Closed. This question is opinion-based. It is not currently accepting answers.
Want to improve this question? Update the question so it can be answered with facts and citations by editing this post.
Closed 9 years ago.
Improve this question
tl;dr
In a good design. Should accessing the database be handled in a separate business logic layer (in an asp.net MVC model), or is it OK to pass IQueryables or DbContext objects to a controller?
Why? What are the pros and cons of each?
I'm building an ASP.NET MVC application in C#. It uses EntityFramework as an ORM.
Let's simplify this scenario a bit.
I have a database table with cute fluffy kittens. Each kitten has a kitten image link, kitten fluffiness index, kitten name and kitten id. These map to an EF generated POCO called Kitten. I might use this class in other projects and not just the asp.net MVC project.
I have a KittenController which should fetch the latest fluffy kittens at /Kittens. It may contain some logic selecting the kitten, but not too much logic. I've been arguing with a friend about how to implement this, I won't disclose sides :)
Option 1: db in the controller:
public ActionResult Kittens() // some parameters might be here
{
using(var db = new KittenEntities()){ // db can also be injected,
var result = db.Kittens // this explicit query is here
.Where(kitten=>kitten.fluffiness > 10)
.Select(kitten=>new {
Name=kitten.name,
Url=kitten.imageUrl
}).Take(10);
return Json(result,JsonRequestBehavior.AllowGet);
}
}
Option 2: Separate model
public class Kitten{
public string Name {get; set; }
public string Url {get; set; }
private Kitten(){
_fluffiness = fluffinessIndex;
}
public static IEnumerable<Kitten> GetLatestKittens(int fluffinessIndex=10){
using(var db = new KittenEntities()){ //connection can also be injected
return db.Kittens.Where(kitten=>kitten.fluffiness > 10)
.Select(entity=>new Kitten(entity.name,entity.imageUrl))
.Take(10).ToList();
}
} // it's static for simplicity here, in fact it's probably also an object method
// Also, in practice it might be a service in a services directory creating the
// Objects and fetching them from the DB, and just the kitten MVC _type_ here
}
//----Then the controller:
public ActionResult Kittens() // some parameters might be here
{
return Json(Kittens.GetLatestKittens(10),JsonRequestBehavior.AllowGet);
}
Notes: GetLatestKittens is unlikely to be used elsewhere in the code but it might. It's possible to use the constructor of Kitten instead of a static building method and changing the class for Kittens. Basically it's supposed to be a layer above the database entities so the controller does not have to be aware of the actual database, the mapper, or entity framework.
What are some pros and cons for each design?
Is there a clear winner? Why?
Note: Of course, alternative approaches are very valued as answers too.
Clarification 1: This is not a trivial application in practice. This is an application with tens of controllers and thousands of lines of code, and the entities are not only used here but in tens of other C# projects. The example here is a reduced test case.
The second approach is superior. Let's try a lame analogy:
You enter a pizza shop and walk over to the counter. "Welcome to McPizza Maestro Double Deluxe, may I take your order?" the pimpled cashier asks you, the void in his eyes threatening to lure you in. "Yeah I'll have one large pizza with olives". "Okay", the cashier replies and his voice croaks in the middle of the "o" sound. He yells towards the kitchen "One Jimmy Carter!"
And then, after waiting for a bit, you get a large pizza with olives. Did you notice anything peculiar? The cashier didn't say "Take some dough, spin it round like it's Christmas time, pour some cheese and tomato sauce, sprinkle olives and put in an oven for about 8 minutes!" Come to think of it, that's not peculiar at all. The cashier is simply a gateway between two worlds: The customer who wants the pizza, and the cook who makes the pizza. For all the cashier knows, the cook gets his pizza from aliens or slices them from Jimmy Carter (he's a dwindling resource, people).
That is your situation. Your cashier isn't dumb. He knows how to make pizza. That doesn't mean he should be making pizza, or telling someone how to make pizza. That's the cook's job. As other answers (notably Florian Margaine's and Madara Uchiha's) illustrated, there is a separation of responsibilities. The model might not do much, it might be just one function call, it might be even one line - but that doesn't matter, because the controller doesn't care.
