If I use an IocContainer at all, should it be used everywhere? - c#

We use an Ioc Container to resolve most of the objects in a project, however it seems like it might be innappropriate to use it everywhere. At runtime, the user is in the context of a single company Id and it seems appropriate to me to pass that company Id in the constructor of, for example, a repository or unit of work. We could use a parameter override for the company Id at runtime, but is there any benefit in using
var uow = IocContainer.Resolve<IUnitOfWork>(new ParameterOverride("companyId", companyId))
as opposed to
var uow = new UnitOfWork(companyId)
OK, so I understand that I might want to create a different implementation of IUnitOfWork some time and I could then easily swap in the new implementation with Ioc configuration, but I am not convinced I will ever do that anyway.

No, there are times when calling new is exactly what you want. An example would be an object local to a method call or a narrow scope.
Model objects usually aren't under the control of an IoC container. You instantiate one for each new session or request scope, using data passed to you from users that can never be known by the IoC container on startup.
Update: Honza Brestan's point about logical units is spot on. The typical Spring layer arrangment is interface-based:
view->controller->service->persistence
Services use other services, model objects and persistence to fulfill use cases.

I find the biggest advantage of IoC not in the implementation swapping (people hardly do that anyway in most projects), but in forcing you to divide your code into clearer logical units, which in general means it is unit-testable, manageable and easier to reason about as a whole.
With that in mind, I suggest deciding the "injection granularity" for yourself depending on what are the logical units of your project. It may be 5 larger modules, it may be dozens of different small connectors. Also as duffymo mentioned, new may be what you want for local/narrow scope.

Related

In IoC, what is the practice for loading an object by ID?

I've just started learning about IoC, and I understand the general use of it, but so far, the loading process from AutoFac, Ninject and Zenject seem to be based on loading an object not based on data.
In other words, ConsoleLogger is created when ILogger is requested, which does not require any special ID's, and that makes sense. However, what about when I want to load IUser for Id 4? Is there a standard IoC for handling that, or are the interfaces supposed to carry methods for loading based on Id?
For instance, am I supposed to have IUserManager, with LoadUser(int id) as a method? or is there some IoC structure for this as well?
Thanks.
[note: I did search the web for this, but my queries did not seem to pull up relevant information and the similar question search yields too many generic questions to filter]
IoC containers rules the way we link object's by dependencies, dependencies means some logic under Iterfaces, so IoC mostly works on Type level rather then Instance level.
Please note that types which has no any dependencies, interfaces as well as special scope requirements may be legally created by using "new" keyword for e.g. Data Transfer Objects (dto's).
In your case, you probably need a some kind of factory that can realize by parameters what kind of object caller is needed.
However, I'll suggest to you separate data from business logic as much is it can be separated.

