I try to isolate repository from actual data storage implementation. I have little problem to create some simple query with this abstraction.
Example I need list of orders with number of order lines in order.
Repository method returns list of OrderInfo objects.
class OrderInfo
{
string Title { get; set; }
int NumberOfLines { get; set; }
}
Data storage does not contain any field directly containing order line count so it must be calculated on the fly.
This can be easily archived with simple sql query (count + group by) when query is directly written into repository method.
If I try to create some kind of abstraction layer I got lost how to "define query without using any storage dependant thing with it including that it should return number of order lines for each order".
Or am I totally going to wrong direction?
If you want to allow the usage of IQueryable in your BLL (which I think it should), then you can define queries as much as you want. One of the criteria your DAL should then pass for it to be of usage with your BLL, is it should be able to take an IQueryable, and use it to read some data. This way you can 'be smart' in you BLL, and the DAL will be abstracted.
Example:
BLL - define it using interfaces. A generated context-interface provides you with all entities (=tables) in the system. The entities will be available with IQueryable<entityType>. The entities are defined using Entity Framework POCO's.
DAL - an Entity Framework context where the context implements the interface you defined in the BLL.
Each layer is in their own assembly. The DAL is wired up using some Dependency Injection.
Remember, this is just an example.
UPDATE
Read this article about the onion architecture, which is exactly what you're trying to do.
Related
i'm beginner in repository and layerd application and i don't inderstand well which is the interaction and the relationship between the repositories and business layer classes
Here is an example for purchaese order in 3 layers and I want to review whether correct or not and your correction
for DataAcesslayer
repository OrderRepositolry
Namespece Dal
{
Public class RepositoryOrder
{
POrderContext context = new POrderContext ();
Public IEnumrebale <Order> GetAll ()
{
Context.Orders;
}
// Following code
}
}
for the item of order repositories code :
namespece Dal
{
public class RepositoryOrderItem
{
POrderContext context = new POrderContext();
public IEnumrebale<OrderItem> GetAllItemById(Order o)
{
context.OrderItems.where(i => i.OrderId == o.Id);
}
public OrderItem GetItemById(int id)
{
context.OrderItems.Find(id);
}
//Following code
}
}
for businessLayer here is classOrderBLL code:
namespace BLL
{
public class OrderBLL
{
RepositoryOrder repoOrder = new RepositoryOrder();
RepositoryOrderItem repoItem = new RepositoryOrderItem();
public IList<Order> GetAll()
{
return repoOrder.GetAll();
}
public decimal GetPrixTotal(Order order)
{
var query = from item in repoItem.GetAllItemById(order)
select sum(item=>item.Prix * item.Quantite);
return query;
}
}
}
does the total price calculation is done at the level of repository
or at the level of BLL (we can make this request linq with context
in the repository)?
CRUD method is done at repository and they are called at BLL from
repository is it right?
does the where method in linq corresponds to logical business or
repository (data access layer) since it determines certain rules in
the business?
I'm sure this question will be voted down as "primarily opinion based" but before that happens I'll jump in to give my "primarily opinion based" answer :-)
There are two ways to partition a database application and they depend on how complex and large it will be. Entity Framework examples tend to give a very simplistic model, where the EF Data classes are exposed to the Business layer which then exposes them to the View Model or other layers. This may be correct for simplistic applications but for more complex ones, and ones where the data storage method is not RDBMS (i.e. No-SQL) or where you want to create separation between business and repository data structures it is too simple.
The repository layer should have a set of classes which describe how the data is accessed from the repository. If you have an RDBMS these might be EF POCO classes, but if you have a web-service endpoint as your repository this may be SOAP documents, or REST structures, or other Data Transfer Object. For an RDMBS like SQL Server that uses exclusively stored procedures for accessing its data, the Repository layer might simply be a set of classes which mirror the naming and parameters, and data sets returned by the stored procedures. Note that the data stuctures returned by anything other than an RDBMS might not be coherent - i.e. a "Customer" concept returned by one method call in the repository might be a different data structure to a "Customer" returned by a different call. In this case the repository classes would not suit EF.
