Need help Creating a big array from small byte arrays - c#

i got the following code:
byte[] myBytes = new byte[10 * 10000];
for (long i = 0; i < 10000; i++)
{
byte[] a1 = BitConverter.GetBytes(i);
byte[] a2 = BitConverter.GetBytes(true);
byte[] a3 = BitConverter.GetBytes(false);
byte[] rv = new byte[10];
System.Buffer.BlockCopy(a1, 0, rv, 0, a1.Length);
System.Buffer.BlockCopy(a2, 0, rv, a1.Length, a2.Length);
System.Buffer.BlockCopy(a3, 0, rv, a1.Length + a2.Length, a3.Length);
}
everything works as it should. i was trying to convert this code so everything will be written into myBytes but then i realised, that i use a long and if its value will be higher then int.MaxValue casting will fail.
how could one solve this?
another question would be, since i dont want to create a very large bytearray in memory, how could i send it directry to my .WriteBytes(path, myBytes); function ?

If the final destination for this is, as suggested, a file: then write to a file more directly, rather than buffering in memory:
using (var file = File.Create(path)) // or append file FileStream etc
using (var writer = new BinaryWriter(file))
{
for (long i = 0; i < 10000; i++)
{
writer.Write(i);
writer.Write(true);
writer.Write(false);
}
}
Perhaps the ideal way of doing this in your case would be to pass a single BinaryWriter instance to each object in turn as you serialize them (don't open and close the file per-object).

Why don't you just Write() the bytes out as you process them rather than converting to a massive buffer, or use a smaller buffer at least?

Related

C# Filestream Read - Recycle array?

I am working with filestream read: https://msdn.microsoft.com/en-us/library/system.io.filestream.read%28v=vs.110%29.aspx
What I'm trying to do is read a large file in a loop a certain number of bytes at a time; not the whole file at once. The code example shows this for reading:
int n = fsSource.Read(bytes, numBytesRead, numBytesToRead);
The definition of "bytes" is: "When this method returns, contains the specified byte array with the values between offset and (offset + count - 1) replaced by the bytes read from the current source."
I want to only read in 1 mb at a time so I do this:
using (FileStream fsInputFile = new FileStream(strInputFileName, FileMode.Open, FileAccess.Read)) {
int intBytesToRead = 1024;
int intTotalBytesRead = 0;
int intInputFileByteLength = 0;
byte[] btInputBlock = new byte[intBytesToRead];
byte[] btOutputBlock = new byte[intBytesToRead];
intInputFileByteLength = (int)fsInputFile.Length;
while (intInputFileByteLength - 1 >= intTotalBytesRead)
{
if (intInputFileByteLength - intTotalBytesRead < intBytesToRead)
{
intBytesToRead = intInputFileByteLength - intTotalBytesRead;
}
// *** Problem is here ***
int n = fsInputFile.Read(btInputBlock, intTotalBytesRead, intBytesToRead);
intTotalBytesRead += n;
fsOutputFile.Write(btInputBlock, intTotalBytesRead - n, n);
}
fsOutputFile.Close(); }
Where the problem area is stated, btInputBlock works on the first cycle because it reads in 1024 bytes. But then on the second loop, it doesn't recycle this byte array. It instead tries to append the new 1024 bytes into btInputBlock. As far as I can tell, you can only specify the offset and length of the file you want to read and not the offset and length of btInputBlock. Is there a way to "re-use" the array that is being dumped into by Filestream.Read or should I find another solution?
Thanks.
P.S. The exception on the read is: "Offset and length were out of bounds for the array or count is greater than the number of elements from index to the end of the source collection."
Your code can be simplified somewhat
int num;
byte[] buffer = new byte[1024];
while ((num = fsInputFile.Read(buffer, 0, buffer.Length)) != 0)
{
//Do your work here
fsOutputFile.Write(buffer, 0, num);
}
Note that Read takes in the Array to fill, the offset (which is the offset of the array where the bytes should be placed, and the (max) number of bytes to read.
That's because you're incrementing intTotalBytesRead, which is an offset for the array, not for the filestream. In your case it should always be zero, which will overwrite previous byte data in the array, rather than append it at the end, using intTotalBytesRead.
int n = fsInputFile.Read(btInputBlock, intTotalBytesRead, intBytesToRead); //currently
int n = fsInputFile.Read(btInputBlock, 0, intBytesToRead); //should be
Filestream doesn't need an offset, every Read picks up where the last one left off.
See https://msdn.microsoft.com/en-us/library/system.io.filestream.read(v=vs.110).aspx
for details
Your Read call should be Read(btInputBlock, 0, intBytesToRead). The 2nd parameter is the offset into the array you want to start writing the bytes to. Similarly for Write you want Write(btInputBlock, 0, n) as the 2nd parameter is the offset in the array to start writing bytes from. Also you don't need to call Close as the using will clean up the FileStream for you.
using (FileStream fsInputFile = new FileStream(strInputFileName, FileMode.Open, FileAccess.Read))
{
int intBytesToRead = 1024;
byte[] btInputBlock = new byte[intBytesToRead];
while (fsInputFile.Postion < fsInputFile.Length)
{
int n = fsInputFile.Read(btInputBlock, 0, intBytesToRead);
intTotalBytesRead += n;
fsOutputFile.Write(btInputBlock, 0, n);
}
}

