Difference between Casting, Parsing and Converting [duplicate] - c#

This question already has answers here:
Is casting the same thing as converting?
(11 answers)
Closed 9 years ago.
I have been working on some code for a while. And I had a question: What's the difference among casting, parsing and converting? And when we can use them?

Casting is when you take a variable of one type and change it to a different type. You can only do that in some cases, like so:
string str = "Hello";
object o = str;
string str2 = (string)o; // <-- This is casting
Casting does not change the variable's value - the value remains of the same type (the string "Hello").
Converting is when you take a value from one type and convert it to a different type:
double d = 5.5;
int i = (int)d; // <---- d was converted to an integer
Note that in this case, the conversion was done in the form of casting.
Parsing is taking a string and converting it to a different type by understanding its content. For instance, converting the string "123" to the number 123, or the string "Saturday, September 22nd" to a DateTime.

Casting: Telling the compiler that an object is really something else without changing it (though some data loss may be incurred).
object obj_s= "12345";
string str_i = (string) obj; // "12345" as string, explicit
int small = 12345;
long big = 0;
big = small; // 12345 as long, implicit
Parsing: Telling the program to interpret (on runtime) a string.
string int_s = "12345";
int i = int.Parse(int_s); // 12345 as int
Converting: Telling the program to use built in methods to try to change type for what may be not simply interchangeable.
double dub = 123.45;
int i = System.Convert.ToInt32(dub); // 123 as int

These are three terms each with specific uses:
casting - changing one type to another. In order to do this, the
types must be compatible: int -> object; IList<T> -> IEnumerable<T>
parsing - typically refers to reading strings and extracting useful parts
converting - similar to casting, but typically a conversion would involve changing one type to an otherwise non-compatible type. An example of that would be converting objects to strings.
A cast from one type to another requires some form of compatibility, usually via inheritance or implementation of an interface. Casting can be implicit or explicit:
class Foo : IFoo {
// implementations
}
// implicit cast
public IFoo GetFoo() {
return Foo;
}
// explicit cast
public IFoo GetFoo() {
return Foo as IFoo;
}
There are quite a few ways to parse. We read about XML parsing; some types have Parse and TryParse methods; and then there are times we need to parse strings or other types to extract the 'stuff we care about'.
int.Parse("3") // returns an integer value of 3
int.TryParse("foo", out intVal) // return true if the string could be parsed; otherwise false
Converting may entail changing one type into another incompatible one. This could involve some parsing as well. Conversion examples would usually be, IMO, very much tied to specific contexts.

casting
(casting to work the types need to be compatible)
Converting between data types can be done explicitly using a cast
static void _Casting()
{
int i = 10;
float f = 0;
f = i; // An implicit conversion, no data will be lost.
f = 0.5F;
i = (int)f; // An explicit conversion. Information will be lost.
}
parsing (Parsing is conversion between different types:)
converts one type to another type can be called as parsing uisng int.parse
int num = int.Parse("500");
traversing through data items like XML can be also called as parsing
When user-defined conversions get involved, this usually entails returning a different object/value. user-defined conversions usually exist between value types rather than reference types, so this is rarely an issue.
converting
Using the Convert-class actually just helps you parse it
for more please refer http://msdn.microsoft.com/en-us/library/ms228360%28VS.80%29.aspx

