I have an interface INetworkAware and need to declare method which will forece every class to register for events
currently using prisms eventaggregator our implementation is the following.
protected override void SetupEvents()
{
RegisterForEvent<PatientSelected>(OnPatientSelected);
base.SetupEvents();
}
SetupEvents method is declared as virtual in ViewModelbase class. in out situation we want to have above mentioned INetworkAware interface and in addition to deriving from ViewModelBase if any class is interested in listening to network changes(network offline/online) and implement INetworkAware interface we want to have mechanism to force them to register for this event using same principals.
so for example if we create class
public class PatientInformationViewModel : ViewModelBase, INetworkAware
{
protected override void SetupEvents()
{
RegisterForEvent<PatientSelected>(OnPatientSelected);
base.SetupEvents();
}
INetworkAware.ListenForNetworkChange
{
RegisterForEvent<NetworkChangeEvent>(OnNetworkChange)
}
OnNetworkChange(NetworkChangeEvent networkstatus)
{
}
}
NetworkChangeEvent is a sample POCO class
INetworkAware.ListenForNetworkChange and OnNetworkChange(NetworkChangeEvent networkstatus) must be implemented in every viewmodel deriving from INetworkaware and with the same signature.
houw can we accomplish this scenario
You are almost on the right track. If you implement the interface on the base class and then declare your method as abstract in the base class that will force any extending (deriving) class to implement it's own version:
public abstract class ViewModelBase : INetworkAware
{
public abstract void SetupEvents();
}
public class PatientInformationViewModel : ViewModelBase
{
public override void SetupEvents()
{
//register for your events
}
}
Alternatively you can declare the method in the base class as virtual rather than abstract and provide a base implementation, and your derived classes can simply override this when necessary. I've used this pattern before myself and it is quite effective - just make sure you include an Unsubscribe() (or similar) on the interface as well.
Related
In case I want any class inherits/implements some methods which is better an interface or an abstract class contains these abstract methods only and acts as an interface. I know the difference between the interface and the abstract class well but in this case do the two have the same function or there are different something?
I think we can feel free to use one of them but still I take the side of interface because my aim is to enforce any class to implement these methods and it is the job of interface.
I agree an abstract class with no concrete behavior seems a little pointless so I would favour an interface.
Abstract classes are far more useful when bringing together some common behavior that cannot be overridden along with some elements that can eg) template methods
public abstract class Base
{
public void TemplateMethod()
{
AbstractMethod1();
AbstractMethod2();
}
public abstract void AbstractMethod1();
public abstract void AbstractMethod2();
}
public class Concrete : Base
{
public override void AbstractMethod1()
{
Console.Write("Override Abstract Method 1");
}
public override void AbstractMethod2()
{
Console.Write("Override Abstract Method 2");
}
}
public class Main
{
public Main()
{
var concrete = new Concrete();
concrete.TemplateMethod();
}
}
I created two abstract classes and tried to create a class that inherits from both. But I get an error message.
abstract class AbstractClassOne
{
public abstract void ShowMessage();
public abstract void DisplayName();
}
abstract class AbstractClassTwo
{
public abstract void ShowMessage();
public abstract void DisplayPlace();
}
class DerivedClass : AbstractClassOne, AbstractClassTwo // here under AbstractClassTwo it shows the error "cannot have multiple base classes:"
{
}
So a class can only derive from one abstract class?
If can derive from more than one abstract class, then what happens if both classes define the same method, as is the case above (abstract class one and two both have a method showmessage(), so which one will be in the derived class)?
Multiple inheritance is not allowed by C# but it is allowed by C++.
To answer your question regarding the ShowMessage() method that is a known problem in c++ with multiple inheritance called "The Diamond Problem". see: http://en.wikipedia.org/wiki/Multiple_inheritance
So basically you will have to excitability state to which method you are refereeing when calling it e.g. ParentA::ShowMessage()
if you want to have a type that is polymorphic to 2 other types than you should create two separate interfaces and implement them. and if you want to reuse the same methods than you will have to use compositions.