Now, let's say the owners decide that pizzas are just a fad (blasphemy!) and you switch over to something more contemporary, a fancy burger joint. Let's review what happens:
You enter a fancy burger joint and walk over to the counter. "Welcome to Le Burger Maestro Double Deluxe, may I take your order?" "yeah, I'll have one large hamburger with olives". "Okay", and he turns to the kitchen, "One Jimmy Carter!"
And then, you get a large hamburger with olives (ew).
Option 1 and 2 are bit extreme and like the choice between the devil and the deep blue sea but if I had to choose between the two I would prefer option 1.
First of all, option 2 will throw a runtime exception because Entity Framework does not support to project into an entity (Select(e => new Kitten(...)) and it does not allow to use a constructor with parameters in a projection. Now, this note seems a bit pedantic in this context, but by projecting into the entity and returning a Kitten (or an enumeration of Kittens) you are hiding the real problem with that approach.
Obviously, your method returns two properties of the entity that you want to use in your view - the kitten's name and imageUrl. Because these are only a selection of all Kitten properties returning a (half-filled) Kitten entity would not be appropriate. So, what type to actually return from this method?
You could return object (or IEnumerable<object>) (that's how I understand your comment about the "object method") which is fine if you pass the result into Json(...) to be processed in Javascript later. But you would lose all compile time type information and I doubt that an object result type is useful for anything else.
You could return some named type that just contains the two properties - maybe called "KittensListDto".
Now, this is only one method for one view - the view to list kittens. Then you have a details view to display a single kitten, then an edit view and then a delete confirm view maybe. Four views for an existing Kitten entity, each of which needs possibly different properties and each of which would need a separate method and projection and a different DTO type. The same for the Dog entity and for 100 entities more in the project and you get perhaps 400 methods and 400 return types.
And most likely not a single one will be ever reused at any other place than this specific view. Why would you want to Take 10 kittens with just name and imageUrl anywhere a second time? Do you have a second kittens list view? If so, it will have a reason and the queries are only identical by accident and now and if one changes the other one does not necessarily, otherwise the list view is not properly "reused" and should not exist twice. Or is the same list used by an Excel export maybe? But perhaps the Excel users want to have 1000 kittens tomorrow, while the view should still display only 10. Or the view should display the kitten's Age tomorrow, but the Excel users don't want to have that because their Excel macros would not run correctly anymore with that change. Just because two pieces of code are identical they don't have to be factored out into a common reusable component if they are in a different context or have different semantics. You better leave it a GetLatestKittensForListView and GetLatestKittensForExcelExport. Or you better don't have such methods in your service layer at all.
In the light of these considerations an excursion to a Pizza shop as an analogy why the first approach is superior :)
"Welcome to BigPizza, the custom Pizza shop, may I take your order?" "Well, I'd like to have a Pizza with olives, but tomato sauce on top and cheese at the bottom and bake it in the oven for 90 minutes until it's black and hard like a flat rock of granite." "OK, Sir, custom Pizzas are our profession, we'll make it."
The cashier goes to the kitchen. "There is a psycho at the counter, he wants to have a Pizza with... it's a rock of granite with ... wait ... we need to have a name first", he tells the cook.
"No!", the cook screams, "not again! You know we tried that already." He takes a stack of paper with 400 pages, "here we have rock of granite from 2005, but... it didn't have olives, but paprica instead... or here is top tomato ... but the customer wanted it baked only half a minute." "Maybe we should call it TopTomatoGraniteRockSpecial?" "But it doesn't take the cheese at the bottom into account..." The cashier: "That's what Special is supposed to express." "But having the Pizza rock formed like a pyramid would be special as well", the cook replies. "Hmmm ... it is difficult...", the desparate cashier says.
"IS MY PIZZA ALREADY IN THE OVEN?", suddenly it shouts through the kitchen door. "Let's stop this discussion, just tell me how to make this Pizza, we are not going to have such a Pizza a second time", the cook decides. "OK, it's a Pizza with olives, but tomato sauce on top and cheese at the bottom and bake it in the oven for 90 minutes until it's black and hard like a flat rock of granite."
