How to create a string from char array without copying it? - c#

I have a very big char array that I need to convert to string in order to use Regex on it.
But it's so big that I get OutOfMemoryException when I pass that to string constructor.
I know that string is immutable and therefore it shouldn't be possible to specify its underlying character collection but I need a way to use regular expressions on that without copying the whole thing.
How do I get that array?
I get it from a file using StreamReader. I know the starting position and the length of the content to read, Read and ReadBlock methods need me to supply a char[] buffer.
So here are the things I want to know:
Is there a way to specify a string's underlaying collection? (Does it even keep its chars in an array?)
...or using Regex directly on a char array?
...or getting the part of the file directly as string?

If you have a character or pattern that you could search for that is guaranteed NOT to be in the pattern you're trying to find, you could scan the array for that character and create smaller strings to process individually. Process would be something like:
char token = '|';
int start = 0;
int length = 0;
for(int i = 0; i < charArray.Length; i++;)
{
if(charArray[i] == token)
{
string split = new string(charArray,start,length);
// check the string using the regex
// reset the length
length = 0;
}
else
{
length++;
}
}
That way you're copying smaller segments of the string that would be GCed after each attempt versus the entire string.

I would think your best bet would be to read multiple char[] chunks into individual strings that overlap with a certain dimension. This way you'd be able to perform your Regex on the individual chunks, and the overlap would provide you the ability to ensure that a "break" in the chunks doesn't break the search pattern. In a psuedo-code manner:
int chunkSize = 100000;
int overLap = 2000;
for(int i = 0; i < myCharArray.length; i += chunkSize - overlap)
{
// Grab your array chunk into a partial string
// By having your iteration slightly smaller than
// your chunk size you guarantee not to miss any
// character groupings. You just need to make sure
// your overlap is sufficient to cover the expression
string chunk = new String(myCharArray.Skip(i).Take(chunkSize).ToArray());
// run your regex
}

One rather ugly option would be to use an unmanaged RegEx library (like the POSIX regular expression library) and unsafe code. You can obtain a byte * pointer to the char array and pass it directly to the unmanaged library, then marshal the responses back.
fixed (byte * pArray = largeCharArray)
{
// call unmanaged code with pArray
}

If you are using .NET 4.0 or higher, what you should be using is a MemoryMappedFile. This class was designed exclusively so you could manipulate very large files. From the MSDN documentation:
A memory-mapped file maps the contents of a file to an application’s
logical address
space. Memory-mapped files enable programmers to work with extremely large files because
memory can be managed concurrently, and they allow complete, random access to a file
without the need for seeking. Memory-mapped files can also be shared across multiple
processes.
Once you got your memory mapped file, check out this Stack Overflow answer on how to apply RegEx to the memory mapped file.
Hope this helps!

Related

Is it possible to concatenate a list of strings using only a single allocation?