Moving to the business object layer - this is where you create a model of the business domain, using data classes, validation classes and process class models. For instance a Process class for recording a sales order might combine a Business Customer, Business Sales Order, Business Product Catalog data concepts and tie in a number of Validation classes to form a single atomic business process. These classes might (if you are doing a very lightweight application) be similar to data at the Repository layer but they should be defined seperately. Its in this layer you hold calculated concepts such as "Sales Order Total" or "VAT Calculation" or "Shipping Cost". They might, or might not, get stored into your Repository but the definition of what they mean are modelled in the business layer.
The business layer provides the classes whose data is copied across into a View Model. These classes again can be very similar (and in the simplest of cases, identical to) the repository classes, but in their job is to model the user interface and user interaction. They might contain only some of the data from the business data classes, depending on the requirements of the UI. These classes should carry out user interface based validation, which they might delegate to the business tier, or might add additional validation to. The job of these classes is to manage the state-machine that is the user interface.
My summary is that in a large scale system you have three sets of classes; data repository interaction, business model interaction, and user interface interaction. Only in the simplest of systems are they modelled as a single set of physical POCO classes.
I'm struggling finding a right solution for my application architecture. For my application I have a single class for customers. The data for filling my customer objects are spread over multiple different types of datasources. The main part is exposed in a readonly Oracle database, other parts are exposed using a webservices and I need te save some extra data to another datasource (for instance a MS SQL database using entityframework) since I only have readonly rights for most datasouces (they are managed somewhere else).
For this reason I wanna build some kind of central library with connectors to all of my datasources for creating a centralized Customer Object to work with. So far so good for this idea (I think) but I can't find any documentation or example with best practices how to achieve such a solution.
EXAMPLE:
* Main Application (multiple applications)
- Central Business Logic Layer (Business-API)
* Webservice Connector
* Oracle Connector
* EntityFramework Connector
Does anyone know if there is some good reading material on this specific subject?
Kind regards
The specific problem you describe with customer objects sounds a lot like the one solved by the Data Mapper pattern, which is technically a kind of Mediator. Quoting from the Wikipedia page for Data Mapper:
A Data Mapper is a Data Access Layer that performs bidirectional transfer of data between a persistent data store (often a relational database) and an in memory data representation (the domain layer). The goal of the pattern is to keep the in memory representation and the persistent data store independent of each other and the data mapper itself. The layer is composed of one or more mappers (or Data Access Objects), performing the data transfer. Mapper implementations vary in scope. Generic mappers will handle many different domain entity types, dedicated mappers will handle one or a few.
Although the language of the problem above speaks of a persistent data store that's singular, there's no reason why it couldn't be several data locations (Mediator pattern hides the details from the collaborators).
There is an extension of this pattern, known as the Repository pattern:
I suggest the DAO-Pattern to abstract from any data access. The business logic should not be aware of any datasources. This is the most important aim. Anything else has to be subordinated.
You can create a constructor that accepts datasources like:
public class Customer
{
public Customer(OracleConnector oracle, WebSerivceConnector webservice, EntityConnector entity)
{
this.oracle = oracle;
this.webservice = webservice;
this.entity = entity;
}
public void Fetch()
{
// fetch data from oracle, webservice, and entity.
this.Name = oracle.GetCustomerName();
}
}
This way only Customer knows how to get the data, all the logic is in one place. You can even make it more testable and less coupling by creating interfaces for connectors.
public interface IOracleConnector
{
// add something here
string GetCustomerName();
}
public class OracleConnector
: IOracleConnector
{
// add the implementation here.
}
Then change Customer constructor to accepts IOracleConnector like:
public Customer(IOracleConnector oracle, WebSerivceConnector webservice, EntityConnector entity)
{
// your code here.
}
Now, you can create a mock to test Customer without actually connecting to the database.
I am trying to grabs the idea of the pattern repository and trying to get it implemented in database structures I've already set up in the past. I'm now trying to get the best practice to work with my lookup tables. I've created a test project to play around and this is my database model:
You can see that I have three tables for the lookups: Lookup, Language and LookupLanguage. Language table simply contains the languages.
Lookup tables holds the different types used throughout the models.