If option 1 violates a separation of concerns principle by using a database context in the view layer the option 2 violates the same principle by having presentation centric query logic in the service or business layer. From a technical viewpoint it does not but it will end up with a service layer that is anything else than "reusable" outside of the presentation layer. And it has much higher development and maintenance costs because for every required piece of data in a controller action you have to create services, methods and return types.
Now, there actually might be queries or query parts that are reused often and that's why I think that option 1 is almost as extreme as option 2 - for example a Where clause by the key (will be probably used in details, edit and delete confirm view), filtering out "soft deleted" entities, filtering by a tenant in a multi-tenant architecture or disabling change tracking, etc. For such really repetetive query logic I could imagine that extracting this into a service or repository layer (but maybe only reusable extensions methods) might make sense, like
public IQueryable<Kitten> GetKittens()
{
return context.Kittens.AsNoTracking().Where(k => !k.IsDeleted);
}
Anything else that follows after - like projecting properties - is view specific and I would not like to have it in this layer. In order to make this approach possible IQueryable<T> must be exposed from the service/repository. It does not mean that the select must be directly in the controller action. Especially fat and complex projections (that maybe join other entities by navigation properties, perform groupings, etc.) could be moved into extension methods of IQueryable<T> that are collected in other files, directories or even another project, but still a project that is an appendix to the presentation layer and much closer to it than to the service layer. An action could then look like this:
public ActionResult Kittens()
{
var result = kittenService.GetKittens()
.Where(kitten => kitten.fluffiness > 10)
.OrderBy(kitten => kitten.name)
.Select(kitten => new {
Name=kitten.name,
Url=kitten.imageUrl
})
.Take(10);
return Json(result,JsonRequestBehavior.AllowGet);
}
Or like this:
public ActionResult Kittens()
{
var result = kittenService.GetKittens()
.ToKittenListViewModel(10, 10);
return Json(result,JsonRequestBehavior.AllowGet);
}
With ToKittenListViewModel() being:
public static IEnumerable<object> ToKittenListViewModel(
this IQueryable<Kitten> kittens, int minFluffiness, int pageItems)
{
return kittens
.Where(kitten => kitten.fluffiness > minFluffiness)
.OrderBy(kitten => kitten.name)
.Select(kitten => new {
Name = kitten.name,
Url = kitten.imageUrl
})
.Take(pageItems)
.AsEnumerable()
.Cast<object>();
}
That's just a basic idea and a sketch that another solution could be in the middle between option 1 and 2.
Well, it all depends on the overall architecture and requirements and all what I wrote above might be useless and wrong. Do you have to consider that the ORM or data access technology could be changed in future? Could there be a physical boundary between controller and database, is the controller disconnected from the context and do the data need to be fetched via a web service for example in future? This would require a very different approach which would more lean towards option 2.
Such an architecture is so different that - in my opinion - you simply can't say "maybe" or "not now, but possibly it could be a requirement in future, or possibly it won't". This is something that the project's stakeholders have to define before you can proceed with architectural decisions as it will increase development costs dramatically and it will we wasted money in development and maintenance if the "maybe" turns out to never become reality.
I was talking only about queries or GET requests in a web app which have rarely something that I would call "business logic" at all. POST requests and modifying data are a whole different story. If it is forbidden that an order can be changed after it is invoiced for example this is a general "business rule" that normally applies no matter which view or web service or background process or whatever tries to change an order. I would definitely put such a check for the order status into a business service or any common component and never into a controller.
There might be an argument against using IQueryable<T> in a controller action because it is coupled to LINQ-to-Entities and it will make unit tests difficult. But what is a unit test going to test in a controller action that doesn't contain any business logic, that gets parameters passed in that usually come from a view via model binding or routing - not covered by the unit test - that uses a mocked repository/service returning IEnumerable<T> - database query and access is not tested - and that returns a View - correct rendering of the view is not tested?
This is the key phrase there:
I might use this class in other projects and not just the asp.net MVC project.
A controller is HTTP-centric. It is only there to handle HTTP requests. If you want to use your model in any other project, i.e. your business logic, you can't have any logic in the controllers. You must be able to take off your model, put it somewhere else, and all your business logic still works.
So, no, don't access your database from your controller. It kills any possible reuse you might ever get.
