list property inside of a struct - c#

How do I write a property for a list inside of a struct?
my code:
public struct Config
{
List<int> ipAddress = new List<int>();
}

If all you want is to create an auto-property (which will default to null for reference types and cannot be initialized) you can do as #scartag suggests.
public struct Config
{
// will default to null
List<int> ipAddress {get; set;}
}
However, if you're trying to do what's in your code and initialize it to an actual reference, you will run into issues because you can't initialize fields in a struct. They can only have their defaults. To make matters even worse, you can't override a default constructor to do this for you.
Generally speaking, struct tends to be best for small, preferably immutable types. Is there a reason you don't want to just use class for this?
Now, if you did want to create a struct with an "initialized" field, you can fool it with some lazy logic:
public struct Config
{
private List<int> _ipAddress;
private bool _isAssigned;
public List<int>
{
get
{
if (!_isAssigned)
_ipAddress = new List<int>;
return _ipAddress;
}
set
{
_ipAddress = value;
_isAssigned = true;
}
}
}
But really, at this rate it's better to use a class since you can initialize fields, or override the default constructor:
public class Config
{
public List<int> ipAddress {get; set;}
public Config()
{
ipAddress = new List<int>();
}
}
And again, as Andrew mentioned in the comments, I strongly suggest looking at MSDN guidance on choosing between struct and class

See below.
public struct Config
{
List<int> ipAddress { get; set; }
}
Or if you prefer not to use the automatic get/set
public List<int> ipAddress
{
get
{
return ipAddress?? new List<int>();
}
set
{
ipAddress = value;
}
}

Related

Does a simple property need synchronization? [duplicate]

I would like to know if C# automatically implemented properties, like public static T Prop { get; set; }, are thread-safe or not. Thanks!
Section 10.7.4 of the C# specification states:
When a property is specified as an
automatically implemented property, a
hidden backing field is automatically
available for the property, and the
accessors are implemented to read from
and write to that backing field. The
following example:
public class Point {
public int X { get; set; } // automatically implemented
public int Y { get; set; } // automatically implemented
}
is equivalent to the following declaration:
public class Point {
private int x;
private int y;
public int X { get { return x; } set { x = value; } }
public int Y { get { return y; } set { y = value; } }
}
That's what we promise, and that's what you get. The point of auto properties is to do the most basic, simple, cheap thing; if you want to do something fancier then you should write a "real" property.
It appears not. This is the decompilation with Reflector:
private static string Test
{
[CompilerGenerated]
get
{
return <Test>k__BackingField;
}
[CompilerGenerated]
set
{
<Test>k__BackingField = value;
}
}
No. You must wrap them in thread-locking mechanisms.
object _lock = new object();
public static Main(string[] args)
{
lock(_lock)
{
Prop = new T();
}
T val = null;
lock(_lock)
{
val = Prop;
}
}
There is no synchronization provided with automatic properties, including static properties.
If you need full thread safety, you'll want to use your own properties with a backing field, and handle the synchronization yourself.
For completeness, field-like events do have thread-safety built in, but they are alone in this. Automatically implemented properties do not have any such features. You can, however, do something like:
public static double SomeProp
{ // ### NOT RECOMMENDED ###
[MethodImpl(MethodImplOptions.Synchronized)] get;
[MethodImpl(MethodImplOptions.Synchronized)] set;
}
The problem with this is that it will lock the Type, which is a bad thing. I would implement my own synchronization for this, personally.
I don't believe so. I believe they are just syntatic sugar for:
private static T _prop;
public static T Prop
{
get { return _prop; }
set { _prop = value; }
}
No, they not threadsafe. Static properties just as vulnerable as static fields are to concurrency issues.