After doing some profiling, we've discovered that the current way in which our app concatenates strings causes an enormous amount of memory churn and CPU time.
We're building a List<string> of strings to concatenate that is on the order of 500 thousand elements long, referencing several hundred megabytes worth of strings. We're trying to optimize this one small part of our app since it seems to account for a disproportionate amount of CPU and memory usage.
We do a lot of text processing :)
Theoretically, we should be able to perform the concatenation in a single allocation and N copies - we can know how many total characters are available in our string, so it should just be as simple as summing up the lengths of the component strings and allocating enough underlying memory to hold the result.
Assuming we're starting with a pre-filled List<string>, is it possible to concatenate all strings in that list using a single allocation?
Currently, we're using the StringBuilder class, but this stores its own intermediate buffer of all of the characters - so we have an ever growing chunk array, with each chunk storing a copy of the characters we're giving it. Far from ideal. The allocations for the array of chunks aren't horrible, but the worst part is that it allocates intermediate character arrays, which means N allocations and copies.
The best we can do right now is to call List<string>.ToArray() - which performs one copy of a 500k element array - and pass the resulting string[] to string.Concat(params string[]). string.Concat() then performs two allocations, one to copy the input array into an internal array, and the one to allocate the destination string's memory.
From referencesource.microsoft.com:
public static String Concat(params String[] values) {
if (values == null)
throw new ArgumentNullException("values");
Contract.Ensures(Contract.Result<String>() != null);
// Spec#: Consider a postcondition saying the length of this string == the sum of each string in array
Contract.EndContractBlock();
int totalLength=0;
// -----------> Allocation #1 <---------
String[] internalValues = new String[values.Length];
for (int i=0; i<values.Length; i++) {
string value = values[i];
internalValues[i] = ((value==null)?(String.Empty):(value));
totalLength += internalValues[i].Length;
// check for overflow
if (totalLength < 0) {
throw new OutOfMemoryException();
}
}
return ConcatArray(internalValues, totalLength);
}
private static String ConcatArray(String[] values, int totalLength) {
// -----------------> Allocation #2 <---------------------
String result = FastAllocateString(totalLength);
int currPos=0;
for (int i=0; i<values.Length; i++) {
Contract.Assert((currPos <= totalLength - values[i].Length),
"[String.ConcatArray](currPos <= totalLength - values[i].Length)");
FillStringChecked(result, currPos, values[i]);
currPos+=values[i].Length;
}
return result;
}
Thus, in the best case, we have three allocations, two for arrays referencing the component strings, and one for the destination concatenated string.
Can we improve on this? Is it possible to concatenate a List<string> using a single allocation and a single loop of character copies?
Edit 1
I'd like to summarize the various approaches discussed so far, and why they are still sub-optimal. I'd also like to set the parameters of the situation in concrete a little more, since I've received a lot of questions that try to side step the central question.
...
First, the structure of the code that I am working within. There are three layers:
Layer one is a set of methods that produce my content. These methods return small-ish string objects, which I will call my 'component' strings'. These string objects will eventually be concatenated into a single string. I do not have the ability to modify these methods; I have to face the reality that they return string objects and move forward.
Layer two is my code that calls these content producers and assembles the output, and is the subject of this question. I must call the content producer methods, collect the strings they return, and eventually concatenate the returned strings into a single string (reality is a little more complex; the returned strings are partitioned depending on how they're routed for output, and so I have several sets of large collections of strings).
Layer three is a set of methods that accept a single large string for further processing. Changing the interface of that code is beyond my control.
Talking about some numbers: a typical batch run will collect ~500000 strings from the content producers, representing about 200-500 MB of memory. I need the most efficient way to concatenate these 500k strings into a single string.
...
Now I'd like to examine the approaches discussed so far. For the sake of numbers, assume we're running 64-bit, assume that we are collecting 500000 string objects, and assume that the aggregate size of the string objects totals 200 megabytes worth of character data. Also, assume that the original string object's memory is not counted toward any approach's total in the below analysis. I make this assumption because it is necessarily common to any and all approaches, because it is an assumption that we cannot change the interface of the content producers - they return 500k relatively small fully formed strings objects that I must then accept and somehow concatenate. As stated above, I cannot change this interface.
Approach #1
Content producers ----> StringBuilder ----> string
Conceptually, this would be invoking the content producers, and directly writing the strings they return to a StringBuilder, and then later calling StringBuilder.ToString() to obtain the concatenated string.
By analyzing StringBuilder's implementation, we can see that the cost of this boils down to 400 MB of allocations and copies:
During the stage where we collect the output from the content producers, we're writing 200 MB of data to the StringBuilder. We would be performing one 200 MB allocation to pre-allocate the StringBuilder, and then 200 MB worth of copies as we copy and discard the strings returned from the content producers