This question is actually pretty complicated...
Normally, a cast just tells the runtime to change one type to another. These have to be types that are compatible. For example an int can always be represented as a long so it is OK to cast it to a long. Some casts have side-effects. For example, a float will drop its precision if it is cast to an int. So (int)1.5f will result in int value 1. Casts are usually the fastest way to change the type, because it is a single IL operator. For example, the code:
public void CastExample()
{
int i = 7;
long l = (long)i;
}
Performs the cast by running the IL code:
conv.i8 //convert to 8-byte integer (a.k.a. Int64, a.k.a. long).
A parse is some function that takes in once type and returns another. It is an actual code function, not just an IL operator. This usually takes longer to run, because it runs multiple lines of code.
For example, this code:
public void ParseExample()
{
string s = "7";
long l = long.Parse(s);
}
Runs the IL code:
call int64 [mscorlib]System.Int64::Parse(string)
In other words it calls an actual method. Internally, the Int64 type provides that method:
public static long Parse(String s) {
return Number.ParseInt64(s, NumberStyles.Integer, NumberFormatInfo.CurrentInfo);
}
And Number.Parse:
[System.Security.SecuritySafeCritical] // auto-generated
internal unsafe static Int64 ParseInt64(String value, NumberStyles options, NumberFormatInfo numfmt) {
Byte * numberBufferBytes = stackalloc Byte[NumberBuffer.NumberBufferBytes];
NumberBuffer number = new NumberBuffer(numberBufferBytes);
Int64 i = 0;
StringToNumber(value, options, ref number, numfmt, false);
if ((options & NumberStyles.AllowHexSpecifier) != 0) {
if (!HexNumberToInt64(ref number, ref i)) {
throw new OverflowException(Environment.GetResourceString("Overflow_Int64"));
}
}
else {
if (!NumberToInt64(ref number, ref i)) {
throw new OverflowException(Environment.GetResourceString("Overflow_Int64"));
}
}
return i;
}
And so on... so you can see it is actually doing a lot of code.
Now where things get more complicated is that although a cast is usually the fastest, classes can override the implicit and explicit cast operators. For example, if I write the class:
public class CastableClass
{
public int IntValue { get; set; }
public static explicit operator int(CastableClass castable)
{
return castable.IntValue;
}
}
I have overridden the explicit cast operator for int, so I can now do:
public void OverridedCastExample()
{
CastableClass cc = new CastableClass {IntValue = 7};
int i = (int)cc;
}
Which looks like a normal cast, but in actuality it calls my method that I defined on my class. The IL code is:
call int32 UnitTestProject1.CastableClass::op_Explicit(class UnitTestProject1.CastableClass)
So anyway, you typically want to cast whenever you can. Then parse if you can't.

Casting: or Parsing
A cast explicitly invokes the conversion operator from one type to another.
Casting variables is not simple. A complicated set of rules resolves casts. In some cases data is lost and the cast cannot be reversed. In others an exception is provoked in the execution engine.
int.Parse is a simplest method but it throws exceptions on invalid input.
TryParse
int.TryParse is one of the most useful methods for parsing integers in the C# language. This method works the same way as int.Parse.
int.TryParse has try and catch structure inside. So, it does not throw exceptions
Convert:
Converts a base data type to another base data type.
Convert.ToInt32, along with its siblings Convert.ToInt16 and Convert.ToInt64, is actually a static wrapper method for the int.Parse method.
Using TryParse instead of Convert or Cast is recommended by many programmers.
source:www.dotnetperls.com

Different people use it to mean different things. It need not be true outside .net world, but here is what I have understood in .net context reading Eric Lippert's blogs:
All transformations of types from one form to another can be called conversion. One way of categorizing may be
implicit -
a. representation changing (also called coercion)
int i = 0;
double d = i;
object o = i; // (specifically called boxing conversion)
IConvertible o = i; // (specifically called boxing conversion)
Requires implicit conversion operator, conversion always succeeds (implicit conversion operator should never throw), changes the referential identity of the object being converted.
b. representation preserving (also called implicit reference conversion)
string s = "";
object o = s;
IList<string> l = new List<string>();
Only valid for reference types, never changes the referential identity of the object being converted, conversion always succeeds, guaranteed at compile time, no runtime checks.
explicit (also called casting) -
a. representation changing
int i = 0;
enum e = (enum)i;
object o = i;
i = (int)o; // (specifically called unboxing conversion)
Requires explicit conversion operator, changes the referential identity of the object being converted, conversion may or may not succeed, does runtime check for compatibility.
b. representation preserving (also called explicit reference conversion)
object o = "";
string s = (string)o;
Only valid for reference types, never changes the referential identity of the object being converted, conversion may or may not succeed, does runtime check for compatibility.
While conversions are language level constructs, Parse is a vastly different thing in the sense it's framework level, or in other words they are custom methods written to get an output from an input, like int.Parse which takes in a string and returns an int.

Related

Is there any way to create a function that can change the data type of a variable?