Auto-property initialization [duplicate]

How do you give a C# auto-property an initial value?
I either use the constructor, or revert to the old syntax.
Using the Constructor:
class Person
{
public Person()
{
Name = "Initial Name";
}
public string Name { get; set; }
}
Using normal property syntax (with an initial value)
private string name = "Initial Name";
public string Name
{
get
{
return name;
}
set
{
name = value;
}
}
Is there a better way?
In C# 5 and earlier, to give auto implemented properties an initial value, you have to do it in a constructor.
Since C# 6.0, you can specify initial value in-line. The syntax is:
public int X { get; set; } = x; // C# 6 or higher
DefaultValueAttribute is intended to be used by the VS designer (or any other consumer) to specify a default value, not an initial value. (Even if in designed object, initial value is the default value).
At compile time DefaultValueAttribute will not impact the generated IL and it will not be read to initialize the property to that value (see DefaultValue attribute is not working with my Auto Property).
Example of attributes that impact the IL are ThreadStaticAttribute, CallerMemberNameAttribute, ...
Edited on 1/2/15
C# 6 :
With C# 6 you can initialize auto-properties directly (finally!), there are now other answers that describe that.
C# 5 and below:
Though the intended use of the attribute is not to actually set the values of the properties, you can use reflection to always set them anyway...
public class DefaultValuesTest
{
public DefaultValuesTest()
{
foreach (PropertyDescriptor property in TypeDescriptor.GetProperties(this))
{
DefaultValueAttribute myAttribute = (DefaultValueAttribute)property.Attributes[typeof(DefaultValueAttribute)];
if (myAttribute != null)
{
property.SetValue(this, myAttribute.Value);
}
}
}
public void DoTest()
{
var db = DefaultValueBool;
var ds = DefaultValueString;
var di = DefaultValueInt;
}
[System.ComponentModel.DefaultValue(true)]
public bool DefaultValueBool { get; set; }
[System.ComponentModel.DefaultValue("Good")]
public string DefaultValueString { get; set; }
[System.ComponentModel.DefaultValue(27)]
public int DefaultValueInt { get; set; }
}
When you inline an initial value for a variable it will be done implicitly in the constructor anyway.
I would argue that this syntax was best practice in C# up to 5:
class Person
{
public Person()
{
//do anything before variable assignment
//assign initial values
Name = "Default Name";
//do anything after variable assignment
}
public string Name { get; set; }
}
As this gives you clear control of the order values are assigned.
As of C#6 there is a new way:
public string Name { get; set; } = "Default Name";
Sometimes I use this, if I don't want it to be actually set and persisted in my db:
class Person
{
private string _name;
public string Name
{
get
{
return string.IsNullOrEmpty(_name) ? "Default Name" : _name;
}
set { _name = value; }
}
}
Obviously if it's not a string then I might make the object nullable ( double?, int? ) and check if it's null, return a default, or return the value it's set to.
Then I can make a check in my repository to see if it's my default and not persist, or make a backdoor check in to see the true status of the backing value, before saving.
In C# 6.0 this is a breeze!
You can do it in the Class declaration itself, in the property declaration statements.
public class Coordinate
{
public int X { get; set; } = 34; // get or set auto-property with initializer
public int Y { get; } = 89; // read-only auto-property with initializer
public int Z { get; } // read-only auto-property with no initializer
// so it has to be initialized from constructor
public Coordinate() // .ctor()
{
Z = 42;
}
}
Starting with C# 6.0, We can assign default value to auto-implemented properties.
public string Name { get; set; } = "Some Name";
We can also create read-only auto implemented property like:
public string Name { get; } = "Some Name";
See: C# 6: First reactions , Initializers for automatically implemented properties - By Jon Skeet
In Version of C# (6.0) & greater, you can do :
For Readonly properties
public int ReadOnlyProp => 2;
For both Writable & Readable properties
public string PropTest { get; set; } = "test";
In current Version of C# (7.0), you can do : (The snippet rather displays how you can use expression bodied get/set accessors to make is more compact when using with backing fields)
private string label = "Default Value";
// Expression-bodied get / set accessors.
public string Label
{
get => label;
set => this.label = value;
}
In C# 9.0 was added support of init keyword - very useful and extremly sophisticated way for declaration read-only auto-properties:
Declare:
class Person
{
public string Name { get; init; } = "Anonymous user";
}
~Enjoy~ Use:
// 1. Person with default name
var anonymous = new Person();
Console.WriteLine($"Hello, {anonymous.Name}!");
// > Hello, Anonymous user!
// 2. Person with assigned value
var me = new Person { Name = "#codez0mb1e"};
Console.WriteLine($"Hello, {me.Name}!");
// > Hello, #codez0mb1e!
// 3. Attempt to re-assignment Name
me.Name = "My fake";
// > Compilation error: Init-only property can only be assigned in an object initializer
In addition to the answer already accepted, for the scenario when you want to define a default property as a function of other properties you can use expression body notation on C#6.0 (and higher) for even more elegant and concise constructs like:
public class Person{
public string FullName => $"{First} {Last}"; // expression body notation
public string First { get; set; } = "First";
public string Last { get; set; } = "Last";
}
You can use the above in the following fashion
var p = new Person();
p.FullName; // First Last
p.First = "Jon";
p.Last = "Snow";
p.FullName; // Jon Snow
In order to be able to use the above "=>" notation, the property must be read only, and you do not use the get accessor keyword.
Details on MSDN
In C# 6 and above you can simply use the syntax:
public object Foo { get; set; } = bar;
Note that to have a readonly property simply omit the set, as so:
public object Foo { get; } = bar;
You can also assign readonly auto-properties from the constructor.
Prior to this I responded as below.
I'd avoid adding a default to the constructor; leave that for dynamic assignments and avoid having two points at which the variable is assigned (i.e. the type default and in the constructor). Typically I'd simply write a normal property in such cases.
One other option is to do what ASP.Net does and define defaults via an attribute:
http://msdn.microsoft.com/en-us/library/system.componentmodel.defaultvalueattribute.aspx
My solution is to use a custom attribute that provides default value property initialization by constant or using property type initializer.
[AttributeUsage(AttributeTargets.Property, AllowMultiple = false, Inherited = true)]
public class InstanceAttribute : Attribute
{
public bool IsConstructorCall { get; private set; }
public object[] Values { get; private set; }
public InstanceAttribute() : this(true) { }
public InstanceAttribute(object value) : this(false, value) { }
public InstanceAttribute(bool isConstructorCall, params object[] values)
{
IsConstructorCall = isConstructorCall;
Values = values ?? new object[0];
}
}
To use this attribute it's necessary to inherit a class from special base class-initializer or use a static helper method:
public abstract class DefaultValueInitializer
{
protected DefaultValueInitializer()
{
InitializeDefaultValues(this);
}
public static void InitializeDefaultValues(object obj)
{
var props = from prop in obj.GetType().GetProperties()
let attrs = prop.GetCustomAttributes(typeof(InstanceAttribute), false)
where attrs.Any()
select new { Property = prop, Attr = ((InstanceAttribute)attrs.First()) };
foreach (var pair in props)
{
object value = !pair.Attr.IsConstructorCall && pair.Attr.Values.Length > 0
? pair.Attr.Values[0]
: Activator.CreateInstance(pair.Property.PropertyType, pair.Attr.Values);
pair.Property.SetValue(obj, value, null);
}
}
}
Usage example:
public class Simple : DefaultValueInitializer
{
[Instance("StringValue")]
public string StringValue { get; set; }
[Instance]
public List<string> Items { get; set; }
[Instance(true, 3,4)]
public Point Point { get; set; }
}
public static void Main(string[] args)
{
var obj = new Simple
{
Items = {"Item1"}
};
Console.WriteLine(obj.Items[0]);
Console.WriteLine(obj.Point);
Console.WriteLine(obj.StringValue);
}
Output:
Item1
(X=3,Y=4)
StringValue
little complete sample:
using System.ComponentModel;
private bool bShowGroup ;
[Description("Show the group table"), Category("Sea"),DefaultValue(true)]
public bool ShowGroup
{
get { return bShowGroup; }
set { bShowGroup = value; }
}
You can simple put like this
public sealed class Employee
{
public int Id { get; set; } = 101;
}
In the constructor. The constructor's purpose is to initialized it's data members.
private string name;
public string Name
{
get
{
if(name == null)
{
name = "Default Name";
}
return name;
}
set
{
name = value;
}
}
Have you tried using the DefaultValueAttribute or ShouldSerialize and Reset methods in conjunction with the constructor? I feel like one of these two methods is necessary if you're making a class that might show up on the designer surface or in a property grid.
Use the constructor because "When the constructor is finished, Construction should be finished". properties are like states your classes hold, if you had to initialize a default state, you would do that in your constructor.
To clarify, yes, you need to set default values in the constructor for class derived objects. You will need to ensure the constructor exists with the proper access modifier for construction where used. If the object is not instantiated, e.g. it has no constructor (e.g. static methods) then the default value can be set by the field. The reasoning here is that the object itself will be created only once and you do not instantiate it.
#Darren Kopp - good answer, clean, and correct. And to reiterate, you CAN write constructors for Abstract methods. You just need to access them from the base class when writing the constructor:
Constructor at Base Class:
public BaseClassAbstract()
{
this.PropertyName = "Default Name";
}
Constructor at Derived / Concrete / Sub-Class:
public SubClass() : base() { }
The point here is that the instance variable drawn from the base class may bury your base field name. Setting the current instantiated object value using "this." will allow you to correctly form your object with respect to the current instance and required permission levels (access modifiers) where you are instantiating it.
public Class ClassName{
public int PropName{get;set;}
public ClassName{
PropName=0; //Default Value
}
}
This is old now, and my position has changed. I'm leaving the original answer for posterity only.
Personally, I don't see the point of making it a property at all if you're not going to do anything at all beyond the auto-property. Just leave it as a field. The encapsulation benefit for these item are just red herrings, because there's nothing behind them to encapsulate. If you ever need to change the underlying implementation you're still free to refactor them as properties without breaking any dependent code.
Hmm... maybe this will be the subject of it's own question later
class Person
{
/// Gets/sets a value indicating whether auto
/// save of review layer is enabled or not
[System.ComponentModel.DefaultValue(true)]
public bool AutoSaveReviewLayer { get; set; }
}
I know this is an old question, but it came up when I was looking for how to have a default value that gets inherited with the option to override, I came up with
//base class
public class Car
{
public virtual string FuelUnits
{
get { return "gasoline in gallons"; }
protected set { }
}
}
//derived
public class Tesla : Car
{
public override string FuelUnits => "ampere hour";
}
I think this would do it for ya givng SomeFlag a default of false.
private bool _SomeFlagSet = false;
public bool SomeFlag
{
get
{
if (!_SomeFlagSet)
SomeFlag = false;
return SomeFlag;
}
set
{
if (!_SomeFlagSet)
_SomeFlagSet = true;
SomeFlag = value;
}
}