Interfaces example:
public interface ISomeInterface
{
public void ShowMessage();
public void DisplayName();
}
public class ClassOne : ISomeInterface
{
public void ShowMessage()
{
//implementation
}
public void DisplayName()
{
//implementation
}
}
public class ClassTwo : ISomeInterface
{
public void ShowMessage()
{
//implementation
}
public void DisplayPlace()
{
//implementation
}
}
Interface with reusable Show Message Method using composition:
public class ClassTwo : ISomeInterface
{
private ISomeInterface _MyPrivateReusableComponent = new ClassOne();
public void ShowMessage()
{
_MyPrivateReusableComponent.ShowMessage()
}
public void DisplayPlace()
{
_MyPrivateReusableComponent.DisplayName()
//implementation
}
}
In C# it's not allowed to inherit from more than one class. To do what you want here, you need to use interfaces.
abstract class AbstractClassOne
{
public abstract void ShowMessage();
public abstract void DisplayName();
}
Interface IClassTwo
{
void ShowMessage();
void DisplayPlace();
}
class DerivedClass : AbstractClassOne, IClassTwo
{
}
You can't inherit from more than one class (abstract or otherwise), but in your case the abstract classes are pretty much interfaces, so you can turn them into interfaces and inherit from them (you can inherit from any number of interfaces).
No, abstract class whether having all abstract methods or only some, makes no difference as far as inheritance in concerned. you can inherit only one class (in C#) and as many interfaces as you want.
I have written the following code in C#.NET
public interface IWork
{
void func();
}
public abstract class WorkClass
{
public void func()
{
Console.WriteLine("Calling Abstract Class Function");
}
}
public class MyClass:WorkClass,IWork
{
}
On compiling, I didn't get any error. Compiler is not forcing me to implement the method "func();" in "MyClass", which has been derived from the interface "IWork".Latter, I can gracefully create a instance of the class "MyClass" and call the function "func()". Why the compiler is not forcing me to implement the "func()" method in the "MyClass"(which has been derived from "IWork" interface? Is it a flaw in C#?
While reading about this subject, I found I couldn't easily put it all together in my head, so I wrote the following piece of code, which acts as a cheat-sheet for how C# works. Hope it helps someone.
public interface IMyInterface
{
void FunctionA();
void FunctionB();
void FunctionC();
}
public abstract class MyAbstractClass : IMyInterface
{
public void FunctionA()
{
Console.WriteLine( "FunctionA() implemented in abstract class. Cannot be overridden in concrete class." );
}
public virtual void FunctionB()
{
Console.WriteLine( "FunctionB() implemented in abstract class. Can be overridden in concrete class." );
}
public abstract void FunctionC();
}
public class MyConcreteClass : MyAbstractClass, IMyInterface
{
public override void FunctionB()
{
base.FunctionB();
Console.WriteLine( "FunctionB() implemented in abstract class but optionally overridden in concrete class." );
}
public override void FunctionC()
{
Console.WriteLine( "FunctionC() must be implemented in concrete class because abstract class provides no implementation." );
}
}
class Program
{
static void Main( string[] args )
{
IMyInterface foo = new MyConcreteClass();
foo.FunctionA();
foo.FunctionB();
foo.FunctionC();
Console.ReadKey();
}
}
Gives the following output:
FunctionA() implemented in abstract class. Cannot be overridden in concrete class.
FunctionB() implemented in abstract class. Can be overridden in concrete class.
FunctionB() implemented in abstract class but optionally overridden in concrete class.
FunctionC() must be implemented in concrete class because abstract class provides no implementation.
To better understand the concept behind interfaces, I just give you the correct code of your implementation:
public interface IWork{
void func();
}
public abstract class WorkClass,IWork{
public void func(){
Console.WriteLine("Calling Abstract Class Function");
}
}
public class MyClass:WorkClass{
...
}
The basic rule: You need to include the interface always where the implementation is. So if you create a method within an abstract classes and define an interface of this method, you'll need to implement the interface into your abstract class and then all subclasses will automatically implement this interface.
As a matter of fact, interfaces have 2 kind of functions you can use them for:
1) As a "real" interface providing a generic handling of any class implementing the interface, so you can handle several kind of classes just by one interface (without knowing their real class names). While "handling" means: Calling a method.
2) As a help for other (framework) programmers not to mess up with your code. If you want to be sure that an method won't be replaced with another name, you define an interface for your class containing all "must have" method names. Even if the method is called nowhere, your programmer will get an compile error message when he changed the method name.