After we've collected all output from the content producers and have a fully formed StringBuilder, we then need to call StringBuilder.ToString(). This performs exactly one allocation (string.FastAllocateString()), and then copies the string data from its internal buffers to the string object's internal memory.
Total cost: approximately 400 MB of allocations and copies
Approach #2
Content producers ---> pre-allocated char[] ---> string
This strategy is fairly simple. Assuming we know roughly how much character data we're going to be collecting from the producers, we can pre-allocate a char[] that is 200 MB large. Then, as we call the content producers, we copy the strings they return into our char[]. This accounts for 200 MB of allocations and copies. The final step to turn this into a string object is to pass it to the new string(char[]) constructor. However, since strings are immutable and arrays are not, the constructor will make a copy of that entire array, causing it to allocate and copy another 200 MB of character data.
Total cost: approximately 400 MB of allocations and copies
Approach #3:
Content producers ---> List<string> ----> string[] ----> string.Concat(string[])
Pre-allocate a List<string> to be about 500k elements - approximately 4 MB of allocations for List's underlying array (500k * 8 bytes per pointer == 4 MB of memory).
Call all of the content producers to collect their strings. Approximately 4 MB of copies, as we copy the pointer to the returned string into List's underlying array.
Call List<string>.ToArray() to obtain a string[]. Approximately 4 MB of allocations and copies (again, we're really just copying pointers).
Call string.Concat(string[]):
Concat will make a copy of the array provided to it before it does any real work. Approximately 4 MB of allocations and copies, again.
Concat will then allocate a single 'destination' string object using the internal string.FastAllocateString() special method. Approximately 200 MB of allocations.
Concat will then copy strings from its internal copy of the provided array directly into the destination. Approximately 200 MB of copies.
Total cost: approximately 212 MB of allocations and copies
None of these approaches are ideal, however approach #3 is very close. We're assuming that the absolute minimum of memory that needs to be allocated and copied is 200 MB (for the destination string), and here we get pretty close - 212 MB.
If there were a string.Concat overload that 1) Accepted an IList<string> and 2) did not make a copy of that IList before using it, then the problem would be solved. No such method is provided by .Net, hence the subject of this question.
Edit 2
Progress on a solution.
I've done some testing with some hacked IL, and found that directly invoking string.FastAllocateString(n) (which is not usually invokable...) is about as fast as invoking new string('\0', n), and both seem to allocate exactly as much memory as is expected.
From there, it seems its possible to acquire a pointer to the freshly allocated string using the unsafe and fixed statements.
And so, a rough solution begins to appear:
private static string Concat( List<string> list )
{
int concatLength = 0;
for( int i = 0; i < list.Count; i++ )
{
concatLength += list[i].Length;
}
string newString = new string( '\0', concatLength );
unsafe
{
fixed( char* ptr = newString )
{
...
}
}
return newString;
}
The next biggest hurdle is implementing or finding an efficient block copy method, ala Buffer.BlockCopy, except one that will accept char* types.
If you can determine the length of the concatenation before trying to perform the operation, a char array can beat string builder in some use cases. Manipulating the characters within the array prevents the multiple allocations.
See: http://blogs.msdn.com/b/cisg/archive/2008/09/09/performance-analysis-reveals-char-array-is-better-than-stringbuilder.aspx
UPDATE
Please check out this internal implementation of the String.Join from .NET - it uses unsafe code with pointers to avoid multiple allocations. Unless I'm missing something, it would seem you can re-write this using your List to accomplish what you want:
[System.Security.SecuritySafeCritical] // auto-generated
public unsafe static String Join(String separator, String[] value, int startIndex, int count) {
//Range check the array
if (value == null)
throw new ArgumentNullException("value");
if (startIndex < 0)
throw new ArgumentOutOfRangeException("startIndex", Environment.GetResourceString("ArgumentOutOfRange_StartIndex"));
if (count < 0)
throw new ArgumentOutOfRangeException("count", Environment.GetResourceString("ArgumentOutOfRange_NegativeCount"));
if (startIndex > value.Length - count)
throw new ArgumentOutOfRangeException("startIndex", Environment.GetResourceString("ArgumentOutOfRange_IndexCountBuffer"));
Contract.EndContractBlock();
//Treat null as empty string.
if (separator == null) {
separator = String.Empty;
}
//If count is 0, that skews a whole bunch of the calculations below, so just special case that.
if (count == 0) {
return String.Empty;
}
int jointLength = 0;
//Figure out the total length of the strings in value
int endIndex = startIndex + count - 1;
for (int stringToJoinIndex = startIndex; stringToJoinIndex <= endIndex; stringToJoinIndex++) {
if (value[stringToJoinIndex] != null) {
jointLength += value[stringToJoinIndex].Length;
}
}
//Add enough room for the separator.
jointLength += (count - 1) * separator.Length;
// Note that we may not catch all overflows with this check (since we could have wrapped around the 4gb range any number of times
// and landed back in the positive range.) The input array might be modifed from other threads,
// so we have to do an overflow check before each append below anyway. Those overflows will get caught down there.
if ((jointLength < 0) || ((jointLength + 1) < 0) ) {
throw new OutOfMemoryException();
}
//If this is an empty string, just return.
if (jointLength == 0) {
return String.Empty;
}
string jointString = FastAllocateString( jointLength );
fixed (char * pointerToJointString = &jointString.m_firstChar) {
UnSafeCharBuffer charBuffer = new UnSafeCharBuffer( pointerToJointString, jointLength);