And LookupLanguage links the both tables together:
I've created anew project with all the models 1 to 1 to the database tables:
I also created a generic repository and a generic CrudService interface:
public interface ICrudService<T> where T : IsActiveEntity, new()
{
int Create(T item);
void Save();
void Delete(int id);
T Get(int id);
IEnumerable<T> GetAll();
IEnumerable<T> Where(Expression<Func<T, bool>> func, bool showDeleted = false);
void Restore(int id);
}
Now, according to the following post: When implementing the repository pattern should lookup value / tables get their own Repository? , the repository should hide the underlying database layer. So I think I need a new implementation of a service and/or repository to get the lookups, but then, where do I have to tell in which language I need to have the lookup?
Let's take the status (new, accepted, refused) from the company as an example.
The company model is as follow:
public partial class Company : IsActiveEntity
{
[Required]
[MaxLength(50)]
public string CompanyName { get; set; }
public System.Guid StatusGuid { get; set; }
[ForeignKey("StatusGuid")]
public virtual Lookup Status { get; set; }
}
I guess I don't need to have a separate implementation of a repository?
But I need a separate implementation CompanyService.
interface ICompanyService : ICrudService<Company>
{
IQueryable<LookupLanguage> GetStatuses(Guid languageguid);
LookupLanguage GetStatus(Guid statusguid, Guid languageguid);
}
Is this the correct approach, or do I miss something here?
Creating a Generic LookupRepository in your case in a better option because of your table schema and maintainence perspective.
I'm not sure whether you are using both Service Locator and Repository pattern or just Repository because of the name ICompanyService. But regardless, I agree that Repositories should not represent tables 1-1 always but they do most of the times.
The SO link you provided has a different table structure than yours. You have a generic lookup table vs the link has a separate table for each lookup. In the case where you have separate tables it makes sense to have the lookup repository method go with the entity repository since you will have a separate code to fetch the data for each lookup(as they have separate tables with different schema).
But in you case you have a single table that stores all the lookup types for each language and it makes sense to have a single LookupRepository that returns all the various types of lookups based on Language and LookupType. If you create each lookup method in separate entity repositories (like GetStatuses in CompanyRepository and GetStatuses in ContactRepository) you will have to repeat the logic in the method for each repository.
Think if you change the schema of the lookup table (say add a column) and you want to test all places the lookups are used it will be nightmare if you have lookup methods all over the place and pretty easy if you have one method in LookupRepository.
interface ILookupService : ICrudService<Lookup>
{
IQueryable<Lookup> GetStatuses(Guid languageguid, LookupType lookupType);
Lookup GetStatus(Guid statusguid, Guid languageguid, LookupType lookupType);
}
As regards your question, "Is this the correct approach" - this entirely depends on your specific needs.
What you have done doesn't seem to have any real issues. You have implemented the repository pattern using generics which is great. You are using interfaces for your repositories which allows for easier unit testing, also great!
One of your tags seems to indicate you are interested in the Entity Framework. You do not seem to be using that. The Entity Framework would simplify your code by creating the boiler plate classes for you. You can still use your repository pattern code with the classes created by the Entity Framework.
It seems that you are confusing the idea of a service and a repository. A repository is a general object which allows you to get data from a store without caring about the implementation. In your example, ICompanyService is a repository.
It is really controversial topic and there are different approaches to this problem. In our data logic we are not using repository pattern because we do not want to abstract most of the benefits of Entity Framework. Instead, we pass the context to the business logic which is already a combination of UoW / Repository pattern. Your approach is okay if you are going this way on all of your company services. However what I have seen so far, putting methods to the related services by their return values is the best approach to remind where they are. For instance if you want to get the company lookup, create a ILookupService and put GetLookUpsByCompany(int companyId) method to retrieve the company lookups.
I would argue with the linked response. Repositories ARE linked to database entities, considering the Entity Framework itself as a uow/repository implementation is a best example. On the other hand, services are for domain concerns and if there is a mismatch between your database entities and domain entities (you have two separate layers), services can help to glue the two.
In your specific case, you have repositories although you call them services. And you need a repository per database entity, that's just easier to implement and maintain. And also it helps to answer your question: yes, you need the extra repository for the linking table.