Do you really want to rewrite all your db/linq requests in all your projects when you can have simple methods that you reuse?
Another thing: your function in option 1 has two responsibilities: it fetches the result from a mapper object and it displays it. That's too many responsibilities. There is an "and" in the list of responsibilities. Your option 2 only has one responsibility: being the link between the model and the view.
I'm not sure about how ASP.NET or C# does things. But I do know MVC.
In MVC, you separate your application into two major layers: The Presentational layer (which contains the Controller and View), and the Model layer (which contains... the Model).
The point is to separate the 3 major responsibilities in the application:
The application logic, handling request, user input, etc. That's the Controller.
The presentation logic, handling templating, display, formats. That's the View.
The business logic or "heavy logic", handling basically everything else. That's your actual application basically, where everything your application is supposed to do gets done. This part handles domain objects that represents the information structures of the application, it handles the mapping of those objects into permanent storage (be it session, database or files).
As you can see, database handling is found on the Model, and it has several advantages:
The controller is less tied to the model. Because "the work" gets done in the Model, should you want to change your controller, you'll be able to do so more easily if your database handling is in the Model.
You gain more flexibility. In the case where you want to change your mapping scheme (I want to switch to Postgres from MySQL), I only need to change it once (in the base Mapper definition).
For more information, see the excellent answer here: How should a model be structured in MVC?
I prefer the second approach. It at least separates between controller and business logic. It is still a little bit hard to unit test (may be I'm not good at mocking).
I personally prefer the following approach. Main reason is it is easy to unit testing for each layer - presentation, business logic, data access. Besides, you can see that approach in a lot of open source projects.
namespace MyProject.Web.Controllers
{
public class MyController : Controller
{
private readonly IKittenService _kittenService ;
public MyController(IKittenService kittenService)
{
_kittenService = kittenService;
}
public ActionResult Kittens()
{
// var result = _kittenService.GetLatestKittens(10);
// Return something.
}
}
}
namespace MyProject.Domain.Kittens
{
public class Kitten
{
public string Name {get; set; }
public string Url {get; set; }
}
}
namespace MyProject.Services.KittenService
{
public interface IKittenService
{
IEnumerable<Kitten> GetLatestKittens(int fluffinessIndex=10);
}
}
namespace MyProject.Services.KittenService
{
public class KittenService : IKittenService
{
public IEnumerable<Kitten> GetLatestKittens(int fluffinessIndex=10)
{
using(var db = new KittenEntities())
{
return db.Kittens // this explicit query is here
.Where(kitten=>kitten.fluffiness > 10)
.Select(kitten=>new {
Name=kitten.name,
Url=kitten.imageUrl
}).Take(10);
}
}
}
}
#Win has the idea I'd more or less follow.
Have the Presentation just presents.
The Controller simply acts as a bridge, it does nothing really, it is the middle man. Should be easy to test.
The DAL is the hardest part. Some like to separate it out on a web service, I have done so for a project once. That way you can also have the DAL act as an API for others (internally or externally) to consume - so WCF or WebAPI comes to mind.
That way your DAL is completely independent of your web server. If someone hacks your server, the DAL is probably still secure.
It's up to you I guess.
Single Responsibility Principle. Each of your classes should have one and only one reason to change. #Zirak gives a good example of how each person has a single reponsibility in the chain of events.
Let's look at the hypothetical test case you have provided.
public ActionResult Kittens() // some parameters might be here
{
using(var db = new KittenEntities()){ // db can also be injected,
var result = db.Kittens // this explicit query is here
.Where(kitten=>kitten.fluffiness > 10)
.Select(kitten=>new {
Name=kitten.name,
Url=kitten.imageUrl
}).Take(10);
return Json(result,JsonRequestBehavior.AllowGet);
}
}
With a service layer in between, it might look something like this.
public ActionResult Kittens() // some parameters might be here
{
using(var service = new KittenService())
{
var result = service.GetFluffyKittens();
return Json(result,JsonRequestBehavior.AllowGet);
}
}
public class KittenService : IDisposable
{
public IEnumerable<Kitten> GetFluffyKittens()
{
using(var db = new KittenEntities()){ // db can also be injected,
return db.Kittens // this explicit query is here
.Where(kitten=>kitten.fluffiness > 10)
.Select(kitten=>new {
Name=kitten.name,
Url=kitten.imageUrl
}).Take(10);
}
}
}
With a few more imaginary controller classes, you can see how this would be much easier to reuse. That's great! We have code reuse, but there's even more benefit. Lets say for example, our Kitten website is taking off like crazy, everyone wants to look at fluffy kittens, so we need to partition our database (shard). The constructor for all our db calls needs to be injected with the connection to the proper database. With our controller based EF code, we would have to change the controllers because of a DATABASE issue.