// Append the first string first and then append each following string prefixed by the separator.
charBuffer.AppendString( value[startIndex] );
for (int stringToJoinIndex = startIndex + 1; stringToJoinIndex <= endIndex; stringToJoinIndex++) {
charBuffer.AppendString( separator );
charBuffer.AppendString( value[stringToJoinIndex] );
}
Contract.Assert(*(pointerToJointString + charBuffer.Length) == '\0', "String must be null-terminated!");
}
return jointString;
}
Source: http://www.dotnetframework.org/default.aspx/4#0/4#0/DEVDIV_TFS/Dev10/Releases/RTMRel/ndp/clr/src/BCL/System/String#cs/1305376/String#cs
UPDATE 2
Good point on the fast allocate. According to an old SO post, you can wrap FastAllocate using reflection (assuming of course you'd cache the fastAllocate method reference so you just called Invoke each time. Perhaps the tradeoff of the call is better than what you're doing now.
var fastAllocate = typeof (string).GetMethods(BindingFlags.NonPublic | BindingFlags.Static)
.First(x => x.Name == "FastAllocateString");
var newString = (string)fastAllocate.Invoke(null, new object[] {20});
Console.WriteLine(newString.Length); // 20
Perhaps another approach is to use unsafe code to copy your allocation into a char* array, then pass this to the string constructor. The string constructor with char* is an extern passed to the underlying C++ implementation. I haven't found a reliable source for that code to confirm, but perhaps this can be faster for you. The non-prod ready code (no checks for potential overflow, add fixed to lock strings from garbage collection, etc) would start with:
public unsafe string MyConcat(List<string> values)
{
int index = 0;
int totalLength = values.Sum(m => m.Length);
char* concat = stackalloc char[totalLength + 1]; // Add additional char for null term
foreach (var value in values)
{
foreach (var c in value)
{
concat[index] = c;
index++;
}
}
concat[index] = '\0';
return new string(concat);
}
Now I'm all out of ideas for this :) Perhaps somebody can figure out a method here with marshalling to avoid unsafe code. Since introducing unsafe code requires adding the unsafe flag to compilation, consider adding this piece as a separate dll to minimize your app's security risk if you go down that route.
Unless the average length of the strings is very small, the most efficient approach, given a List<String>, will be to use ToArray() to copy it to a new String[], and pass that to a concatenation or joining method. Doing that may cause a wasted allocation for an array of references if the concatenation or joining method wants to make a copy of its array before it starts, but that would only allocate one reference per string, there will only be one allocation to hold character data, and it will be correctly sized to hold the entire string.
If you're building the data structure yourself, you might gain a little bit of efficiency by initializing a String[] to the estimated required size, populating it yourself, and expanding it as needed. That would save one allocation of a String[] worth of data.
Another approach would be to allocate a String[8192][] and then allocate a String[8192] for each array of strings as you go along. Once you're all done, you'll know exactly what size String[] you need to pass to the Concat method so you can create an array of that exact size. This approach would require a greater quantity of allocations, but only the final String[] and the String itself would need to go on the Large Object Heap.
It's a shame the constraints you're putting on yourself. It's very blockily structured, and it's hard to get any flow going. For example, if you didn't expect a IList but only expected IEnumerable you might be able to make it easier for the producer of your content. Not only that, you could make your processing benefit from being able to consume the strings only as you need them - and only as they're produced.
This gets you on down the road to some nice asynchrony.
One the other end, they're making you send to whole thing at once. That's tough.
But having said that, and since you're going to run it over and over, etc... I'm wondering if you couldn't create your string buffer or byte buffer or StringBuilder or whatever - and reuse it between executions - allocate the max monster (or progressively bump-reallocate it as needed) one time - and don't let the gc have it. The string constructor will copy it over and over again - but that's a single allocation per cycle. If you're running this so much you're making the machine hot, then it might be worth the hit. I've made precisely that tradeoff in the near past (but I didn't have 5gb to choke on). It felt dirty at first - but ooohh - the throughput spoke loudly!
Also, it may be possible, that while your native API expects a string, but you can lie to it - let it think you're giving it a string. You can very probably pass the buffer with a null char at the end - or with the length - depending on the API's particulars. I think one or two commenters spoke to this. In such a case, you may probably need your buffer pinned for the duration of the calls to the native consumer of your big ol' string.
If this is the case, you're down to a one-time allocation of a buffer, repeated copies into it, and that's it. It could go way under your proposed best case.
I have implemented a method to concatenate a List into a single string that performs exactly one allocation.
The following code compiles under .Net 4.6 - Block.MemoryCopy wasn't added to .Net until 4.6.
The "unsafe" implementation:
public static unsafe class FastConcat
{
public static string Concat( IList<string> list )
{
string destinationString;
int destLengthChars = 0;
for( int i = 0; i < list.Count; i++ )
{
destLengthChars += list[i].Length;
}
destinationString = new string( '\0', destLengthChars );
unsafe
{
fixed( char* origDestPtr = destinationString )
{
char* destPtr = origDestPtr; // a pointer we can modify.
string source;
for( int i = 0; i < list.Count; i++ )
{
source = list[i];
fixed( char* sourcePtr = source )
{
Buffer.MemoryCopy(
sourcePtr,
destPtr,
long.MaxValue,
source.Length * sizeof( char )