C# - add attribute like '.Length' to custom class

I've playing around with a class that acts as a public interface for a private List<T> attribute. I noticed that the List<> class has an attribute Length that tells you how many elements it contains.
This is an attribute you cannot alter, and on the intellisense appears with an image of a spanner next to it. It is not a method as it does not require () after coding the name.
I've seen attributes of this type before, but never used them in my own classes. Does anybody have any idea how I can replicate Length in my custom class?
Thanks,
Mark
It's a property with no setter. If you're wrapping a List<T> you can just use it's Count as your own:
public int Count {get {return _myPrivateList.Count; } }
If you're using C# 6, you can use this:
public int Count => _myPrivateList.Count;
If you currently have a class that contains a List, then you can take advantage of the Count property already present on it by exposing a property that simply uses that :
public class YourExampleList<T>
{
// Example of your inner list
private List<T> _list { get; set; }
// Use the Count property to expose a public "Length" equivalent
public int Length { get { return _list.Count; } }
}
This is actually not a method, but a property.
So you could have define in your class
private List<string> myList = new List<string>();
public int NumberOfElements
{
get { return this.myList.Count; }
}
A normal property would be defined such as
public bool ColumnNames { get; set; }
List<T> myList = new List<T>();
Now you can create your own implementation on your custom class. Something like:
public int Length {get {return myList.Count; }}
I must admit that your question is a bit vague. It sounds like you want know how to create a read only attribute / property. This can be achieved by creating a property wrapper for a private field member of your class as follow:
class MyCustomClass
{
private int _length;
public int Length
{
get { return _length; }
}
}
Say for example you have a class like this:
public class MyClass
{
private string _str;
public MyClass()
{
_str = "Sample String";
}
public int Length
{
get
{
return _str.Length;
}
}
}
This is what's happening:
We're declaring a private field at the start of the class named _str.
In the constructor we're then assigning it a value of "Sample String".
After the constructor we're then declaring the public attribute Length of type int, and only giving it a get accessor. Like your example, this only allows the value to be read, and not set.
Within the get we then tell it to return the value of _str's length.
Using code similar to this you can implement a Length attribute for any custom class.