I 'm new to C#. Is there any way to create a function that can change the datatype of a variable to an another datatype and return the changed value.
I don't want to use the built-in Convert class.
For example :
Let's assume that ChangeDataType is the name of the function. It should also be possible to do the same thing with all datatypes.
int a = 5;
float b = ChangeDataType(a, "float"); // 5.0
Thanks.
Please note that you cannot change data type of already declared variable. But you can create new variable of desired type and then typecast old variable into new one. If this type casting fails, then invalidcastexception is thrown.
Below are different kinds of typecasting options:
1. Implicit Type casting
In this you don't need to use any syntax.
For ex:
int i = 10;
float a = i;
2. Explicit Type casting
You need to specify the type in which you want to convert to. For ex:
class Test
{
static void Main()
{
double x = 1234.7;
int a;
// Cast double to int.
a = (int)x;
System.Console.WriteLine(a);
}
}
// Output: 1234
3. User Defined Casts
Using implict and explicit keywords in c#.
Please refer
4. Helper Classes
There are many classes which provides method to convert data types.
One of the important class is - Convert.
This class provides a lot of methods. Convert.ToString, Convert.ToInt32, etc.
Another example is TryParse methods in int, long, double, DateTime, etc classes. Please refer

What is the difference between these two casting methods? [duplicate]