);
}
destPtr += source.Length;
}
}
}
return destinationString;
}
}
The competing implementation is the following "safe" implementation:
public static string Concat( IList<string> list )
{
return string.Concat( list.ToArray() )
}
Memory consumption
The "unsafe" implementation performs exactly one allocation and zero temporary allocations. The List<string> is directly concatenated into a single, freshly allocated string object.
The "safe" implementation requires two copies of the list - one, when I call ToArray() to pass it to string.Concat, and another when string.Concat performs its own internal copy of the array.
When concatenating a 500k element list, the "safe" string.Concat method allocates exactly 8 MB of extra memory in a 64-bit process, which I've confirmed by running the test driver in a memory monitor. This is what we would expect with the array copies performed by the safe implementation.
CPU performance
For small worksets, the unsafe implementation seems to win by about 25%.
The test driver was tested by compiling for 64-bit, installing the program into the native image cache via NGEN, and running from outside the debugger on an unloaded workstation.
From my test driver with a small workset (500k strings each 2-10 chars long):
Unsafe Time: 17.266 ms
Unsafe Time: 18.419 ms
Unsafe Time: 16.876 ms
Safe Time: 21.265 ms
Safe Time: 21.890 ms
Safe Time: 24.492 ms
Unsafe average: 17.520 ms. Safe average: 22.549 ms. Safe takes about 25% longer than unsafe. This is likely due to the extra work the safe implementation has to do, allocating temporary arrays.
...
From my test driver with a large workset (500k strings, each 500-800 chars long):
Unsafe Time: 498.122 ms
Unsafe Time: 513.725 ms
Unsafe Time: 515.016 ms
Safe Time: 487.456 ms
Safe Time: 499.508 ms
Safe Time: 512.390 ms
As you can see, the performance difference with large strings is roughly zero, likely because the time is dominated by the raw copy.
Conclusion
If you don't care about the array copies, the safe implementation is dead simple to implement, and is roughly as fast as the unsafe implementation. If you want to be absolutely perfect with memory usage, use the unsafe implementation.
I've attached the code I used for the test harness:
class PerfTestHarness
{
private List<string> corpus;
public PerfTestHarness( List<string> corpus )
{
this.corpus = corpus;
// Warm up the JIT
// Note that `result` is discarded. We reference it via 'result[0]' as an
// unused paramater to my prints to be absolutely sure it doesn't get
// optimized out. Cheap hack, but it works.
string result;
result = FastConcat.Concat( this.corpus );
Console.WriteLine( "Fast warmup done", result[0] );
result = string.Concat( this.corpus.ToArray() );
Console.WriteLine( "Safe warmup done", result[0] );
GC.Collect();
GC.WaitForPendingFinalizers();
}
public void PerfTestSafe()
{
Stopwatch watch = new Stopwatch();
string result;
GC.Collect();
GC.WaitForPendingFinalizers();
watch.Start();
result = string.Concat( this.corpus.ToArray() );
watch.Stop();
Console.WriteLine( "Safe Time: {0:0.000} ms", watch.Elapsed.TotalMilliseconds, result[0] );
Console.WriteLine( "Memory usage: {0:0.000} MB", Environment.WorkingSet / 1000000.0 );
Console.WriteLine();
}
public void PerfTestUnsafe()
{
Stopwatch watch = new Stopwatch();
string result;
GC.Collect();
GC.WaitForPendingFinalizers();
watch.Start();
result = FastConcat.Concat( this.corpus );
watch.Stop();
Console.WriteLine( "Unsafe Time: {0:0.000} ms", watch.Elapsed.TotalMilliseconds, result[0] );
Console.WriteLine( "Memory usage: {0:0.000} MB", Environment.WorkingSet / 1000000.0 );
Console.WriteLine();
}
}
StringBuilder was designed to concatenate strings efficiently. It has no other purpose.Use the constructor which sets the initial capacity:
int totalLength = CalcTotalLength();
// sufficient capacity
StringBuilder sb = new StringBuilder(totalLength);
But then you say that even StringBuilder allocates intermediate memory, and you want to do better...
These are unusual requirements, so you need to write a function which suits your situation (creating a char[] of appropriate size, then filling it in). I'm sure you are more than capable.
The first two of my answers have now been already incorporated in the question. Here is my highly situation dependent, but useful -
Third Answer
If in all these MBs of string you are getting a lot of strings that are same, then a smarter way would be use two dictionaries, one would be Dictionary<int, int> to store position and "Id" of the string at that position while another would be a Dictionary<int, int> to store the "Id" and the index of actual string in the original string[].
Coincidentally for me, what I am trying to do is already implemented in C#. Goes kinda like this...
If indeed there are a lot of same strings, is it a rare case where String Interning is useful? You are guaranteed to save considerable amount of your 200 MB target if a lot of matching strings are coming from the content producers.
What is String.Intern?
When you use strings in C#, the CLR does something clever called
string interning. It's a way of storing one copy of any string. If you
end up having a hundred—or, worse, a million—strings with the same
value, it's a waste to take up all of that memory storing the same
string over and over again. String interning is a way around that.
The CLR maintains a table called the intern pool that contains a
single, unique reference to every literal string that's either
declared or created programmatically while your program's running. And
the .NET Framework gives you two useful methods for interacting with
the intern pool: String.Intern() and String.IsInterned().
The way String.Intern() works is pretty straightforward. You pass it a
single string as an argument. If that string is already in the intern
pool, it returns a reference to that string. If it's not already in
the intern pool, it adds it and returns the same reference you passed
into it.
The way to use String Interning is explained in the link. For the sake of completeness of this answer I can add the code here but only if you feel that these solutions are useful.