Auto-Implemented Properties [duplicate]

How do you give a C# auto-property an initial value?
I either use the constructor, or revert to the old syntax.
Using the Constructor:
class Person
{
public Person()
{
Name = "Initial Name";
}
public string Name { get; set; }
}
Using normal property syntax (with an initial value)
private string name = "Initial Name";
public string Name
{
get
{
return name;
}
set
{
name = value;
}
}
Is there a better way?
In C# 5 and earlier, to give auto implemented properties an initial value, you have to do it in a constructor.
Since C# 6.0, you can specify initial value in-line. The syntax is:
public int X { get; set; } = x; // C# 6 or higher
DefaultValueAttribute is intended to be used by the VS designer (or any other consumer) to specify a default value, not an initial value. (Even if in designed object, initial value is the default value).
At compile time DefaultValueAttribute will not impact the generated IL and it will not be read to initialize the property to that value (see DefaultValue attribute is not working with my Auto Property).
Example of attributes that impact the IL are ThreadStaticAttribute, CallerMemberNameAttribute, ...
Edited on 1/2/15
C# 6 :
With C# 6 you can initialize auto-properties directly (finally!), there are now other answers that describe that.
C# 5 and below:
Though the intended use of the attribute is not to actually set the values of the properties, you can use reflection to always set them anyway...
public class DefaultValuesTest
{
public DefaultValuesTest()
{
foreach (PropertyDescriptor property in TypeDescriptor.GetProperties(this))
{
DefaultValueAttribute myAttribute = (DefaultValueAttribute)property.Attributes[typeof(DefaultValueAttribute)];
if (myAttribute != null)
{
property.SetValue(this, myAttribute.Value);
}
}
}
public void DoTest()
{
var db = DefaultValueBool;
var ds = DefaultValueString;
var di = DefaultValueInt;
}
[System.ComponentModel.DefaultValue(true)]
public bool DefaultValueBool { get; set; }
[System.ComponentModel.DefaultValue("Good")]
public string DefaultValueString { get; set; }
[System.ComponentModel.DefaultValue(27)]
public int DefaultValueInt { get; set; }
}
When you inline an initial value for a variable it will be done implicitly in the constructor anyway.
I would argue that this syntax was best practice in C# up to 5:
class Person
{
public Person()
{
//do anything before variable assignment
//assign initial values
Name = "Default Name";
//do anything after variable assignment
}
public string Name { get; set; }
}
As this gives you clear control of the order values are assigned.
As of C#6 there is a new way:
public string Name { get; set; } = "Default Name";
Sometimes I use this, if I don't want it to be actually set and persisted in my db:
class Person
{
private string _name;
public string Name
{
get
{
return string.IsNullOrEmpty(_name) ? "Default Name" : _name;
}
set { _name = value; }
}
}
Obviously if it's not a string then I might make the object nullable ( double?, int? ) and check if it's null, return a default, or return the value it's set to.
Then I can make a check in my repository to see if it's my default and not persist, or make a backdoor check in to see the true status of the backing value, before saving.
In C# 6.0 this is a breeze!
You can do it in the Class declaration itself, in the property declaration statements.
public class Coordinate
{
public int X { get; set; } = 34; // get or set auto-property with initializer
public int Y { get; } = 89; // read-only auto-property with initializer
public int Z { get; } // read-only auto-property with no initializer
// so it has to be initialized from constructor
public Coordinate() // .ctor()
{
Z = 42;
}
}
Starting with C# 6.0, We can assign default value to auto-implemented properties.
public string Name { get; set; } = "Some Name";
We can also create read-only auto implemented property like:
public string Name { get; } = "Some Name";
See: C# 6: First reactions , Initializers for automatically implemented properties - By Jon Skeet