Problems faced when trying to apply good Dependency Injection practice

I've been using IoC (mostly Unity) and Dependency Injection in .NET for some time now and I really like the pattern as a way to encourage creation of software classes with loose coupling and which should be easier to isolate for testing.
The approach I generally try to stick to is "Nikola's Five Laws of IoC" - in particular not injecting the container itself and only using constructor injection so that you can clearly see all the dependencies of a class from its constructor signature. Nikola does have an account on here but I'm not sure if he is still active.
Anyway, when I end up either violating one of the other laws or generally ending up with something that doesn't feel or look right, I have to question whether I'm missing something, could do it better, or simply shouldn't be using IoC for certain cases. With that in mind here are a few examples of this and I'd be grateful for any pointers or further discussion on these:
Classes with too many dependencies. ("Any class having more then 3 dependencies should be questioned for SRP violation"). I know this one comes up a lot in dependency injection questions but after reading these I still don't have any Eureka moment that solves my problems:
a) In a large application I invariably find I need 3 dependencies just to access infrastructure (examples - logging, configuration, persistence) before I get to the specific dependencies needed for the class to get its (hopefully single responsibility) job done. I'm aware of the approach that would refactor and wrap such groups of dependencies into a single one, but I often find this becomes simply a facade for several other services rather than having any true responsibility of its own. Can certain infrastructure dependencies be ignored in the context of this rule, provided the class is deemed to still have a single responsibility?
b) Refactoring can add to this problem. Consider the fairly common task of breaking apart a class that has become a bit big - you move one area of functionality into a new class and the first class becomes dependent on it. Assuming the first class still needs all the dependencies it had before, it now has one extra dependency. In this case I probably don't mind that this dependency is more tightly coupled, but its still neater to have the container provide it (as oppose to using new ...()), which it can do even without the new dependency having its own interface.
c) In a one specific example I have a class responsible for running various different functions through the system every few minutes. As all the functions rightly belong in different areas, this class ends up with many dependencies just to be able to execute each function. I'm guessing in this case other approaches, possibly involving events, should be considered but so far I haven't tried to do it because I want to co-ordinate the order the tasks are run and in some cases apply logic involving outcomes along the way.
Once I'm using IoC within an application it seems like almost every class I create that is used by another class ends up being registered in and/or injected by the container. Is this the expected outcome or should some classes have nothing to do with IoC? The alternative of just having something new'd up within the code just looks like a code smell since its then tightly coupled. This is kind of related to 1b above too.
I have all my container initialisation done at application startup, registering types for each interface in the system. Some are deliberately single instance lifecycles where others can be new instance each time they are resolved. However, since the latter are dependencies of the former, in practice they become a single instance too since they are only resolved once - at construction time of the single instance. In many cases this doesn't matter, but in some cases I really want a different instance each time I do an operation, so rather than be able to make use of the built in container functionality, I'm forced to either i) have a factory dependency instead so I can force this behaviour or ii) pass in the container so I can resolve each time. Both of these approaches are frowned upon in Nikola's guidance but I see i) as the lesser of two evils and I do use it in some cases.
In a large application I invariably find I need 3 dependencies just to access infrastructure (examples - logging, configuration, persistence)
imho infrastructure is not dependencies. I have no problem using a servicelocator for getting a logger (private ILogger _logger = LogManager.GetLogger()).
However, persistence is not infrastructure in my point of view. It's a dependency. Break your class into smaller parts.
Refactoring can add to this problem.
Of course. You will get more dependencies until you have successfully refactored all classes. Just hang in there and continue refactoring.
Do create interfaces in a separate project (Separated interface pattern) instead of adding dependencies to classes.
In a one specific example I have a class responsible for running various different functions through the system every few minutes. As all the functions rightly belong in different areas, this class ends up with many dependencies just to be able to execute each function.
Then you are taking the wrong approach. The task runner should not have a dependency on all tasks that should run, it should be the other way around. All tasks should register in the runner.
Once I'm using IoC within an application it seems like almost every class I create that is used by another class ends up being registered in and/or injected by the container.*
I register everything but business objects, DTOs etc in my container.
I have all my container initialisation done at application startup, registering types for each interface in the system. Some are deliberately single instance lifecycles where others can be new instance each time they are resolved. However, since the latter are dependencies of the former, in practice they become a single instance too since they are only resolved once - at construction time of the single instance.
Don't mix lifetimes if you can avoid it. Or don't take in short lived dependencies. In this case you could use a simple messaging solution to update the single instances.
You might want to read my guidelines.
Let me answer question 3. Having a singletons depend on a transient is a problem that container profilers try to detect and warn about. Services should only depend on other services that have a lifetime that is greater than or equals to that of their own. Injecting a factory interface or delegate to solve this is in general a good solution, and passing in the container itself is a bad solution, since you end up with the Service Locator anti-pattern.
Instead of injecting a factory, you can solve this by implementing a proxy. Here's an example:
public interface ITransientDependency
{
void SomeAction();
}
public class Implementation : ITransientDependency
{
public SomeAction() { ... }
}
Using this definition, you can define a proxy class in the Composition Root based on the ITransientDependency:
public class TransientDependencyProxy<T> : ITransientDependency
where T : ITransientDependency
{
private readonly UnityContainer container;
public TransientDependencyProxy(UnityContainer container)
{
this.container = container;
}
public SomeAction()
{
this.container.Resolve<T>().SomeAction();
}
}
Now you can register this TransientDependencyProxy<T> as singleton:
container.RegisterType<ITransientDependency,
TransientDependencyProxy<Implementation>>(
new ContainerControlledLifetimeManager());
While it is registered as singleton, it will still act as a transient, since it will forward its calls to a transient implementation.
This way you can completely hide that the ITransientDependency needs to be a transient from the rest of the application.
If you need this behavior for many different service types, it will get cumbersome to define proxies for each and everyone of them. In that case you could try Unity's interception functionality. You can define a single interceptor that allows you to do this for a wide range of service types.