Reading file into RichTextBox without using LoadFile

I want to read a file into a RichTextBox without using LoadFile (I might want to display the progress). The file contains only ASCII characters.
I was thinking of reading the file in chunks.
I have done the following (which is working):
const int READ_BUFFER_SIZE = 4 * 1024;
BinaryReader reader = new BinaryReader(File.Open("file.txt", FileMode.Open));
byte[] buf = new byte[READ_BUFFER_SIZE];
do {
int ret = reader.Read(buf, 0, READ_BUFFER_SIZE);
if (ret <= 0) {
break;
}
string text = Encoding.ASCII.GetString(buf);
richTextBox.AppendText(text);
} while (true);
My concern is:
string text = Encoding.ASCII.GetString(buf);
I have seen that it is not possible to add a byte[] to a RichTextBox.
My questions are:
Will a new string object be allocated for every chunk which is read?
Isn't there a better way not to have to create a string object just for appending the text to the RichTextBox?
Or, is it more efficient to read lines from the file (StreamReader.ReadLine) and just add to the RichTextBox the string returned?
Will a new string object be allocated for every chunk which is read?
Yes.
Isn't there a better way not to have to create a string object just for appending the text to the RichTextBox?
No, AppendText requires a string
Or, is it more efficient to read lines from the file (StreamReader.ReadLine) and just add to the RichTextBox the string returned?
No, that's considerably less efficient. You'll now create a new string object much more frequently. Which is okay from the garbage collected heap perspective, you don't create more garbage. But it is absolute murder on the RichTextBox, it constantly needs to re-allocate its own buffer. Which includes moving all the text previously read. What you have is already good, you should just use a much larger READ_BUFFER_SIZE.
Unfortunately there are conflicting goals here. You don't want to make the buffer larger than 39,999 bytes or the strings end up in the Large Object Heap and clog it up until a gen# 2 garbage collection happens. But the RTB will be much happier if you go considerably past that size, like a megabyte if the file is so large that you need a progress bar.
If you want to make it really efficient then you need to replace RichTextBox.LoadFile(). The underlying Windows message is EM_STREAMIN, it uses a callback mechanism to stream in the text. You can technically replace the callback to do what the default one does in RichTextBox, plus update a progress bar. It does permit getting rid of the strings btw. The pinvoke is pretty unfriendly, use the Reference Source for guidance.
Take the easy route first, increase the buffer size. Only consider using the pinvoke route when your code is considerably slower than using File.ReadAllText().
Try this:
richTextBox.AppendText(File.ReadAllText("file.txt"));
or
richTextBox.AppendText(File.ReadAllText("file.txt", Encoding.ASCII));
You can use a StreamReader. Then you can read eacht row of the file and display the progress while reading.