In Version of C# (6.0) & greater, you can do :
For Readonly properties
public int ReadOnlyProp => 2;
For both Writable & Readable properties
public string PropTest { get; set; } = "test";
In current Version of C# (7.0), you can do : (The snippet rather displays how you can use expression bodied get/set accessors to make is more compact when using with backing fields)
private string label = "Default Value";
// Expression-bodied get / set accessors.
public string Label
{
get => label;
set => this.label = value;
}
In C# 9.0 was added support of init keyword - very useful and extremly sophisticated way for declaration read-only auto-properties:
Declare:
class Person
{
public string Name { get; init; } = "Anonymous user";
}
~Enjoy~ Use:
// 1. Person with default name
var anonymous = new Person();
Console.WriteLine($"Hello, {anonymous.Name}!");
// > Hello, Anonymous user!
// 2. Person with assigned value
var me = new Person { Name = "#codez0mb1e"};
Console.WriteLine($"Hello, {me.Name}!");
// > Hello, #codez0mb1e!
// 3. Attempt to re-assignment Name
me.Name = "My fake";
// > Compilation error: Init-only property can only be assigned in an object initializer
In addition to the answer already accepted, for the scenario when you want to define a default property as a function of other properties you can use expression body notation on C#6.0 (and higher) for even more elegant and concise constructs like:
public class Person{
public string FullName => $"{First} {Last}"; // expression body notation
public string First { get; set; } = "First";
public string Last { get; set; } = "Last";
}
You can use the above in the following fashion
var p = new Person();
p.FullName; // First Last
p.First = "Jon";
p.Last = "Snow";
p.FullName; // Jon Snow
In order to be able to use the above "=>" notation, the property must be read only, and you do not use the get accessor keyword.
Details on MSDN
In C# 6 and above you can simply use the syntax:
public object Foo { get; set; } = bar;
Note that to have a readonly property simply omit the set, as so:
public object Foo { get; } = bar;
You can also assign readonly auto-properties from the constructor.
Prior to this I responded as below.
I'd avoid adding a default to the constructor; leave that for dynamic assignments and avoid having two points at which the variable is assigned (i.e. the type default and in the constructor). Typically I'd simply write a normal property in such cases.
One other option is to do what ASP.Net does and define defaults via an attribute:
http://msdn.microsoft.com/en-us/library/system.componentmodel.defaultvalueattribute.aspx
My solution is to use a custom attribute that provides default value property initialization by constant or using property type initializer.
[AttributeUsage(AttributeTargets.Property, AllowMultiple = false, Inherited = true)]
public class InstanceAttribute : Attribute
{
public bool IsConstructorCall { get; private set; }
public object[] Values { get; private set; }
public InstanceAttribute() : this(true) { }
public InstanceAttribute(object value) : this(false, value) { }
public InstanceAttribute(bool isConstructorCall, params object[] values)
{
IsConstructorCall = isConstructorCall;
Values = values ?? new object[0];
}
}
To use this attribute it's necessary to inherit a class from special base class-initializer or use a static helper method:
public abstract class DefaultValueInitializer
{
protected DefaultValueInitializer()
{
InitializeDefaultValues(this);
}
public static void InitializeDefaultValues(object obj)
{
var props = from prop in obj.GetType().GetProperties()
let attrs = prop.GetCustomAttributes(typeof(InstanceAttribute), false)
where attrs.Any()
select new { Property = prop, Attr = ((InstanceAttribute)attrs.First()) };
foreach (var pair in props)
{
object value = !pair.Attr.IsConstructorCall && pair.Attr.Values.Length > 0
? pair.Attr.Values[0]
: Activator.CreateInstance(pair.Property.PropertyType, pair.Attr.Values);
pair.Property.SetValue(obj, value, null);
}
}
}
Usage example:
public class Simple : DefaultValueInitializer
{