Consider the following code:
void Handler(object o, EventArgs e)
{
// I swear o is a string
string s = (string)o; // 1
//-OR-
string s = o as string; // 2
// -OR-
string s = o.ToString(); // 3
}
What is the difference between the three types of casting (okay, the 3rd one is not a casting, but you get the intent). Which one should be preferred?
string s = (string)o; // 1
Throws InvalidCastException if o is not a string. Otherwise, assigns o to s, even if o is null.
string s = o as string; // 2
Assigns null to s if o is not a string or if o is null. For this reason, you cannot use it with value types (the operator could never return null in that case). Otherwise, assigns o to s.
string s = o.ToString(); // 3
Causes a NullReferenceException if o is null. Assigns whatever o.ToString() returns to s, no matter what type o is.
Use 1 for most conversions - it's simple and straightforward. I tend to almost never use 2 since if something is not the right type, I usually expect an exception to occur. I have only seen a need for this return-null type of functionality with badly designed libraries which use error codes (e.g. return null = error, instead of using exceptions).
3 is not a cast and is just a method invocation. Use it for when you need the string representation of a non-string object.
string s = (string)o; Use when something should
definitely be the other thing.
string s = o as string; Use when something might be the other
thing.
string s = o.ToString(); Use when you don't care what
it is but you just want to use the
available string representation.
It really depends on whether you know if o is a string and what you want to do with it. If your comment means that o really really is a string, I'd prefer the straight (string)o cast - it's unlikely to fail.
The biggest advantage of using the straight cast is that when it fails, you get an InvalidCastException, which tells you pretty much what went wrong.
With the as operator, if o isn't a string, s is set to null, which is handy if you're unsure and want to test s:
string s = o as string;
if ( s == null )
{
// well that's not good!
gotoPlanB();
}
However, if you don't perform that test, you'll use s later and have a NullReferenceException thrown. These tend to be more common and a lot harder to track down once they happens out in the wild, as nearly every line dereferences a variable and may throw one. On the other hand, if you're trying to cast to a value type (any primitive, or structs such as DateTime), you have to use the straight cast - the as won't work.
In the special case of converting to a string, every object has a ToString, so your third method may be okay if o isn't null and you think the ToString method might do what you want.
'as' is based on 'is', which is a keyword that checks at runtime if the object is polimorphycally compatible (basically if a cast can be made) and returns null if the check fails.
These two are equivalent:
Using 'as':
string s = o as string;
Using 'is':
if(o is string)
s = o;
else
s = null;
On the contrary, the c-style cast is made also at runtime, but throws an exception if the cast cannot be made.
Just to add an important fact:
The 'as' keyword only works with reference types. You cannot do:
// I swear i is an int
int number = i as int;
In those cases you have to use casting.
If you already know what type it can cast to, use a C-style cast:
var o = (string) iKnowThisIsAString;
Note that only with a C-style cast can you perform explicit type coercion.
If you don't know whether it's the desired type and you're going to use it if it is, use as keyword:
var s = o as string;
if (s != null) return s.Replace("_","-");
//or for early return:
if (s==null) return;
Note that as will not call any type conversion operators. It will only be non-null if the object is not null and natively of the specified type.
Use ToString() to get a human-readable string representation of any object, even if it can't cast to string.
The as keyword is good in asp.net when you use the FindControl method.
Hyperlink link = this.FindControl("linkid") as Hyperlink;
if (link != null)
{
...
}
This means you can operate on the typed variable rather then having to then cast it from object like you would with a direct cast:
object linkObj = this.FindControl("linkid");
if (link != null)
{
Hyperlink link = (Hyperlink)linkObj;
}
It's not a huge thing, but it saves lines of code and variable assignment, plus it's more readable
According to experiments run on this page: http://www.dotnetguru2.org/sebastienros/index.php/2006/02/24/cast_vs_as
(this page is having some "illegal referrer" errors show up sometimes, so just refresh if it does)
Conclusion is, the "as" operator is normally faster than a cast. Sometimes by many times faster, sometimes just barely faster.
I peronsonally thing "as" is also more readable.
So, since it is both faster and "safer" (wont throw exception), and possibly easier to read, I recommend using "as" all the time.
2 is useful for casting to a derived type.
Suppose a is an Animal:
b = a as Badger;
c = a as Cow;
if (b != null)
b.EatSnails();
else if (c != null)
c.EatGrass();
will get a fed with a minimum of casts.
"(string)o" will result in an InvalidCastException as there's no direct cast.
"o as string" will result in s being a null reference, rather than an exception being thrown.
"o.ToString()" isn't a cast of any sort per-se, it's a method that's implemented by object, and thus in one way or another, by every class in .net that "does something" with the instance of the class it's called on and returns a string.
Don't forget that for converting to string, there's also Convert.ToString(someType instanceOfThatType) where someType is one of a set of types, essentially the frameworks base types.
It seems the two of them are conceptually different.
Direct Casting
Types don't have to be strictly related. It comes in all types of flavors.
Custom implicit/explicit casting: Usually a new object is created.
Value Type Implicit: Copy without losing information.
Value Type Explicit: Copy and information might be lost.
IS-A relationship: Change reference type, otherwise throws exception.
Same type: 'Casting is redundant'.
It feels like the object is going to be converted into something else.
AS operator
Types have a direct relationship. As in:
Reference Types: IS-A relationship Objects are always the same, just the reference changes.
Value Types: Copy boxing and nullable types.
It feels like the you are going to handle the object in a different way.
Samples and IL
class TypeA
{
public int value;
}
class TypeB
{
public int number;
public static explicit operator TypeB(TypeA v)
{
return new TypeB() { number = v.value };
}
}
class TypeC : TypeB { }
interface IFoo { }
class TypeD : TypeA, IFoo { }
void Run()
{
TypeA customTypeA = new TypeD() { value = 10 };
long longValue = long.MaxValue;
int intValue = int.MaxValue;
// Casting
TypeB typeB = (TypeB)customTypeA; // custom explicit casting -- IL: call class ConsoleApp1.Program/TypeB ConsoleApp1.Program/TypeB::op_Explicit(class ConsoleApp1.Program/TypeA)
IFoo foo = (IFoo)customTypeA; // is-a reference -- IL: castclass ConsoleApp1.Program/IFoo
int loseValue = (int)longValue; // explicit -- IL: conv.i4
long dontLose = intValue; // implict -- IL: conv.i8
// AS
int? wraps = intValue as int?; // nullable wrapper -- IL: call instance void valuetype [System.Runtime]System.Nullable`1<int32>::.ctor(!0)
object o1 = intValue as object; // box -- IL: box [System.Runtime]System.Int32
TypeD d1 = customTypeA as TypeD; // reference conversion -- IL: isinst ConsoleApp1.Program/TypeD
IFoo f1 = customTypeA as IFoo; // reference conversion -- IL: isinst ConsoleApp1.Program/IFoo
//TypeC d = customTypeA as TypeC; // wouldn't compile
}
All given answers are good, if i might add something:
To directly use string's methods and properties (e.g. ToLower) you can't write:
(string)o.ToLower(); // won't compile
you can only write:
((string)o).ToLower();
but you could write instead:
(o as string).ToLower();
The as option is more readable (at least to my opinion).
string s = o as string; // 2
Is prefered, as it avoids the performance penalty of double casting.
I would like to attract attention to the following specifics of the as operator:
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/as
Note that the as operator performs only reference conversions,
nullable conversions, and boxing conversions. The as operator can't
perform other conversions, such as user-defined conversions, which
should instead be performed by using cast expressions.
Use direct cast string s = (string) o; if in the logical context of your app string is the only valid type. With this approach, you will get InvalidCastException and implement the principle of Fail-fast. Your logic will be protected from passing the invalid type further or get NullReferenceException if used as operator.
If the logic expects several different types cast string s = o as string; and check it on null or use is operator.
New cool feature have appeared in C# 7.0 to simplify cast and check is a Pattern matching:
if(o is string s)
{
// Use string variable s
}
or
switch (o)
{
case int i:
// Use int variable i
break;
case string s:
// Use string variable s
break;
}
When trying to get the string representation of anything (of any type) that could potentially be null, I prefer the below line of code. It's compact, it invokes ToString(), and it correctly handles nulls. If o is null, s will contain String.Empty.
String s = String.Concat(o);
Since nobody mentioned it, the closest to instanceOf to Java by keyword is this:
obj.GetType().IsInstanceOfType(otherObj)