Extracting a binary file from other file encoding\conversion mistake

I have two binary files, "bigFile.bin" and "smallFile.bin".
The "bigFile.bin" contains "smallFile.bin".
Opening it in beyond compare confirms that.
I want to extract the smaller file form the bigger into a "result.bin" that equals "smallFile.bin".
I have two keywords- one for the start position ("Section") and one for the end position ("Man");
I tried the following:
byte[] bigFile = File.ReadAllBytes("bigFile.bin");
UTF8Encoding enc = new UTF8Encoding();
string text = enc.GetString(bigFile);
int startIndex = text.IndexOf("Section");
int endIndex = text.IndexOf("Man");
string smallFile = text.Substring(startIndex, endIndex - startIndex);
File.WriteAllBytes("result.bin",enc.GetBytes(smallFile));
I tried to compare the result file with the origin small file in beyond compare, which shows hex representation comparison.
nost of the bytes areequal -but some not.
For example in the new file I have 84 but in the old file I have EF BF BD sequence instead.
What can cause those differences? Where am I mistaken?
Since you are working with binary files, you should not use text-related functionality (which includes encodings etc). Work with byte-related methods instead.
Your current code could be converted to work by making it into something like this:
byte[] bigFile = File.ReadAllBytes("bigFile.bin");
int startIndex = /* assume we somehow know this */
int endIndex = /* assume we somehow know this */
var length = endIndex - startIndex;
var smallFile = new byte[length];
Array.Copy(bigFile, startIndex, smallFile, 0, length);
File.WriteAllBytes("result.bin", smallFile);
To find startIndex and endIndex you could even use your previous technique, but something like this would be more appropriate.
However this would still be problematic because:
Stuffing both binary data and "text" into the same file is going to complicate matters
There is still a lot of unnecessary copying going on here; you should work with your input as a Stream rather than an array of bytes
Even worse than the unnecessary copying, any non-stream solution would either need to load all of your input file in memory as happens above (wasteful), or be exceedingly complicated to code
So, what to do?
Don't read file contents in memory as byte arrays. Work with FileStream instead.
Wrap a StreamReader around the FileStream and use it to find the markers for the start and end indexes. Even better, change your file format so that you don't need to search for text.
After you know startIndex and length, use stream functions to seek to the relevant part of your input stream and copy length bytes to the output stream.