[Instance("StringValue")]
public string StringValue { get; set; }
[Instance]
public List<string> Items { get; set; }
[Instance(true, 3,4)]
public Point Point { get; set; }
}
public static void Main(string[] args)
{
var obj = new Simple
{
Items = {"Item1"}
};
Console.WriteLine(obj.Items[0]);
Console.WriteLine(obj.Point);
Console.WriteLine(obj.StringValue);
}
Output:
Item1
(X=3,Y=4)
StringValue
little complete sample:
using System.ComponentModel;
private bool bShowGroup ;
[Description("Show the group table"), Category("Sea"),DefaultValue(true)]
public bool ShowGroup
{
get { return bShowGroup; }
set { bShowGroup = value; }
}
You can simple put like this
public sealed class Employee
{
public int Id { get; set; } = 101;
}
In the constructor. The constructor's purpose is to initialized it's data members.
private string name;
public string Name
{
get
{
if(name == null)
{
name = "Default Name";
}
return name;
}
set
{
name = value;
}
}
Have you tried using the DefaultValueAttribute or ShouldSerialize and Reset methods in conjunction with the constructor? I feel like one of these two methods is necessary if you're making a class that might show up on the designer surface or in a property grid.
Use the constructor because "When the constructor is finished, Construction should be finished". properties are like states your classes hold, if you had to initialize a default state, you would do that in your constructor.
To clarify, yes, you need to set default values in the constructor for class derived objects. You will need to ensure the constructor exists with the proper access modifier for construction where used. If the object is not instantiated, e.g. it has no constructor (e.g. static methods) then the default value can be set by the field. The reasoning here is that the object itself will be created only once and you do not instantiate it.
#Darren Kopp - good answer, clean, and correct. And to reiterate, you CAN write constructors for Abstract methods. You just need to access them from the base class when writing the constructor:
Constructor at Base Class:
public BaseClassAbstract()
{
this.PropertyName = "Default Name";
}
Constructor at Derived / Concrete / Sub-Class:
public SubClass() : base() { }
The point here is that the instance variable drawn from the base class may bury your base field name. Setting the current instantiated object value using "this." will allow you to correctly form your object with respect to the current instance and required permission levels (access modifiers) where you are instantiating it.
public Class ClassName{
public int PropName{get;set;}
public ClassName{
PropName=0; //Default Value
}
}
This is old now, and my position has changed. I'm leaving the original answer for posterity only.
Personally, I don't see the point of making it a property at all if you're not going to do anything at all beyond the auto-property. Just leave it as a field. The encapsulation benefit for these item are just red herrings, because there's nothing behind them to encapsulate. If you ever need to change the underlying implementation you're still free to refactor them as properties without breaking any dependent code.
Hmm... maybe this will be the subject of it's own question later
class Person
{
/// Gets/sets a value indicating whether auto
/// save of review layer is enabled or not
[System.ComponentModel.DefaultValue(true)]
public bool AutoSaveReviewLayer { get; set; }
}
I know this is an old question, but it came up when I was looking for how to have a default value that gets inherited with the option to override, I came up with
//base class
public class Car
{
public virtual string FuelUnits
{
get { return "gasoline in gallons"; }
protected set { }
}
}
//derived
public class Tesla : Car
{
public override string FuelUnits => "ampere hour";
}
I think this would do it for ya givng SomeFlag a default of false.
private bool _SomeFlagSet = false;
public bool SomeFlag
{
get
{
if (!_SomeFlagSet)
SomeFlag = false;
return SomeFlag;
}
set
{
if (!_SomeFlagSet)
_SomeFlagSet = true;
SomeFlag = value;
}
}