Clearly that means that our controllers are now dependant upon database concerns. They now have too many reasons to change, which can potentially lead to accidental bugs in the code and needing to retest code that is unrelated to that change.
With a service, we could do the following, while the controllers are protected from that change.
public class KittenService : IDisposable
{
public IEnumerable<Kitten> GetFluffyKittens()
{
using(var db = GetDbContextForFuffyKittens()){ // db can also be injected,
return db.Kittens // this explicit query is here
.Where(kitten=>kitten.fluffiness > 10)
.Select(kitten=>new {
Name=kitten.name,
Url=kitten.imageUrl
}).Take(10);
}
}
protected KittenEntities GetDbContextForFuffyKittens(){
// ... code to determine the least used shard and get connection string ...
var connectionString = GetShardThatIsntBusy();
return new KittensEntities(connectionString);
}
}
The key here is to isolate changes from reaching other parts of your code. You should be testing anything that is affected by a change in code, so you want to isolate changes from one another. This has the side effect of keeping your code DRY, so you end up with more flexible and reusable classes and services.
Separating the classes also allows you to centralize behavior that would have either been difficult or repetitive before. Think about logging errors in your data access. In the first method, you would need logging everywhere. With a layer in between you can easily insert some logging logic.
public class KittenService : IDisposable
{
public IEnumerable<Kitten> GetFluffyKittens()
{
Func<IEnumerable<Kitten>> func = () => {
using(var db = GetDbContextForFuffyKittens()){ // db can also be injected,
return db.Kittens // this explicit query is here
.Where(kitten=>kitten.fluffiness > 10)
.Select(kitten=>new {
Name=kitten.name,
Url=kitten.imageUrl
}).Take(10);
}
};
return this.Execute(func);
}
protected KittenEntities GetDbContextForFuffyKittens(){
// ... code to determine the least used shard and get connection string ...
var connectionString = GetShardThatIsntBusy();
return new KittensEntities(connectionString);
}
protected T Execute(Func<T> func){
try
{
return func();
}
catch(Exception ex){
Logging.Log(ex);
throw ex;
}
}
}
Either way is not so good for testing. Use dependency injection to get the DI container to create the db context and inject it into the controller constructor.
EDIT: a little more on testing
If you can test you can see if you application works per spec before you publish.
If you can't test easily you won't write your test.
from that chat room:
Okay, so on a trivial application you write it and it doesn't change very much,
but on a non trivial application you get these nasty things called dependencies, which when you change one breaks a lot of shit, so you use Dependency injection to inject a repo that you can fake, and then you can write unit tests in order to make sure your code doesn't
If I had (note: really had) to chose between the 2 given options, I'd say 1 for simplicity, but I don't recommend using it since it's hard to maintain and causes a lot of duplicate code.
A controller should contain as less business logic as possible. It should only delegate data access, map it to a ViewModel and pass it to the View.
If you want to abstract data access away from your controller (which is a good thing), you might want to create a service layer containing a method like GetLatestKittens(int fluffinessIndex).
I don't recommend placing data access logic in your POCO either, this doesn't allow you to switch to another ORM (NHibernate for example) and reuse the same POCO's.
I have a database that contains "widgets", let's say. Widgets have properties like Length and Width, for example. The original lower-level API for creating wdigets is a mess, so I'm writing a higher-level set of functions to make things easier for callers. The database is strange, and I don't have good control over the timing of the creation of a widget object. Specifically, it can't be created until the later stages of processing, after certain other things have happened first. But I'd like my callers to think that a widget object has been created at an earlier stage, so that they can get/set its properties from the outset.