A small suggestion. You seem to have a generic query function that only accepts where clauses
IEnumerable<T> Where(Expression<Func<T, bool>> func, bool showDeleted = false);
If you already follow this route that allows arbitrary filtering expressions (which itself is a little arguable as someone will point out that you can' possibly guarantee that all technically possible filters can be executed by the database engine), why don't you allow all possible queries, including ordering, paging, etc:
IQueryable<T> Query { get; }
This is as easy to implement as your version (you just expose the dbset) but allows clients to perform more complicated queries, with the same possible concern that such contract is possibly too broad.
Localization is a presentation layer thing. The lower layers of your application should bother with it as little as possible.
I see two different kind of lookups: translations of coded concepts (Mr/Miss/Mrs) and translations of entity properties (company name maybe, or job titles or product names).
Coded concepts
I would not use lookup tables for coded concepts. There is no need to bother the lower layers at all with this. You will only need to translate them once for the entire application and create simple resource files that contain the translations.
But if you do wish to keep the translations in the database, a separate lookup repository for the codes or even per code system will sort of replace the resource file and serve you fine.
Entity properties
I can imagine different/nastier localization issues when certain entities have one or more properties that get translated in different languages. Then, the translation becomes part of the entity. I'd want the repository to cough up entity objects that contain all translations of the description, in a dictionary or so. Cause the business layer should not worry about language when querying, caching and updating relations. It should not ask the company repository for the Dutch version of company X. It should simply ask for company X and be served a Company object that contains its name in Dutch, English and French.
I've one more remark about the actual database implementation:
I think the lookup tables are distracting from the actual entities, to the point where you have forgotten to create a relation between person and person company. ;) I'd suggest putting all translations of entity properties in a single XML type column instead.
This illustrates why the repository should handle entities plus translations. If you were to make this storage layer level implementation change at some point, i.e. go from lookup tables to xml columns, the repository interfaces should remain the same.
I have read this once:
"Don't leave entities as bags of getters and setters and put their methods in another layer unless you have a good reason to"
My customer, order, ... objects just get the data from the SqlDataReaders. They have only getter and setter.
My first question is which design approach does this follow when someone implements methods in entities AND what are these methods doing?
This way of thinking comes from the Domain Driven Design community.
In DDD you create a Domain Model that captures the functionality that your users request. You design your entities as having functionality and the data they need for it. You group them together in aggregates and you have separate classes that are responsible for construction (Factories) and querying (Repositories).
If you only have getters/setters you have an 'Anemic Domain Model'. Martin Fowler wrote about it in this article.
The problem with an Anemic Domain model is that you have the overhead of mapping your database to objects but not the benefits of it. If you don't use your entities as a real domain model, why don't you just use a DataTable or something for your data and keep your business logic in separate functions? An Anemic Domain model is an anti-pattern that should be avoided.
You also mention that you map the entities yourself. This blog explains why using an Object-Relational Mapping tool can really help. If you use Entity Framework with a Code First approach you can write a clean domain model with both data and functionality and map it to your database without much hassle. Then you will have the best of both worlds.
When you have methods as part of your model, you should only include model specific type of logic. For example, consider a bank account:
public class Account {
public AccountId Id { get; set; }
public Person Customer {get; set; }
public void Credit(Money amount) { ... }
public void Debit(Money amount) { ... }
}
Credit and Debit are model-specific logic (you won't find them anywhere else in the application), and should be encapsulated in the Account class.
You also mentioned that you used SqlDataReader within your model classes to get the data from the database. This is a big anti-pattern. Here are some problems you will encounter with this:
Violating Single Responsibility Principle - The model is now in-charge of representing the data and getting the data from the db.
How about querying children in your model? It gets messy.
You won't be able to change your data-access as easily.
Keep the model lean. Put the data access logic in a repository, i.e. AccountRepository.
What's the preferred approach when using L2E to add behavior to the objects in the data model?
Having a wrapper class that implements the behavior you need with only the data you need
using (var dbh = new ffEntities())
{
var query = from feed in dbh.feeds select
new FFFeed(feed.name, new Uri(feed.uri), feed.refresh);
return query.ToList();
}
//Later in a separate place, not even in the same class
foreach (FFeed feed in feedList) { feed.doX(); }
Using directly the data model instances and have a method that operates over the IEnumerable of those instances
using (var dbh = new ffEntities())
{
var query = from feed in dbh.feeds select feed;
return query.ToList();
}
//Later in a separate place, not even in the same class
foreach (feeds feed in feedList) { doX(feed); }
Using extension methods on the data model class so it ends up having the extra methods the wrapper would have.
public static class dataModelExtensions {
public static void doX(this feeds source) {
//do X
}
}
//Later in a separate place, not even in the same class
foreach (feeds feed in feedList) { feed.doX(); }
Which one is best? I tend to favor the last approach as it's clean, doesn't interfere with the CRUD facilities (i can just use it to insert/update/delete directly, no need to wrap things back), but I wonder if there's a downside I haven't seen.