Question on DI and how to solve some problems

I'm a newbie to Dependency Injection. I have never used and never even undestood what it is exatcly all about, but after my last attack on this topic I found out that is a way of uncoupling an object and its dependencies, once they are not responsible for instantiating the concrete versions of its dependencies anymore, as now the container will do it for us and deliver the ready object in our hands.
Now the point is; "when should I use it?", ALWAYS??? Actually, as I'm a newbie and have never even seen a project that uses this pattern I can't undestand how I should apply it to my domain objects!!! It seems to me that I will nevermore instantiate my objects and the container will always do it for me, but then comes some doubts...
1) What about oobjects that part of its dependencies comes from the UI, for example;
public class User(String name, IValidator validator)
Say that I get the user name from the UI, so how will the conatiner know it and still delliver this object for me?
2) Theres other situation I'm facing; if a dependency is now an object that is already instantiated, say... a SINGLETON object, for example . I saw theres settings regarding out the scope of life of the dependency beign injected (im talking about Spring.NET, eg; http request scope)... BUT, request and other web related things are on my presentation layer, so how could I link both my presentation layer and my domain layer without breaking any design rule (as my domain should be totally unaware of where its is being consumed, not to have layer dependency, etc)
Im eager to hear from you all. Thanks very much.
In general, once you go IoC, you tend to want to register EVERYTHING with IoC and have the container spit out fully-hydrated objects. However, you bring up some valid points.
Perhaps a definition of "dependency" is in order; at its broadest, a dependency is simply a set of functionality (interface) that a given class requires a concrete implementation of in order for the class to work correctly. Thus, most non-trivial programs are full of dependencies. To promote ease of maintenance, loose coupling of all dependencies is generally preferred. However, even when loosely coupled, you don't need to automate instantiation of dependencies if those objects require specialized information that you don't want to pollute your IoC registry with. The goal is to loosely couple usage, not necessarily creation.
Concerning point 1, some IoC frameworks don't do well with being given external parameters. However, you can usually register a delegate as a factory method. That delegate may belong to an object like a Controller that is given external information by the UI. Logins are a perfect example: Create an object, say a LoginController, and register it with IoC as your ILoginController. You'll reference that controller on your Login page, it will be injected when the Login page is instantiated, and the login page will pass it the credentials entered. The Controller will then perform authentication, and will have a method GetAuthenticatedUser() that produces a User object. You can register this method with IoC as a Factory for Users, and whenever a User is needed, the factory delegate will either be evaluated, or passed wholesale to the dependent method which will call it when it really needs the User.
On point 2, setting up a single instance of an object is a strength of the IoC pattern. Instead of creating a true singleton, with a private instance constructor, static instance and static constructor to produce an instance, you simply register the class with IoC and tell it to only instantiate it once and use that one instance for all requests. The strength is the flexibility; if you later want there to be more than one instance, you just change the registration. You won't break any design pattern rules either way; the view will always have a Controller injected, whether that Controller is the same for all pages or a new instance per request.
1) this contructor is probably not the right one to use, may be you are injecting the validator in the wrong place/way.
2)Neighter View nor Model and nor Controller should be aware of there is an IoC, it should lie in the background architecture ( where MVC components are actually instantiated )
You should use IoC when you feel the architecture can became complex and has to be mantained by many people. If you are writing an enterprise application, or a UI you think to extend with plugins, you probably need it, if you are writing a command line utility, probably not.
You should use dependency injection whenever you want any of the following benefits:
The ability to replace modules easily
The ability to reuse modules between parts of the application, or different applications
When you want to do parallel development, so that components of a system can be developed in isolation and in parallel because they depend on abstractions
When you want easier maintenance of a system because of loose coupling
When you want testability (a specialisation of replacing modules). This is one of the biggest reasons for using DI
To answer your other questions:
1) You can configure many IoC containers so that certain constructor parameters can be specified, whilst others are resolved by the container. However, you may need to think about refactoring that piece of code, as a UserFactory may be more appropriate which takes the validator dependency, and has a NewUser method which takes a user name and returns a new user (either instantiating it directly or resolving from the container).
2) Each application you build will have a composition root, where your container is configured, and the root object is resolved. Each app will therefore have its own IoC configuration, so there is an expected link between the application type and the configuration settings. Any common abstraction registrations can be placed in configuration code which can be shared amongst all applications.