So, I implemented a "ProxyWidget" object that my callers can play with. It has private fields like private_Length and private_Width that can store the desired values. Then, it also has public properties Length and Width, that my callers can access. If the caller tells me to set the value of the Width property, the logic is:
If the corresponding widget object already exists in the database, then set
its Width property
If not, store the given width value in the private_Width field for later use.
At some later stage, when I'm sure that the widget object has been created in the database, I copy all the values: copy from private_Width to the database Width field, and so on (one field/property at a time, unfortunately).
This works OK for one type of widget. But I have about 50 types, each with about 20 different fields/properties, and this leads to an unmaintainable mess. I'm wondering if there is a smarter approach. Perhaps I could use reflection to create the "proxy" objects and copy field/property data in a generic way, rather than writing reams of repetitive code? Factor out common code somehow? Can I learn anything from "data binding" patterns? I'm a mathematician, not a programmer, and I have an uneasy feeling that my current approach is just plain dumb. My code is in C#.
First, in my experience, manually coding a data access layer can feel like a lot of repetitive work (putting an ORM in place, such as NHibernate or Entity Framework, might somewhat alleviate this issue), and updating a legacy data access layer is awful work, especially when it consists of many parts.
Some things are unclear in your question, but I suppose it is still possible to give a high-level answer. These are meant to give you some ideas:
You can build ProxyWidget either as an alternative implementation for Widget (or whatever the widget class from the existing low-level API is called), or you can implement it "on top of", or as a "wrapper around", Widget. This is the Adapter design pattern.
public sealed class ExistingTerribleWidget { … }
public sealed class ShinyWidget // this is the wrapper that sits on top of the above
{
public ShinyWidget(ExistingTerribleWidget underlying) { … }
private ExistingTerribleWidget underlying;
… // perform all real work by delegating to `underlying` as appropriate
}
I would recommend that (at least while there is still code using the existing low-level API) you use this pattern instead of creating a completely separate Widget implementation, because if ever there is a database schema change, you will have to update two different APIs. If you build your new EasyWidget class as a wrapper on top of the existing API, it could remain unchanged and only the underlying implementation would have to be updated.
You describe ProxyWidget having two functions (1) Allow modifications to an already persisted widget; and (2) Buffer for a new widget, which will be added to the database later.
You could perhaps simplify your design if you have one common base type and two sub-classes: One for new widgets that haven't been persisted yet, and one for already persisted widgets. The latter subtype possibly has an additional database ID property so that the existing widget can be identified, loaded, modified, and updated in the database:
interface IWidget { /* define all the properties required for a widget */ }
interface IWidgetTemplate : IWidget
{
IPersistedWidget Create();
bool TryLoadFrom(IWidgetRepository repository, out IPersistedWidget matching);
}
interface IPersistedWidget : IWidget
{
Guid Id { get; }
void SaveChanges();
}
This is one example for the Builder design pattern.
If you need to write similar code for many classes (for example, your 50+ database object types) you could consider using T4 text templates. This just makes writing code less repetitive; but you will still have to define your 50+ objects somewhere.
I'm developing an app for Windows Phone with SQlite and have a lot of custom SQL queries. Like
string query = "SELECT distinct(destinations.name) as Destinations
FROM destinations, flights
WHERE destinations.d_ID = flights.d_ID
AND flights.Date = #" + date.ToShortDateString() + "#";
then run:
var result = (Application.Current as App).db.Query(query);
For working with SQlite i'm using http://dotnetslackers.com/articles/silverlight/Windows-Phone-7-Native-Database-Programming-via-Sqlite-Client-for-Windows-Phone.aspx#s2-introduction-to-sqlite-client-for-windows-phone
and theirs DBHelper
I want all Queries will be in one place, so I can quickly change them.
Wanted to ask how to do it correctly?
create one static class
create Enum or Dictionary with queries collection
create some XML or similar file with collection -
Thanks for advise
I don't think any of the approaches are valid, for the following reasons:
Create one static class
This is a God object and is considered an anti-pattern, best to stay away from it. It's just going to be a nightmare to maintain.
create Enum or Dictionary with queries collection
Instead of having a God object now, you have a God collection, and are really just implementing the same anti-pattern in a different way.