Can I cast an integer to a long when the types are generic/boxed?

The method below looks for a particular key in a dictionary and attempts to safely store it in destination if it can. The problem I am running into is when T=Int64 and the item in the dictionary is Int32 or UInt32 (both of which can fit inside an Int64 without data loss). valueAsObject is T returns false when T is Int64 and valueAsObject is Int32.
Is it possible to safely cast valueAsObject to T without just trying it and catching any exceptions? I would like to avoid exceptions, though if that is the only way I can make it work.
public static void MyMethod<T>(IDictionary<String, Object> dictionary, String key, ref T destination)
{
if (!dictionary.ContainsKey(key))
return;
var valueAsObject = dictionary[key];
if (!(valueAsObject is T))
return;
destination = (T)valueAsObject;
}
Basically, I want the function to do nothing (return) if the thing found in the dictionary can not be safely stored in a type T variable (without data loss), otherwise it should cast it as necessary and store it.
This is not built-in at the language or runtime level. You can use Convert.ChangeType to perform the conversion. This method also performs lossy conversions so you probably have to build your own conversion logic (which will involve casts and be ugly).
You can't just do something like this?
public static void MyMethod<T>( IDictionary<string,object> dictionary , string key , ref T destination )
{
object value ;
bool found = dictionary.TryGetValue( key , out value ) ;
if (found && value is T)
{
destination = (T) value ;
}
return;
}
The is operator:
evaluates to true if the provided expression is non-null, and the provided object
can be cast to the provided type without causing an exception to be thrown.
.
.
.
Note that the is operator only considers reference conversions, boxing conversions,
and unboxing conversions. Other conversions, such as user-defined conversions, are not considered.
Basically, if the object directly inherits from the specified type, or implements the type (if T is an interface), is should return true and you should be able to down-cast the object to your type T.
If, however, you need to worry about user-defined conversion operators, you'll need to reflect over the object's type and over typeof(T) to see if a user-defined conversion operator is defined on either type that will convert the object to a compatible type. Getting that right is likely to be...tricky.
This is the final solution I went with. It came from a number of comments and other answers so I encourage reading the other answers/comments for additional details as to why this was necessary:
private static void GetFromDictionary<T>(IDictionary<String, Object> dictionary, String key, ref T outputLocation)
{
if (!dictionary.ContainsKey(key))
return;
var valueAsObject = dictionary[key];
if (!CanBeCastTo<T>(valueAsObject))
return;
outputLocation = (T)Convert.ChangeType(valueAsObject, typeof(T));
}
private static bool CanBeCastTo<T>(Object thingToCast)
{
if (thingToCast is T)
return true;
var tType = typeof(T);
if (tType == typeof(Int64) && thingToCast is Int32)
return true;
if (tType == typeof(Double) && thingToCast is Decimal)
return true;
return false;
}
In my case, I only needed to handle a certain subset of primitive types (Int32, Int64, String, Double, Decimal) and I was willing to accept lossy conversion of Decimal to Double.
The take away here is that the "is" operator will return false for primitives even if it can fit without loss (Int32 in Int64). Also, (T)valueAsObject will not do an explicit typecast. So if valueAsObject is of type Int32 and T is of type Int64 the above will throw an exception even though (Int64)valueAsObject is valid. This one bit me but luckily #usr suggested using Convert.ChangeType which handles the problem.
Optimizations could be made to the above code but I chose to leave it as is for readability.