Best design pattern for objects where state is important - Singleton or Static

More specifically, What's the best approach for classes where state matters, within an application which implements Dependency Injection.
Say I need access to an object that's in a particular state. For example, this object might have been initiated in a different thread, or by a process I have no control over.
A good example of an object like this that already exists in .NET is the HttpContext.
In this case, Microsoft decided to go with the Static approach, so I just say:
var currentObj = HttpContext.Current;
And this gives me a particular instance of an object without having to worry where it came from.
The problem with the Static approach is that it doesn't play very nicely with dependency injection.
The other option is to configure your certain class as a Singleton in your IoC Container. This means that you can inject it, and depending on the current IoC Container config it'll be the correct instance of the class.
However, the downfall of this approach is that the stateful importance of the object is no longer explicit in the code, it's not obvious by looking at it. With the Static class used to access and instance it's more clear that the state is important. Maybe that doesn't matter though.
So, is there a pattern that helps me out here?
Context:
For context, I'm working on an application which has many instances of a class performing IO operations. They exists within their own threads.
I want to be able to interact with those objects (background tasks) via a web interface, so a Controller. I want to be able to interrogate them, and manipulate them etc.
Update:
Sorry, I think my use of the term "stateful" is a bit misleading. let me explain some thing:
"state" is probably the wrong word. I mean communicating with an object whereby I don't have control over it's lifecycle.
It is funny that I use "stateful" when talking about static classes. That's why I gave the HttpContext example, as that exactly what it does. The Current property gets you a very specific instance, not any new instance.
When I say that static doesn't play nice with DI, I meant, you can't inject Static classes. I could create a wrapper, yes, but I'm just pushing the problem elsewhere no?
I should have been more clear about my definition of Singleton. I meant a Singleton lifestyle, as defined in an IoC Container.
I always prefer Singleton over static. In fact, I almost never use statics in my own classes.
True singletons and static classes are both very difficult to write automated tests against. Do you mean a single instance looked up at runtime? That would make sense to me but I don't know the right construct to use in C#. The analog in Java is JNDI.
Neither or both. Presuming the stateful dependency is thread-safe the better approach is to build at least a basic layer of abstraction around said dependency then inject said abstraction into your classes. Singleton vs static becomes pretty immaterial then.

Can anyone explain to me, at length, how to use IOC containers?