Additionally, you'll have string keys (or enum keys) and there's not a strong link between the two (what if the dictionary doesn't populate for some reason?).
create some XML or similar file with collection
It could be argued that you're doing the same thing you would be doing with a dictionary; you'd have to key the query somehow and then look it up. It's a very brittle approach.
Possible solution
I recommend that you first abstract out your data layer into logical units. Create a class for data operations which are related.
For example, if you have a few queries and operations that are related to destinations, create an interface that exposes those operations:
public interface IDestinationDataOperations
{
// Get destinations by date.
IEnumerable<string> GetDestinationsByDate(DateTime asOf);
}
Then, create a class that implements this which is specific to SQL Lite. Where you want to make the calls, the variable is of the interface type.
The benefits of this are:
If you change the implementation from SQL Lite to some other underlying data store (web service call, JSON REST call, whatever) you only have to change where you populate the interface variable (this is where dependency injection begins to be of use), as all of your calls are against the abstraction
The interface is more easily testable:
You can test the direct implementation against any test data you want
For items that rely on the interface, you can mock the interface any way you like and not have an actual database underneath for testing.
Then, for other data operations, you can wash, rinse, and repeat.
For bonus points, you can separate out the interface into a unit-of-work for writes and a repository for reads, depending on whether what best suits your needs.
In my continuing journey through ASP.NET MVC, I am now at the point where I need to render an edit/create form for an entity.
My entity consists of enums and a few other models, created in a repository via LINQtoSQL.
What I am struggling with right now is finding a decent way to render the edit/create forms which will contain a few dropdown lists and a number of text fields. I realize this may not be the most user-friendly approach, but it is what I am going with right now :).
I have a repository layer and a business layer. The controllers interface with the service layer.
Is it best to simply create a viewmodel like so?
public class EventFormViewModel
{
IEventService _eventService;
public IEvent Event { get; private set; }
public IEnumerable<EventCampaign> Campaigns { get; private set; }
public IEnumerable<SelectListItem> Statuses { get; private set; }
// Other tables/dropdowns go here
// Constructor
public EventFormViewModel(IEventService eventService, IEvent ev)
{
_eventService = eventService;
Event = ev;
// Initialize Collections
Campaigns = eventService.getCampaigns().ToSelectList(); //extn method maybe?
Statuses = eventService.getStatus().ToSelectList(); /extn for each table type?
}
So this will give me a new EventFormViewModel which I'll bind to a view. But is this the best way? I'd essentially be pulling all data back from the database for a few different tables and converting them to an IEnumerable. This doesn't seem overly efficient, but I suppose I could cache the contents of the dropdowns.
Also, if all I have is methods that get data for a dropdown, should I just skip the service layer and go right to the repository?
The last part of my question: For the ToSelectList() extension method, would it be possible to write one method for each table and use it generically even if some tables have different columns ("Id" and "Name" versus "Id" and "CampaignName").
Forgive me if this is too general, I'm just trying to avoid going down a dead-end road - or one that will have a lot of potholes.
I wouldn't provide an IEventService for my view model object. I prefer to think of the view model object as a dumb data transfer object. I would let the controller take care of asking the IEventService for the data and passing it on to the view model.
I'd essentially be pulling all data
back from the database for a few
different tables and converting them
to an IEnumerable
I don't see why this would be inefficient? You obviously shouldn't pull all data from the tables. Perform the filtering and joining you need to do in the database as usual. Put the result in the view model.
Also, if all I have is methods that
get data for a dropdown, should I just
skip the service layer and go right to
the repository?
If your application is very simple, then a service layer may be an unneeded layer of abstraction / indirection. But if your application is just a bit complex (from what you've posted above, I would guess that this is the case), consider what you will by taking a shortcut and going straight to a repository and compare this to what you will win in maintainability and testability if you use a service layer.
The worst thing you could do, would be to go through a service layer only when you feel there is a need for it, and go straight to the repository when the service layer will not be providing any extra logic. Whatever you do, be consistent (which almost always means: go through a service layer, even when your application is simple. It won't stay simple).