How do I make an arraylist public

In File1 I created a class with 3 strings. I created another class with a public arraylist. I want this arraylist to be dynamic and the object it contains are the class with the 3 strings.
I can access the members of the class in the file but not in a separate file.
file1
public class SensorCollection
{
public string ipAddress;
public string portNumber;
public string physicalLocation;
public DetectorCollection(string ipAddr, string portNum, string loc)
{
this.ipAddress = ipAddr;
this.portNumber = portNum;
this.physicalLocation = loc;
}
}
public class SensorCollectionArray
{
public System.Collections.ArrayList SensorArrayList;
}
...
System.Collections.ArrayList DetectorArrayList = new System.Collections.ArrayList();
...
DetectorArrayList.Add(new DetectorCollection(ipAddress, portNum, str));
So I can fill the array of classes but can't access it in a separate file.
File 2
AdvancedSettingsForm.SensorCollectionArray mainDetectorCollectionArray;
System.Collections.ArrayList arrList;
If you create a SensorCollectionArray like this:
SensorCollectionArray mySCA = new SensorCollectionArray();
Then you can access it's ArrayList like this (for example, to add an item):
mySCA.SensorArrayList.Add(mySensorCollection);
Note however, that in the code you've posted, you didn't include a constructor for the SensorCollectionArray, so the SensorArrayList will be null after instantiation. So you can either set it to a separately instantiated ArrayList, or you can create the ArrayList within your SensorCollectionArray class.
Final note: You might want to look into the generic List(of T) class if you want to create a strongly typed collection
Not entirely sure what're attempting to do, but I assume it's something like the below. Presumably, you're creating a collection of your sensors because you want to apply some rules of some kind before storing it to the collection.
"Is this a good sensor? It is? Add it to the collection!"
Otherwise, you could just use a
List<Sensor> mySensors;
and not really use a class that'll essentially doing the same things. Aside from that, like it's been mentioned there's not really a reason to use ArrayList. As Marc points out here, the most compelling reason to use ArrayList is if you're using .NET 1.1; otherwise, you should use the generic List collection and all the great things it does for you.
//Sensor.cs
public class Sensor
{
public string Ip{ get; set; }
public string Port{ get; set; }
public string PhysicalLocation{ get; set }
public Sensor(string ipAddr, string portNum, string loc)
{
Ip= ipAddr;
Port= portNum;
PhysicalLocation= loc;
}
}
//SensorCollection.cs
public class SensorCollection
{
private List<Sensor> sensors;
public Sensor this[int i]
{
get { return this.sensors[i]; }
set { this.sensors[i] = value; }
}
public IEnumerable<Sensor> Sensors
{
get{ return this.sensors; }
}
public SensorCollection()
{
sensors = new List<Sensor>();
}
public SensorCollection(string ip, string port, string location) : this()
{
this.sensors.Add(new Sensor(ip, port, location));
}
public SensorCollection(Sensor sensor) : this()
{
this.sensors.Add(sensor);
}
public void AddSensor(Sensor sensor)
{
//Determine whether or not to add it
this.sensors.Add(sensor);
}
public void RemoveSensor(Sensor sensor)
{
if (sensors.Contains(sensor))
sensors.Remove(sensor);
}
}
Edit
How do I access the ipaddress of each sensor in my dynamically created
list of classes?
var mySensors = new SensorCollection();
mySensors.AddSensor(new Sensor("1.1.1.1", "123", "Home"));
mySensors.AddSensor(new Sensor("9.9.9.9", "123", "Work"));
foreach(Sensor s in mySensors.Sensors)
Console.WriteLine(s.Ip);
I can not seem to access the members of the class in another file
Make sure they're in the same namespace, or that you include a "using" statement that includes the namespace of your classes you create.

Categories

Resources