basic operation.
Remember when you learned to divide. In the beginning we solved 9/6 = 1 with remainder 3.
9 / 6 == 1 //true
9 % 6 == 3 // true
The /-operator in combination with the %-operator are used to retrieve those values.
The result will always be of type that has the greater range of the numerator and the denominator. The exceptions are byte and short, which produce int (Int32).
var a = (byte)5 / (byte)2; // 2 (Int32)
var b = (short)5 / (byte)2; // 2 (Int32)
var c = 5 / 2; // 2 (Int32)
var d = 5 / 2U; // 2 (UInt32)
var e = 5L / 2U; // 2 (Int64)
var f = 5L / 2UL; // 2 (UInt64)
var g = 5F / 2UL; // 2.5 (Single/float)
var h = 5F / 2D; // 2.5 (Double)
var i = 5.0 / 2F; // 2.5 (Double)
var j = 5M / 2; // 2.5 (Decimal)
var k = 5M / 2F; // Not allowed
There is no implicit conversion between floating-point types and the decimal type, so division between them is not allowed. You have to explicitly cast and decide which one you want (Decimal has more precision and a smaller range compared to floating-point types).
As a little trick to know what you are obtaining you can use var, so the compiler will tell you the type to expect:
int a = 1;
int b = 2;
var result = a/b;
your compiler will tell you that result would be of type int here.

Why asp.net C# Decimal type doesn't get cents? [duplicate]