I use dependency injection through parameters and constructors extensively. I understand the principle to this degree and am happy with it. On my large projects, I end up with too many dependencies being injected (anything hitting double figures feels to big - I like the term 'macaroni code').
As such, I have been considering IOC containers. I have read a few articles on them and so far I have failed to see the benefit. I can see how it assists in sending groups of related objects or in getting the same type over and over again. I'm not sure how they would help me in my projects where I may have over a hundred classes implementing the same interface, and where I use all of them in varying orders.
So, can anybody point me at some good articles that not only describe the concepts of IOC containers (preferably without hyping one in particular), but also show in detail how they benefit me in this type of project and how they fit into the scope of a large architecture?
I would hope to see some non-language specific stuff but my preferred language if necessary is C#.
Inversion of Control is primarily about dependency management and providing testable code. From a classic approach, if a class has a dependency, the natural tendency is to give the class that has the dependency direct control over managing its dependencies. This usually means the class that has the dependency will 'new' up its dependencies within a constructor or on demand in its methods.
Inversion of Control is just that...it inverts what creates dependencies, externalizing that process and injecting them into the class that has the dependency. Usually, the entity that creates the dependencies is what we call an IoC container, which is responsible for not only creating and injecting dependencies, but also managing their lifetimes, determining their lifestyle (more on this in a sec), and also offering a variety of other capabilities. (This is based on Castle MicroKernel/Windsor, which is my IoC container of choice...its solidly written, very functional, and extensible. Other IoC containers exist that are simpler if you have simpler needs, like Ninject, Microsoft Unity, and Spring.NET.)
Consider that you have an internal application that can be used either in a local context or a remote context. Depending on some detectable factors, your application may need to load up "local" implementations of your services, and in other cases it may need to load up "remote" implementations of your services. If you follow the classic approach, and create your dependencies directly within the class that has those dependencies, then that class will be forced to break two very important rules about software development: Separation of Concerns and Single Responsibility. You cross boundaries of concern because your class is now concerned about both its intrinsic purpose, as well as the concern of determining which dependencies it should create and how. The class is also now responsible for many things, rather than a single thing, and has many reasons to change: its intrinsic purpose changes, the creation process for its dependencies changes, the way it finds remote dependencies changes, what dependencies its dependencies may need, etc.
By inverting your dependency management, you can improve your system architecture and maintain SoC and SR (or, possibly, achieve it when you were previously unable to due to dependencies.) Since an external entity, the IoC container, now controls how your dependencies are created and injected, you can also gain additional capabilities. The container can manage the life cycles of your dependencies, creating and destroying them in more flexible ways that can improve efficiency. You also gain the ability to manage the life styles of your objects. If you have a type of dependency that is created, used, and returned on a very frequent basis, but which have little or no state (say, factories), you can give them a pooled lifestyle, which will tell the container to automatically create an object pool for that particular dependency type. Many lifestyles exist, and a container like Castle Windsor will usually give you the ability to create your own.
The better IoC containers, like Castle Windsor, also provide a lot of extendability. By default, Windsor allows you to create instances of local types. Its possible to create Facilities that extend Windsor's type creation capabilities to dynamically create web service proxies and WCF service hosts on the fly, at runtime, eliminating the need to create them manually or statically with tools like svcutil (this is something I did myself just recently.) Many facilities exist to bring IoC support existing frameworks, like NHibernate, ActiveRecord, etc.
Finally, IoC enforces a style of coding that ensures unit testable code. One of the key factors in making code unit testable is externalizing dependency management. Without the ability to provide alternative (mocked, stubbed, etc.) dependencies, testing a single "unit" of code in isolation is a very difficult task, leaving integration testing the only alternative style of automated testing. Since IoC requires that your classes accept dependencies via injection (by constructor, property, or method), each class is usually, if not always, reduced to a single responsibility of properly separated concern, and fully mockable dependencies.
IoC = better architecture, greater cohesion, improved separation of concerns, classes that are easier to reduce to a single responsibility, easily configurable and interchangeable dependencies (often without requiring a recompilation of your code), flexible dependency life styles and life time management, and unit testable code. IoC is kind of a lifestyle...a philosophy, an approach to solving common problems and meeting critical best practices like SoC and SR.
Even (or rather, particularly) with hundreds of different implementations of a single interface, IoC has a lot to offer. It might take a while to get your head fully wrapped around it, but once you fully understand what IoC is and what it can do for you, you'll never want to do things any other way (except perhaps embedded systems development...)
If you have over a hundred of classes implementing a common interface, an IoC won't help very much, you need a factory.
That way, you may do the following:
public interface IMyInterface{
//...
}
public class Factory{
public static IMyInterface GetObject(string param){
