Having used Windsor for quite some time, I'm a little surprised that I haven't come across this "design" issue sooner. I don't know how best to tackle it.
I have a class ConverterService that is used to perform data conversions. This is the interface (I've changed the parameters/return values to objects to simplify the sample):-
public interface IConverterService
{
object ConvertData(object sourceData);
}
The converter class needs some configuration settings, provided by an ISettingsProvider. The settings are used both in the constructor and the ConvertData() method. I therefore inject the ISettingsProvider into the constructor:-
public class ConverterService : IConverterService
{
private ISettingsProvider _settingsProvider;
public ConverterService(ISettingsProvider settingsProvider)
{
_settingsProvider = settingsProvider;
// Do some one-time initialisation using info from settingsProvider
// and store the results in class variables (not shown), used by ConvertData.
}
public object ConvertData(object sourceData)
{
// Do the conversion - also uses _settingsProvider,
// and other variables initialised in the constructor ..
}
}
Both the ConverterService and SettingsProvider are registered with Windsor in the usual way:-
container.Register(Component.For<IConverterService>().ImplementedBy<ConverterService>().LifeStyle.Singleton);
container.Register(Component.For<ISettingsProvider>().ImplementedBy<SettingsProvider>().LifeStyle.Singleton);
Any class that needs to use the converter gets an IConverterService injected via its constructor - standard stuff. This works fine, but I now need the ability for many different consumers to use the ConverterService with different settings providers (two or three at most).
I can't make ConverterService transient as I don't want the initialisation overhead each time. It feels like I need a separate instance of the ConverterService for each type of ISettingProvider, but I'm not sure if/how I can accomplish this using Windsor, or is a more fundamental refactoring needed?
And how would I register the different settings providers, all of which implement ISettingsProvider? More specifically how would Windsor resolve the correct one (bearing in mind that the ConverterService constructor is merely expecting an ISettingsProvider)?
Any suggestions as to how I should (re-)design the classes would be much appreciated.
Can you not use a naming convention for your instances and control them that way? So each instance of your IConverterService would have an associated name to indicate which configuration it was using.
This question features some information on using named components/instances.
Castle Windsor - How to map Named instance in constructor injection
Related
How do I register types which take another registered type as a parameter and also simple types (like an integer)?
public interface IDeviceManager
{
// implementation omitted.
}
public class DeviceManager : IDeviceManager
{
public DeviceManager(IDeviceConfigRepository configRepo, int cacheTimeout)
{
// implementation omitted
}
}
I do have a container registration for the IDeviceConfigRepository. That's ok. But how do I create an instance of DeviceManager with the configured dependency and passing along an integer of my choice in composition root?
I thought about creating a factory.
public class DeviceManagerFactory : IDeviceManagerFactory
{
private readonly Container _container;
public DeviceManagerFactory(Container container)
{
_container = container;
}
public DeviceManager Create(int minutes)
{
var configRepo = _container.GetInstance<IDeviceConfigurationRepository>();
return new DeviceManager(configRepo, minutes);
}
}
This is pretty simple.
However now I do not have a registration for DeviceManager which is the type I ultimately need. Should I change these dependencies to the factory instead?
public class ExampleClassUsingDeviceManager
{
private readonly DeviceManager _deviceManager;
public ExampleClassUsingDeviceManager(DeviceManager deviceManager, ...)
{
_deviceManage = deviceManager;
}
// actions...
}
For this to work and to avoid circular dependencies I would probably have to move the factory from the "application" project (as opposed to class libraries) where the composition root is to the project where the DeviceManager is implemented.
Is that OK? It would of course mean passing around the container.
Any other solutions to this?
EDIT
In the same project for other types I am using parameter objects to inject configuration into my object graph. This works OK since I only have one class instance per parameter object type. If I had to inject different parameter object instances (for example MongoDbRepositoryOptions) into different class instances (for example MongoDbRepository) I would have to use some kind of named registration - which SimpleInjector doesn't support. Even though I only have one integer the parameter object pattern would solve my problem. But I'm not too happy about this pattern knowing it will break as soon as I have multiple instances of the consuming class (i.e. MongoDbRepository).