Convert uint[] to byte[] [duplicate]

This might be a simple one, but I can't seem to find an easy way to do it. I need to save an array of 84 uint's into an SQL database's BINARY field. So I'm using the following lines in my C# ASP.NET project:
//This is what I have
uint[] uintArray;
//I need to convert from uint[] to byte[]
byte[] byteArray = ???
cmd.Parameters.Add("#myBindaryData", SqlDbType.Binary).Value = byteArray;
So how do you convert from uint[] to byte[]?
How about:
byte[] byteArray = uintArray.SelectMany(BitConverter.GetBytes).ToArray();
This'll do what you want, in little-endian format...
You can use System.Buffer.BlockCopy to do this:
byte[] byteArray = new byte[uintArray.Length * 4];
Buffer.BlockCopy(uintArray, 0, byteArray, 0, uintArray.Length * 4];
http://msdn.microsoft.com/en-us/library/system.buffer.blockcopy.aspx
This will be much more efficient than using a for loop or some similar construct. It directly copies the bytes from the first array to the second.
To convert back just do the same thing in reverse.
There is no built-in conversion function to do this. Because of the way arrays work, a whole new array will need to be allocated and its values filled-in. You will probably just have to write that yourself. You can use the System.BitConverter.GetBytes(uint) function to do some of the work, and then copy the resulting values into the final byte[].
Here's a function that will do the conversion in little-endian format:
private static byte[] ConvertUInt32ArrayToByteArray(uint[] value)
{
const int bytesPerUInt32 = 4;
byte[] result = new byte[value.Length * bytesPerUInt32];
for (int index = 0; index < value.Length; index++)
{
byte[] partialResult = System.BitConverter.GetBytes(value[index]);
for (int indexTwo = 0; indexTwo < partialResult.Length; indexTwo++)
result[index * bytesPerUInt32 + indexTwo] = partialResult[indexTwo];
}
return result;
}
byte[] byteArray = Array.ConvertAll<uint, byte>(
uintArray,
new Converter<uint, byte>(
delegate(uint u) { return (byte)u; }
));
Heed advice from #liho1eye, make sure your uints really fit into bytes, otherwise you're losing data.
If you need all the bits from each uint, you're gonna to have to make an appropriately sized byte[] and copy each uint into the four bytes it represents.
Something like this ought to work:
uint[] uintArray;
//I need to convert from uint[] to byte[]
byte[] byteArray = new byte[uintArray.Length * sizeof(uint)];
for (int i = 0; i < uintArray.Length; i++)
{
byte[] barray = System.BitConverter.GetBytes(uintArray[i]);
for (int j = 0; j < barray.Length; j++)
{
byteArray[i * sizeof(uint) + j] = barray[j];
}
}
cmd.Parameters.Add("#myBindaryData", SqlDbType.Binary).Value = byteArray;

How to write an array of doubles to a file very fast in C#?