Is there a fourth approach? I fail at grasping LINQ's philosophy a bit, especially regarding LINQ to Entities.
The Entity classes are partial classes as far as i know, so you can add another file extending them directly using the partial keyword.
Else, i usually have a wrapper class, i.e. my ViewModel (i'm using WPF with MVVM). I also have some generic Helper classes with fluent interfaces that i use to add specific query filters to my ViewModel.
I think it's a mistake to put behaviors on entity types at all.
The Entity Framework is based around the Entity Data Model, described by one of its architects as "very close to the object data model of .NET, modulo the behaviors." Put another way, your entity model is designed to map relational data into object space, but it should not be extended with methods. Save your methods for business types.
Unlike some other ORMs, you are not stuck with whatever object type comes out of the black box. You can project to nearly any type with LINQ, even if it is shaped differently than your entity types. So use entity types for mapping only, not for business code, data transfer, or presentation models.
Entity types are declared partial when code is generated. This leads some developers to attempt to extend them into business types. This is a mistake. Indeed, it is rarely a good idea to extend entity types. The properties created within your entity model can be queried in LINQ to Entities; properties or methods you add to the partial class cannot be included in a query.
Consider these examples of a business method:
public Decimal CalculateEarnings(Guid id)
{
var timeRecord = (from tr in Context.TimeRecords
.Include(“Employee.Person”)
.Include(“Job.Steps”)
.Include(“TheWorld.And.ItsDog”)
where tr.Id = id
select tr).First();
// Calculate has deep knowledge of entity model
return EarningsHelpers.Calculate(timeRecord);
}
What's wrong with this method? The generated SQL is going to be ferociously complex, because we have asked the Entity Framework to materialize instances of entire objects merely to get at the minority of properties required by the Calculate method. The code is also fragile. Changing the model will not only break the eager loading (via the Include calls), but will also break the Calculate method.
The Single Responsibility Principle states that a class should have only one reason to change. In the example shown on the screen, the EarningsHelpers type has the responsibility both of actually calculating earnings and of keeping up-to-date with changes to the entity model. The first responsibility seems correct, the second doesn't sound right. Let's see if we can fix that.
public Decimal CalculateEarnings(Guid id)
{
var timeData = from tr in Context.TimeRecords
where tr.Id = id
select new EarningsCalculationContext
{
Salary = tr.Employee.Salary,
StepRates = from s in tr.Job.Steps
select s.Rate,
TotalHours = tr.Stop – tr.Start
}.First();
// Calculate has no knowledge of entity model
return EarningsHelpers.Calculate(timeData);
}
In the next example, I have rewritten the LINQ query to pick out only the bits of information required by the Calculate method, and project that information onto a type which rolls up the arguments for the Calculate method. If writing a new type just to pass arguments to a method seemed like too much work, I could have also projected onto an anonymous type, and passed Salary, StepRates, and TotalHours as individual arguments. But either way, we have fixed the dependency of EarningsHelpers on the entity model, and as a free bonus we've gotten more efficient SQL, as well.
You might look at this code and wonder what would happen if the Job property of TimeRecord where nullable. Wouldn't I get a null reference exception?
No, I would not. This code will not be compiled and executed as IL; it will be translated to SQL. LINQ to Entities coalesces null references. In the example query shown on the screen, StepRates would simply return null if Job was null. You can think of this as being identical to lazy loading, except without the extra database queries. The code says, "If there is a job, then load the rates from its steps."
An additional benefit of this kind of architecture is that it makes unit testing of the Web assembly very easy. Unit tests should not access a database, generally speaking (put another way, tests which do access a database are integration tests rather than unit tests). It's quite easy to write a mock repository which returns arrays of objects as Queryables rather than actually going to the Entity Framework.