Now you can easily handle your Myclass just by the interface IWork.
Because the abstract class implements the interface.
If your class MyClass would not inherit from WorkClass you would get an error saying 'MyClass' does not implement interface member 'IWork.func()'.
But you also inherit from WorkClass, which actually implements the methods that the interface requires.
You can mark func() as abstract if you want to force the classes that inherits from it to implement it like this:
public abstract class WorkClass
{
public abstract void func();
}
I tried with the classes above in my solution.
It inherits the abstract class so the derived class have the func() method definition. This is the reason it was not able to show compiled errors.
func() is not marked as abstract in the WorkClass so you don't need to implement it in any classes that derive from WorkClass.
WorkClass implements the IWork interface so you don't need to implement it in MyClass because it inherits func() from WorkClass.
Since the func method in the abstract class is a non-virtual method, so the compiler thinks this method is a implementation of the interface.
When you extend MyClass to WorkClass, the method func() (which has been defined), is inherited.
So, when the interface IWork is implemented, the method 'func()' has already been defined. So, there are no more undefined methods in MyClass.
So, the class MyClass is a concrete class, due to which you are able to create a MyClass object without any compilation errors.
What do I need to do to first run the method in the base class then run the same method in the derived class? Is this a good idea?
I want run common actions in base class and extend it in the derived class in the same method. Is this how it is usually done?
public abstract class MyBase
{
void DoStuff()
{
//some common implementation
}
}
public class MyDerived : MyBase
{
void DoStuff()
{
// DoStuff in the base first
// Then DoStuff in here
}
}
are you talking about something like that?
class base
{
protected virtual void method()
{
// do some stuff in base class, something common for all derived classes
}
}
class derived : base
{
public override void method()
{
base.method(); // call method from base
// do here some more work related to this instance of object
}
}
that's not a bad idea, I do use it a lot when I have some common functionality for all derived classes.
If you want to guarantee that the base class logic is run (and not rely on the derived class being polite), you can do this:
public void Method()
{
//Stuff that should always happen in base class
OnMethod();
}
protected virtual void OnMethod()
{
//Default base class implementation that derived class can either override or extend
}
Use base.TheMethod() to run a method in the base class from a derived class.
If you want to run a method of a derived class from a base class, then you have to cast the base class to the derived class. This means that your class needs to be aware of who is deriving it, which breaks encapsulation and should be avoided.
I have an interface so class writers are forced to implement certain methods. I also want to allow some default implemented methods, so I create a abstract class. The problem is that all classes inherit from the base class so I have some helper functions in there.
I tried to write : IClass in with the abstract base, but I got an error that the base didn't implement the interface. Well of course because I want this abstract and to have the users implement those methods. As a return object if I use base I can't call the interface class methods. If I use the interface I can't access base methods.
How do I make it so I can have these helper classes and force users to implement certain methods?
Make sure methods in the base class have the same name as the interface, and they are public. Also, make them virtual so that subclasses can override them without hiding them.
interface IInterface {
void Do();
void Go();
}
abstract class ClassBase : IInterface {
public virtual void Do() {
// Default behaviour
}
public abstract void Go(); // No default behaviour
}
class ConcreteClass : ClassBase {
public override void Do() {
// Specialised behaviour
}
public override void Go() {
// ...
}
}
Move the interface methods into the abstract class and declare them abstract as well. By this, deriving classes are forced to implement them. If you want default behaviour, use abstract classes, if you want to only have the signature fixed, use an interface. Both concepts don't mix.
Having faced with the same problem recently, I've came up with a somewhat more elegant (to my mind) solution. It looks like:
public interface IInterface
{
void CommonMethod();
void SpecificMethod();
}
public abstract class CommonImpl
{
public void CommonMethod() // note: it isn't even virtual here!
{
Console.WriteLine("CommonImpl.CommonMethod()");
}
}
public class Concrete : CommonImpl, IInterface
{
void SpecificMethod()
{
Console.WriteLine("Concrete.SpecificMethod()");
}
}
Now, according to C# spec (13.4.4. Interface mapping), in the process of mapping IInterface on Concrete class, compiler will look up for CommonMethod in CommonImpl too, and it doesn't even have to be virtual in the base class!
The other significant advantage, compared to Mau's solution, is that you don't have to list every interface member in the abstract base class.