I would say if you're thinking of "skipping" a layer than you're not really ready to use MVC. The whole point of the layers, even when they're thin, is to facilitate unit testing and try to enforce separation of concerns.
As for generic methods, is there some reason you can just use the OOB objects and then extend them (with extension methods) when they fail to meet your needs?
I find it difficult to determine the responsiblity of classes: do i have to put this method in this class or should I put this method in another class? For example, imagine a simple User class with an id, forname, lastname and password. Now you have an userId and you want the forname and lastname, so you create a method like: public User GetUserById(int id){}. Next you want to show list of all the users, so you create another method: public List GetAllUsers(){}. And offcourse you want to update, delete and save a user. This gives us 5 methods:
public bool SaveUser(User user);
public bool UpdateUser(User user);
public bool DeleteUser(User user);
public User GetUserById(int id);
public List<User> GetAllUsers();
So my question is: do you put all these methods in the User class? Or do you create another data class (UserData class) which may connect to the database and contain all these methods?
What you are describing here is basically a choice between the Active Record Pattern or the Repository Pattern. I'd advise you to read up on those patterns and choose whichever one fits your application / experience / toolset.
I would not put those specific methods into the 'User' class.
There are 2 common approaches for this 'problem':
You put those method in the User
class, and then this means you 're
using the Active Record pattern
You put those methods in a
separate class (UserRepository) for
instance, and then you're using the
Repository pattern.
I prefer the repository-approach, since that keeps my 'User' class clean, and doesn't clutter it with data access code.
Barring additional complexity specific to a group of users (or really elaborate database access mechanics) I might make those methods static on the User class.
Those methods sound more like a UserManager (or something like that) to me. The user class should correspond to and represent only a single user, not many.
If we look at Enterprise Application design patterns, then the methods for fetching Users i.e. GetUserByID and GetAllUsers would be in separate class - you can name it UserData or UserDAO (DAO - Data Access Object).
Infact you should design an interface for UserDAO with appropriate methods for handling User Objects - such as CreateUser, UpdateUser, DeleterUser, GetUserXXX and so on.
There should be an implementation of UserDAO as per the data source, for example if your users are stored in database then you can implement the logic of accessing database in the implementation of UserDAO.
Following are the advantages of keeping the access methods in separate class:
1) User object should be plain object with just getter setter methods, this would facilitate passing object across tiers - from data access tier, to business tier to web tier. This would also help keep User Object serializable
2) The data access logic is loosely coupled from the User object - that means if the datasource changes, then you need not change the User object itself. This also assists in Test Driven Development where you might need to have mock objects during testing phase
3) If User object is complex object with relations with other objects such as Address or Department or Role etc. then the complexity of relationships will be encapsulated in UserDAO rather than leaking in the User Object.
4) Porting to frameworks like NHibernate or Spring.NET or .NET LINQ would become easier if the patterns are followed
Lets us see you scenario as this.
There are 'N' number of people working in assembly division of you company.
It is okay to go to a person and ask about his information BUT you cant expect him to tell you details of all persons working in assembly division. Reason why shud he remember all the details and if you do expect then his effeciency will go down(work on assembly and also remember details of others).
So ..... perhaps we can appoint a manager who can do this ppl maanagement activities
(get details, add new person, edit ,delete etc etc )
Therefore you have two entities
1) User/Person working in your assembly deivision
2) a Manager
Thus two classes. Hopes this will help you.
Thanks
If I understand your question correctly the User class deals with a single user. Hence the user class does not have a clue about how many users there are or anything about them. The structure holding this information is somewhere else and the methods you mention seem to belong to that structure / class.
With all else being equal either way is fine. Which to choose, though, usually depends on the overall architecture of the application or class library in which you find the User class. If the data access code seems tangled with the User object code, then it might make more sense to split it into two classes as you've considered. If the CRUD methods are one-line delegations to a DAL with maybe application-specific logic, then leaving them in the User class should be okay.
The complexity is more or less the same in both cases—it's a trade-off between a low-maintenace assembly with few high-maintenance classes or a high-maintenance assembly with a larger number of low-maintenance classes.
I'm also assuming that the CRUD methods should be static.
Do what's easiest to get the code written right now but consider possible refactorings in the future should you find that it'll be better that way.