Fast search for a set of elements

I am trying to search a bunch of files on my hard drive for a binary pattern. I have tried to find some way of doing it with what is built in to .net but I can't seem to find anything that would let me search for a set of data, instead of just one byte of data, unless I convert my binary data in to a string first and use String.IndexOf(string value).
I am halfway through writing my own Boyer-Moor stream searching algorithm, but I thought I should check here first in case I did miss a way to do this efficiently.
Here is my current method of doing the search just for text, it works well enough, I just don't know what to do for binary patterns
private string _string;
private byte[] _array;
private void backgroundWorker1_DoWork(object sender, DoWorkEventArgs e)
{
Parallel.ForEach(Directory.EnumerateFiles(_folder, _filter, SearchOption.AllDirectories)
, Search);
}
private void Search(string filePath)
{
if (numbers)
{
var fileBinary = File.ReadAllBytes(filePath);
if (fileBinary.MagicFunctionToDoContains(_array)) //Need help here
{
lbResults.BeginInvoke(new Action<string>(AddResult), filePath);
}
}
else
{
var fileText = File.ReadAllText(filePath, Encoding.ASCII);
if (fileText.IndexOf(_string, StringComparison.OrdinalIgnoreCase) >= 0)
{
lbResults.BeginInvoke(new Action<string>(AddResult), filePath);
}
}
}
The byte arrays will not be bigger than 8 bytes at the very largest, with the common case being 4 bytes, if that affects the recommendation.
Is there any thing built in to .net or pre-written example that I could use to do this?
Coding the Boyer-Moor algorithm should be straightforward. However, for such short patterns (4-8 bytes) I doubt you see much performance boost compared to to a byte by byte search.
What you can do to increase performance, is to use pointer arithmetic using the unsafe and fixed keywords, since the array indexer will bounds check your index variable each time you access your fileBinary array.
Do you want to search the files as they are on the disk, or do you want to build an index and later search using that index?
If the former is the case, I don't see a reason why Boyer–Moore couldn't be implemented on byte "characters".
If the later is the case, you'll need a specialized data structure such as suffix tree.
BTW, loading the content of the whole file might not be the best idea performance wise - what if you happen to run into a multi-GB video file? Since all you are doing is linearly traversing the file content, you can load it chunk-by-chunk.
For a really performant implementation, separate the search and the chunk-loading into concurrent threads (or better yet, TPL Tasks) with the queue (of chunks) in between. There may even be some benefits in reading multiple files in parallel to utilize the native command queuing implemented in most modern disk controllers (but only for mechanical disks, SSDs don't benefit from NCQ).
I don't know of anything in the .Net Framework that will do what you are trying to accomplish using byte[]. But I think a simple solution would be to convert each byte to char and then the char[] to a string; so you would convert the filedata to char[] and then string and also the data you are searching for and then use the string search algorithms build into .Net. It would save the time of having to roll your own pattern searching algorithm, plus if the data is not large overhead should be negligible.

automatic incrementing filename

I have a filename that has the following format:
timestamp-username-1
This file is constantly etting written to, but before it gets too large I want to create a new file.
timestamp-username-2
How can I acheive this with using least amount of memory (ie, no or little variables)
here is my version:
private void Split() {
char[] strArr = FlowArgs.Filename.ToCharArray();
int num;
//get the last number
if(Int32.TryParse(strArr[strArr.Length - 1].ToString(), out num)) {
num += 1;
}
//replace the old number with the new number
char.TryParse(num.ToString(), out strArr[strArr.Length - 1]);
FlowArgs.Filename = strArr.ToString();
}
Edit:
I have added a "version" property (int) in the FlowArgs class. However my new problem is that how can I append this at the end of thefilename
I think you should just store the counter in an int. I understand that you want to save memory space but to be honest, an extra int is really in the "acceptable" category. I mean, the Int32 parser is probably wasting way much more memory. Don't forget that on x86, the memory space is spitted to 4096 byte pages so there is much more memory wasted than these 4 bytes.
EDIT: You probably want to have a method like GetNextFileName() in your class that generates you the next filename (being able to refactor your code into small bits is important, much more important than saving memory space):
private int nextFileNumber = 0;
private string GetNextFileName(string userName)
{
return String.Format("{0}-{1}-{2}", DateTime.Now, userName,
nextFileNumber++);
}
"least amount of memory" is NOT equals to "no or little variables"
Local variables only takes little memory itself.
But object creation in heap takes a lot more, and they require GC to do cleanup.
In your example, your ToCharArray() and ToString() have created 4 object (indirect created object not included).
your string variable is already character array:
int num=0;
//get the last number
if (Int32.TryParse(FolwArgs.Filename[FolwArgs.Filename.Length-1].ToString(), out num))
num++;
//replace the old number with the new number
char.TryParse(num.ToString(), out FolwArgs.Filename[FolwArgs.Filename.Length-1]]);
Instead of using a running counter, consider using datetime of creation as the changing part of your filename. This way, you don't have to store and retrieve the previous value.
Using the ToBinary() method, you can get a numeric representation of the time.
Of course, any time format that is acceptable in a filename can be used - see custom date and time format strings.

Categories

Resources