Does anyone know why integer division in C# returns an integer and not a float?
What is the idea behind it? (Is it only a legacy of C/C++?)
In C#:
float x = 13 / 4;
//== operator is overridden here to use epsilon compare
if (x == 3.0)
print 'Hello world';
Result of this code would be:
'Hello world'
Strictly speaking, there is no such thing as integer division (division by definition is an operation which produces a rational number, integers are a very small subset of which.)
While it is common for new programmer to make this mistake of performing integer division when they actually meant to use floating point division, in actual practice integer division is a very common operation. If you are assuming that people rarely use it, and that every time you do division you'll always need to remember to cast to floating points, you are mistaken.
First off, integer division is quite a bit faster, so if you only need a whole number result, one would want to use the more efficient algorithm.
Secondly, there are a number of algorithms that use integer division, and if the result of division was always a floating point number you would be forced to round the result every time. One example off of the top of my head is changing the base of a number. Calculating each digit involves the integer division of a number along with the remainder, rather than the floating point division of the number.
Because of these (and other related) reasons, integer division results in an integer. If you want to get the floating point division of two integers you'll just need to remember to cast one to a double/float/decimal.
See C# specification. There are three types of division operators
Integer division
Floating-point division
Decimal division
In your case we have Integer division, with following rules applied:
The division rounds the result towards zero, and the absolute value of
the result is the largest possible integer that is less than the
absolute value of the quotient of the two operands. The result is zero
or positive when the two operands have the same sign and zero or
negative when the two operands have opposite signs.
I think the reason why C# use this type of division for integers (some languages return floating result) is hardware - integers division is faster and simpler.
Each data type is capable of overloading each operator. If both the numerator and the denominator are integers, the integer type will perform the division operation and it will return an integer type. If you want floating point division, you must cast one or more of the number to floating point types before dividing them. For instance:
int x = 13;
int y = 4;
float x = (float)y / (float)z;
or, if you are using literals:
float x = 13f / 4f;
Keep in mind, floating points are not precise. If you care about precision, use something like the decimal type, instead.
Since you don't use any suffix, the literals 13 and 4 are interpreted as integer:
Manual:
If the literal has no suffix, it has the first of these types in which its value can be represented: int, uint, long, ulong.
Thus, since you declare 13 as integer, integer division will be performed:
Manual:
For an operation of the form x / y, binary operator overload resolution is applied to select a specific operator implementation. The operands are converted to the parameter types of the selected operator, and the type of the result is the return type of the operator.
The predefined division operators are listed below. The operators all compute the quotient of x and y.
Integer division:
int operator /(int x, int y);
uint operator /(uint x, uint y);
long operator /(long x, long y);
ulong operator /(ulong x, ulong y);
And so rounding down occurs:
The division rounds the result towards zero, and the absolute value of the result is the largest possible integer that is less than the absolute value of the quotient of the two operands. The result is zero or positive when the two operands have the same sign and zero or negative when the two operands have opposite signs.
If you do the following:
int x = 13f / 4f;
You'll receive a compiler error, since a floating-point division (the / operator of 13f) results in a float, which cannot be cast to int implicitly.
If you want the division to be a floating-point division, you'll have to make the result a float:
float x = 13 / 4;
Notice that you'll still divide integers, which will implicitly be cast to float: the result will be 3.0. To explicitly declare the operands as float, using the f suffix (13f, 4f).
Might be useful:
double a = 5.0/2.0;
Console.WriteLine (a); // 2.5
double b = 5/2;
Console.WriteLine (b); // 2
int c = 5/2;
Console.WriteLine (c); // 2
double d = 5f/2f;
Console.WriteLine (d); // 2.5
It's just a basic operation.
Remember when you learned to divide. In the beginning we solved 9/6 = 1 with remainder 3.
9 / 6 == 1 //true
9 % 6 == 3 // true
The /-operator in combination with the %-operator are used to retrieve those values.
The result will always be of type that has the greater range of the numerator and the denominator. The exceptions are byte and short, which produce int (Int32).
var a = (byte)5 / (byte)2; // 2 (Int32)
var b = (short)5 / (byte)2; // 2 (Int32)
var c = 5 / 2; // 2 (Int32)
var d = 5 / 2U; // 2 (UInt32)
var e = 5L / 2U; // 2 (Int64)
var f = 5L / 2UL; // 2 (UInt64)
var g = 5F / 2UL; // 2.5 (Single/float)
var h = 5F / 2D; // 2.5 (Double)
var i = 5.0 / 2F; // 2.5 (Double)
var j = 5M / 2; // 2.5 (Decimal)
var k = 5M / 2F; // Not allowed
There is no implicit conversion between floating-point types and the decimal type, so division between them is not allowed. You have to explicitly cast and decide which one you want (Decimal has more precision and a smaller range compared to floating-point types).
As a little trick to know what you are obtaining you can use var, so the compiler will tell you the type to expect:
int a = 1;
int b = 2;
var result = a/b;
your compiler will tell you that result would be of type int here.

How do you divide integers and get a double in C#?

int x = 73;
int y = 100;
double pct = x/y;
Why do I see 0 instead of .73?
Because the division is done with integers then converted to a double. Try this instead:
double pct = (double)x / (double)y;
It does the same in all C-like languages. If you divide two integers, the result is an integer. 0.73 is not an integer.
The common work-around is to multiply one of the two numbers by 1.0 to make it a floating point type, or just cast it.
because the operation is still on int type. Try double pct = (double)x / (double)y;
Integer division drops the fractional portion of the result. See: http://mathworld.wolfram.com/IntegerDivision.html
It's important to understand the flow of execution in a line of code. You're correct to assume that setting the right side of the equation equal to double (on the left side) will implicitly convert the solution as a double. However, the flow execution dicates that x/y is evaluated by itself before you even get to the double pct = portion of the code. Thus, since two ints are divided by each other, they will evaluate to an int solution (in this case, rounding towards zero) before being implicitly converted to a double.
As other have noted, you'll need to cast the int variables as doubles so the solution comes out as a double and not as an int.
That’s because the type of the left hand operand of the division (x) is of type int, so the return type of x / y is still int. The fact that the destination variable is of type double doesn’t affect the operation.
To get the intended result, you first have to cast (convert) x to double, as in:
double pct = (double)x / y;

Categories

Resources