How to check assignability of types at runtime in C#?

The Type class has a method IsAssignableFrom() that almost works. Unfortunately it only returns true if the two types are the same or the first is in the hierarchy of the second. It says that decimal is not assignable from int, but I'd like a method that would indicate that decimals are assignable from ints, but ints are not always assignable from decimals. The compiler knows this but I need to figure this out at runtime.
Here's a test for an extension method.
[Test]
public void DecimalsShouldReallyBeAssignableFromInts()
{
Assert.IsTrue(typeof(decimal).IsReallyAssignableFrom(typeof(int)));
Assert.IsFalse(typeof(int).IsReallyAssignableFrom(typeof(decimal)));
}
Is there a way to implement IsReallyAssignableFrom() that would work like IsAssignableFrom() but also passes the test case above?
Thanks!
Edit:
This is basically the way it would be used. This example does not compile for me, so I had to set Number to be 0 (instead of 0.0M).
[AttributeUsage(AttributeTargets.Property | AttributeTargets.Parameter)]
public class MyAttribute : Attribute
{
public object Default { get; set; }
}
public class MyClass
{
public MyClass([MyAttribute(Default= 0.0M)] decimal number)
{
Console.WriteLine(number);
}
}
I get this error:
Error 4 An attribute argument must be a constant expression, typeof expression or array creation expression of an attribute parameter type
There are actually three ways that a type can be “assignable” to another in the sense that you are looking for.
Class hierarchy, interface implementation, covariance and contravariance. This is what .IsAssignableFrom already checks for. (This also includes permissible boxing operations, e.g. int to object or DateTime to ValueType.)
User-defined implicit conversions. This is what all the other answers are referring to. You can retrieve these via Reflection, for example the implicit conversion from int to decimal is a static method that looks like this:
System.Decimal op_Implicit(Int32)
You only need to check the two relevant types (in this case, Int32 and Decimal); if the conversion is not in those, then it doesn’t exist.
Built-in implicit conversions which are defined in the C# language specification. Unfortunately Reflection doesn’t show these. You will have to find them in the specification and copy the assignability rules into your code manually. This includes numeric conversions, e.g. int to long as well as float to double, pointer conversions, nullable conversions (int to int?), and lifted conversions.
Furthermore, a user-defined implicit conversion can be chained with a built-in implicit conversion. For example, if a user-defined implicit conversion exists from int to some type T, then it also doubles as a conversion from short to T. Similarly, T to short doubles as T to int.
This one almost works... it's using Linq expressions:
public static bool IsReallyAssignableFrom(this Type type, Type otherType)
{
if (type.IsAssignableFrom(otherType))
return true;
try
{
var v = Expression.Variable(otherType);
var expr = Expression.Convert(v, type);
return expr.Method == null || expr.Method.Name == "op_Implicit";
}
catch(InvalidOperationException ex)
{
return false;
}
}
The only case that doesn't work is for built-in conversions for primitive types: it incorrectly returns true for conversions that should be explicit (e.g. int to short). I guess you could handle those cases manually, as there is a finite (and rather small) number of them.
I don't really like having to catch an exception to detect invalid conversions, but I don't see any other simple way to do it...
Timwi's answer is really complete, but I feel there's an even simpler way that would get you the same semantics (check "real" assignability), without actually defining yourself what this is.
You can just try the assignment in question and look for an InvalidCastException (I know it's obvious). This way you avoid the hassle of checking the three possible meanings of assignability as Timwi mentioned. Here's a sample using xUnit:
[Fact]
public void DecimalsShouldReallyBeAssignableFromInts()
{
var d = default(decimal);
var i = default(i);
Assert.Throws<InvalidCastException)( () => (int)d);
Assert.DoesNotThrow( () => (decimal)i);
}
What you are looking for is if there's an implicit cast from the one type to the other. I would think that's doable by reflection, though it might be tricky because the implicit cast should be defined as an operator overload which is a static method and I think it could be defined in any class, not just the one that can be implicitly converted.
In order to find out if one type can be assigned to another, you have to look for implicit conversions from one to the other. You can do this with reflection.
As Timwi said, you will also have to know some built-in rules, but those can be hard-coded.
It actually happens to be the case that the decimal type is not "assignable" to the int type, and vice versa. Problems occur when boxing/unboxing gets involved.
Take the example below:
int p = 0;
decimal d = 0m;
object o = d;
object x = p;
// ok
int a = (int)d;
// invalid cast exception
int i = (int)o;
// invalid cast exception
decimal y = (decimal)p;
// compile error
int j = d;
This code looks like it should work, but the type cast from object produces an invalid cast exception, and the last line generates a compile-time error.
The reason the assignment to a works is because the decimal class has an explicit override on the type cast operator to int. There does not exist an implicit type cast operator from decimal to int.
Edit: There does not exist even the implicit operator in reverse. Int32 implements IConvertible, and that is how it converts to decimal
End Edit
In other words, the types are not assignable, but convertible.
You could scan assemblies for explicit type cast operators and IConvertible interfaces, but I get the impression that would not serve you as well as programming for the specific few cases you know you will encounter.
Good luck!