I want to write something like this to a file:
FileStream output = new FileStream("test.bin", FileMode.Create, FileAccess.ReadWrite);
BinaryWriter binWtr = new BinaryWriter(output);
double [] a = new double [1000000]; //this array fill complete
for(int i = 0; i < 1000000; i++)
{
binWtr.Write(a[i]);
}
And unfortunately this code's process last very long!
(in this example about 10 seconds!)
The file format is binary.
How can I make that faster?
You should be able to speed up the process by converting your array of doubles to an array of bytes, and then write the bytes in one shot.
This answer shows how to do the conversion (the code below comes from that answer):
static byte[] GetBytes(double[] values) {
var result = new byte[values.Length * sizeof(double)];
Buffer.BlockCopy(values, 0, result, 0, result.Length);
return result;
}
With the array of bytes in hand, you can call Write that takes an array of bytes:
var byteBuf = GetBytes(a);
binWtr.Write(byteBuf);
You're writing the bytes 1 by 1, of course it's going to be slow.
You could do the writing in memory to an array and then write the array to disk all at once like this :
var arr = new double[1000000];
using(var strm = new MemoryStream())
using (var bw = new BinaryWriter(strm))
{
foreach(var d in arr)
{
bw.Write(d);
}
bw.Flush();
File.WriteAllBytes("myfile.bytes",strm.ToArray());
}

Does WCF pad all byte arrays in SOAP messages?

I am doing some data chunking and I'm seeing an interesting issue when sending binary data in my response. I can confirm that the length of the byte array is below my data limit of 4 megabytes, but when I receive the message, it's total size is over 4 megabytes.
For the example below, I used the largest chunk size I could so I could illustrate the issue while still receiving a usable chunk.
The size of the binary data is 3,040,870 on the service side and the client (once the message is deserialized). However, I can also confirm that the byte array is actually just under 4 megabytes (this was done by actually copying the binary data from the message and pasting it into a text file).
So, is WCF causing these issues and, if so, is there anything I can do to prevent it? If not, what might be causing this inflation on my side?
Thanks!
The usual way of sending byte[]s in SOAP messages is to base64-encode the data. This encoding takes 33% more space than binary encoding, which accounts for the size difference almost precisely.
You could adjust the max size or chunk size slightly so that the end result is within the right range, or use another encoding, e.g. MTOM, to eliminate this 33% overhead.
If you're stuck with soap, you can offset the buffer overhead Tim S. talked about using the System.IO.Compression library in .Net - You'd use the compress function first, before building and sending the soap message.
You'd compress with this:
public static byte[] Compress(byte[] data)
{
MemoryStream ms = new MemoryStream();
DeflateStream ds = new DeflateStream(ms, CompressionMode.Compress);
ds.Write(data, 0, data.Length);
ds.Flush();
ds.Close();
return ms.ToArray();
}
On the receiving end, you'd use this to decompress:
public static byte[] Decompress(byte[] data)
{
const int BUFFER_SIZE = 256;
byte[] tempArray = new byte[BUFFER_SIZE];
List<byte[]> tempList = new List<byte[]>();
int count = 0;
int length = 0;
MemoryStream ms = new MemoryStream(data);
DeflateStream ds = new DeflateStream(ms, CompressionMode.Decompress);
while ((InlineAssignHelper(count, ds.Read(tempArray, 0, BUFFER_SIZE))) > 0) {
if (count == BUFFER_SIZE) {
tempList.Add(tempArray);
tempArray = new byte[BUFFER_SIZE];
} else {
byte[] temp = new byte[count];
Array.Copy(tempArray, 0, temp, 0, count);
tempList.Add(temp);
}
length += count;
}
byte[] retVal = new byte[length];
count = 0;
foreach (byte[] temp in tempList) {
Array.Copy(temp, 0, retVal, count, temp.Length);
count += temp.Length;
}
return retVal;
}

zlib from C++ to C#(How to convert byte[] to stream and stream to byte[])