// param is a parameter that will help the Factory decide what object to return
// (that is only an example, there may not be any parameter at all)
}
}
//...
// You do not depend on a particular implementation here
IMyInterface obj = Factory.GetObject("some param");
Inside the factory, you may use an IoC Container to retrieve the objects if you like, but you'll have to register each one of the classes that implement the given interface and associate them to some keys (and use those keys as parameters in GetObject() method).
An IoC is particularly useful when you have to retrieve objects that implement different interfaces:
IMyInteface myObject = Container.GetObject<IMyInterface>();
IMyOtherInterface myOtherObject Container.GetObject<IMyOtherInterface>();
ISomeOtherInterface someOtherObject = Container.GetObject<ISomeOtherInterface>();
See? Only one object to get several different type objects and no keys (the intefaces themselves are the keys). If you need an object to get several different object, but all implementing the same interface, an IoC won't help you very much.
In the past few weeks, I've taken the plunge from dependency-injection only to full-on inversion of control with Castle, so I understand where your question is coming from.
Some reasons why I wouldn't want to use an IOC container:
It's a small project that isn't going to grow that much. If there's a 1:1 relationship between constructors and calls to those constructors, using an IOC container isn't going to reduce the amount of code I have to write. You're not violating "don't repeat yourself" until you're finding yourself copying and pasting the exact same "var myObject = new MyClass(someInjectedDependency)" for a second time.
I may have to adapt existing code to facilitate being loaded into IOC containers. This probably isn't necessary until you get into some of the cooler Aspect-oriented programming features, but if you've forgotten to make a method virtual, sealed off that method's class, and it doesn't implement an interface, and you're uncomfortable making those changes because of existing dependencies, then making the switch isn't quite as appealing.
It adds an additional external dependency to my project -- and to my team. I can convince the rest of my team that structuring their code to allow DI is swell, but I'm currently the only one that knows how to work with Castle. On smaller, less complicated projects, this isn't going to be an issue. For the larger projects (that, ironically, would reap the most benefit from IOC containers), if I can't evangelize using an IOC container well enough, going maverick on my team isn't going to help anybody.
Some of the reasons why I wouldn't want to go back to plain DI:
I can add or take away logging to any number of my classes, without adding any sort of trace or logging statement. Having the ability for my classes to become interwoven with additional functionality without changing those classes, is extremely powerful. For example:
Logging: http://ayende.com/Blog/archive/2008/07/31/Logging--the-AOP-way.aspx
Transactions: http://www.codeproject.com/KB/architecture/introducingcastle.aspx (skip down to the Transaction section)
Castle, at least, is so helpful when wiring up classes to dependencies, that it would be painful to go back.
For example, missing a dependency with Castle:
"Can't create component 'MyClass' as
it has dependencies to be satisfied.
Service is waiting for the following
dependencies:
Services:
- IMyService which was not registered."
Missing a dependency without Castle:
Object reference is not set to an
instance of an object
Dead Last: The ability to swap injected services at runtime, by editing an Xml File. My perception is that this is the most tauted feature, but I see it as merely icing on the cake. I'd rather wire up all my services in code, but I'm sure I'll run into a headache in the future where my mind will be changed on this.
I will admit that -- being a newbie to IOC and Castle -- I'm probably only scratching the surface, but so far, I genuinely like what I see. I feel like the last few projects I've built with it are genuinely capable of reacting to the unpredictable changes that arise from day to day at my company, a feeling I've never quite had before.
Try these:
http://www.martinfowler.com/articles/injection.html
http://msdn.microsoft.com/en-us/library/aa973811.aspx
I have no links but can provide you with an example:
You have a web controller that needs to call a service which has a data access layer.
Now, I take it in your code you are constructing these objects your self at compile time. You are using a decent design pattern, but if you ever need to change the implementation of say the dao, you have to go into you code and remove the code that sets this dependency up, recompile / test/ deploy. But if you were to use a IOC container you would just change the class in the configuration and restart the application.
Jeremy Frey misses one of the biggest reasons for using an IOC container: it makes your code easier to mock and test.
Encouraging the use of interfaces has lots of other nice benefits: better layering, easier to dynamically generate proxies for things like declarative transactions, aspect-oriented programming and remoting.
If you think IOC is only good for replacing calls to "new", you don't get it.
IoC containers usually do the dependency injections which in some projects are not a big deal , but some of the frameworks that provide IoC containers offer other services that make it worth to use them.
Castle for example has a complete list of services besides an IoC container.Dynamic proxies ,Transaction management and NHibernate facilities are some of them.
Then I think you should consider IoC contianers as a part of an application framework.
Here's why I use an IoC container:
1.Writing unit tests will be easier .Actually you write different configurations to do different things
2.Adding different plugins for different scenarios(for different customers for example)
3.Intercepting classes to add different aspects to our code.
4.Since we are using NHibernate ,Transaction management and NHibernate facilites of Castle are very helpful in developing and maintaining our code .
It's like every technical aspects of our application is handled using an application framework and we have time to think about what customers really want.

Categories

Resources