Typecasting in C#

What is type casting, what's the use of it? How does it work?
Casting is usually a matter of telling the compiler that although it only knows that a value is of some general type, you know it's actually of a more specific type. For example:
object x = "hello";
...
// I know that x really refers to a string
string y = (string) x;
There are various conversion operators. The (typename) expression form can do three different things:
An unboxing conversion (e.g. from a boxed integer to int)
A user-defined conversion (e.g. casting XAttribute to string)
A reference conversion within a type hierarchy (e.g. casting object to string)
All of these may fail at execution time, in which case an exception will be thrown.
The as operator, on the other hand, never throws an exception - instead, the result of the conversion is null if it fails:
object x = new object();
string y = x as string; // Now y is null because x isn't a string
It can be used for unboxing to a nullable value type:
object x = 10; // Boxed int
float? y = x as float?; // Now y has a null value because x isn't a boxed float
There are also implicit conversions, e.g. from int to long:
int x = 10;
long y = x; // Implicit conversion
Does that cover everything you were interested in?
Casting means creating a reference to an object that is of a different type to the reference you're currently holding. You can do upcasting or downcasting and each has different benefits.
Upcasting:
string greeting = "Hi Bob";
object o = greeting;
This creates a more general reference (object) from the more specific reference (string). Maybe you've written code that can handle any object, like this:
Console.WriteLine("Type of o is " + o.GetType());
That code doesn't need to be changed no matter what objects you set o to.
Downcasting:
object o = "Hi Bob";
string greeting = (string)o;
Here you want a more specific reference. You might know that the object is a string (you can test this e.g.:
if (o is string)
{ do something }
Now you can treat the reference as a string instead of an object. E.g. a string has a length (but an object doesn't), so you can say:
Console.WriteLine("Length of string is " + greeting.length);
Which you can't do with an object.
See this or this:
Because C# is statically-typed at compile time, after a variable is declared, it cannot be declared again or used to store values of another type unless that type is convertible to the variable's type
...
However, you might sometimes need to copy a value into a variable or method parameter of another type. For example, you might have an integer variable that you need to pass to a method whose parameter is typed as double. Or you might need to assign a class variable to a variable of an interface type. These kinds of operations are called type conversions. In C#, you can perform the following kinds of conversions
Casting from one data type to another.
For a general reading see this.
See also msdn
Also, if you're explicitly casting, you can take advantage of pattern matching. If you have an object:
object aObject = "My string value";
You can safely cast the object as a string in a single line:
if (aObject is string aString)
{
Console.WriteLine("aString = " + aString)
// Output: "aString = My string value"
}
Using this, along with an inverted if statement, you can safely cast types, and fail out early if need be:
public void Conversion(object objA, object objB)
{
// Fail out early if the objects provided are not the correct type, or are null
if (!(objA is string str) || !(objB is int num)) { return; }
// Now, you have `str` and `num` that are safely cast, non-null variables
// all while maintaining the same scope as your Conversion method
Console.WriteLine("str.Length is " + str.Length);
Console.WriteLine("num is " + num);
}

Categories

Resources