My task is to decompress a packet(received) using zlib and then use an algoritm to make a picture from the data
The good news is that I have the code in C++,but the task is to do it in C#
C++
//Read the first values of the packet received
DWORD image[200 * 64] = {0}; //used for algoritm(width always = 200 and height always == 64)
int imgIndex = 0; //used for algoritm
unsigned char rawbytes_[131072] = {0}; //read below
unsigned char * rawbytes = rawbytes_; //destrination parameter for decompression(ptr)
compressed = r.Read<WORD>(); //the length of the compressed bytes(picture)
uncompressed = r.Read<WORD>(); //the length that should be after decompression
width = r.Read<WORD>(); //the width of the picture
height = r.Read<WORD>(); //the height of the picture
LPBYTE ptr = r.GetCurrentStream(); //the bytes(file that must be decompressed)
outLen = uncompressed; //copy the len into another variable
//Decompress
if(uncompress((Bytef*)rawbytes, &outLen, ptr, compressed) != Z_OK)
{
printf("Could not uncompress the image code.\n");
Disconnect();
return;
}
//Algoritm to make up the picture
// Loop through the data
for(int c = 0; c < (int)height; ++c)
{
for(int r = 0; r < (int)width; ++r)
{
imgIndex = (height - 1 - c) * width + r;
image[imgIndex] = 0xFF000000;
if(-((1 << (0xFF & (r & 0x80000007))) & rawbytes[((c * width + r) >> 3)]))
image[imgIndex] = 0xFFFFFFFF;
}
}
I'm trying to do this with zlib.NET ,but all demos have that code to decompress(C#)
private void decompressFile(string inFile, string outFile)
{
System.IO.FileStream outFileStream = new System.IO.FileStream(outFile, System.IO.FileMode.Create);
zlib.ZOutputStream outZStream = new zlib.ZOutputStream(outFileStream);
System.IO.FileStream inFileStream = new System.IO.FileStream(inFile, System.IO.FileMode.Open);
try
{
CopyStream(inFileStream, outZStream);
}
finally
{
outZStream.Close();
outFileStream.Close();
inFileStream.Close();
}
}
public static void CopyStream(System.IO.Stream input, System.IO.Stream output)
{
byte[] buffer = new byte[2000];
int len;
while ((len = input.Read(buffer, 0, 2000)) > 0)
{
output.Write(buffer, 0, len);
}
output.Flush();
}
My problem:I don't want to save the file after decompression,because I have to use the algoritm shown in the C++ code.
How to convert the byte[] array into a stream similiar to the one in the C# zlib code to decompress the data and then how to convert the stream back into byte array?
Also,How to change the zlib.NET code to NOT save files?
Just use MemoryStreams instead of FileStreams:
// Assuming inputData is a byte[]
MemoryStream input = new MemoryStream(inputData);
MemoryStream output = new MemoryStream();
Then you can use output.ToArray() afterwards to get a byte array out.
Note that it's generally better to use using statements instead of a single try/finally block - as otherwise if the first call to Close fails, the rest won't be made. You can nest them like this:
using (MemoryStream output = new MemoryStream())
using (Stream outZStream = new zlib.ZOutputStream(output))
using (Stream input = new MemoryStream(bytes))
{
CopyStream(inFileStream, outZStream);
return output.ToArray();
}
I just ran into this same issue.
For Completeness... (since this stumped me for several hours)
In the case of ZLib.Net you also have to call finish(), which usually happens during Close(), before you call return output.ToArray()
Otherwise you will get an empty/incomplete byte array from your memory stream, because the ZStream hasn't actually written all of the data yet:
public static void CompressData(byte[] inData, out byte[] outData)
{
using (MemoryStream outMemoryStream = new MemoryStream())
using (ZOutputStream outZStream = new ZOutputStream(outMemoryStream, zlibConst.Z_DEFAULT_COMPRESSION))
using (Stream inMemoryStream = new MemoryStream(inData))
{
CopyStream(inMemoryStream, outZStream);
outZStream.finish();
outData = outMemoryStream.ToArray();
}
}
public static void DecompressData(byte[] inData, out byte[] outData)
{
using (MemoryStream outMemoryStream = new MemoryStream())
using (ZOutputStream outZStream = new ZOutputStream(outMemoryStream))
using (Stream inMemoryStream = new MemoryStream(inData))
{
CopyStream(inMemoryStream, outZStream);
outZStream.finish();
outData = outMemoryStream.ToArray();
}
}
In this example I'm also using the zlib namespace:
using zlib;
Originally found in this thread:
ZLib decompression
I don't have enough points to vote up yet, so...
Thanks to Tim Greaves for the tip regarding finish before ToArray
And Jon Skeet for the tip regarding nesting the using statements for streams (which I like much better than try/finally)

Categories

Resources