Example:
MongoDbRepositoryOptions options = new MongoDbRepositoryOptions();
MongoDbRepositoryOptions.CollectionName = "config";
MongoDbRepositoryOptions.ConnectionString = "mongodb://localhost:27017";
MongoDbRepositoryOptions.DatabaseName = "dev";
container.RegisterSingleton<MongoDbRepositoryOptions>(options);
container.RegisterSingleton<IDeviceConfigurationRepository, MongoDbRepository>();
I am excited to hear how you deal best with configurations done at composition root.
Letting your DeviceManagerFactory depend on Container is okay, as long as that factory implementation is part of your Composition Root.
Another option is to inject the IDeviceConfigRepository into the DeviceManagerFactory, this way you can construct a DeviceManager without the need to access the container:
public class DeviceManagerFactory : IDeviceManagerFactory {
private readonly IDeviceConfigurationRepository _repository;
public DeviceManagerFactory(IDeviceConfigurationRepository repository) {
_repository = repository;
}
public DeviceManager Create(int minutes) {
return new DeviceManager(_repository, minutes);
}
}
However now I do not have a registration for DeviceManager which is the type I ultimately need. Should I change these dependencies to the factory instead?
In general I would say that factories are usually the wrong abstraction, since they complicate the consumer instead of simplifying them. So you should typically depend on the service abstraction itself (instead of depending on a factory abstraction that can produces service abstraction implementations), or you should inject some sort of proxy or mediator that completely hides the existence of the service abstraction from point of view of the consumer.
#DavidL points at my blog post about runtime data. I'm unsure though whether the cacheTimeout is runtime data, although you seem to be using it as such, since you are passing it in into the Create method of the factory. But we're missing some context here, to determine what's going on. My blog post still stands though, if it is runtime data, it's an anti-pattern and in that case you should
pass runtime data through method calls of the API
or
retrieve runtime data from specific abstractions that allow resolving runtime data.
UPDATE
In case the value you are using is an application constant, that is read through the configuration file, and doesn't change during lifetime of the application, it is perfectly fine to inject it through the constructor. In that case it is not a runtime value. There is also no need for a factory.
There are multiple ways to register this in Simple Injector, for instance you can use a delegate to register the DeviceManager class:
container.Register<DeviceManager>(() => new DeviceManager(
container.GetInstance<IDeviceConfigRepository>(),
cacheTimeout: 15));
Downside of this approach is that you lose the ability of Simple Injector to auto-wire the type for you, and you disable Simple Injector's ability to verify, diagnose and visualize the object graph for you. Sometimes this is fine, while other times it is not.
The problem here is that Simple Injector blocks the registration of primitive types (because they cause ambiguity) while not presenting you with a clean way to make the registration. We are considering (finally) adding such feature in v4, but that doesn't really address your current needs.
Simple Injector doesn't easily allow you to specify a primitive dependency, while letting the container auto-wire the rest. Simple Injector's IDependencyInjectionBehavior abstraction allows you to override the default behavior (which is to disallow doing this). This is described here, but I usually advice against doing this, because it is usually requires quite a lot of code.
There are basically two options here:
Abstract the specific logic that deals with this caching out of the class and wrap it in a new class. This class will have just the cacheTimeout as its dependency. This is of course only useful when there actually is logical to abstract and is usually only logical when you are injecting that primitive value into multiple consumers. For instance, instead of injecting a connectionstring into multiple classes, you're probably better of injecting an IConnectionFactory into those classes instead.
Wrap the cacheTimeout value into a complex data container specific for the consuming class. This enables you to register that type, since it resolves the ambiguity issue. In fact, this is what you yourself are already suggesting and I think this is a really good thing to do. Since those values are constant at runtime, it is fine to register that DTO as singleton, but make sure to make it immutable. When you give each consumer its own data object, you won't have to register multiple instances of those, since they are unique. Btw, although named registations aren't supported, you can make conditional or contextual registrations using RegisterConditional and there are other ways to achieve named registrations with Simple Injector, but again, I don't think you really need that here.
First, I am not sure that I use the good words to describe my problem, apologies (English is not my mother tong).
It is about adding loggers to a project.
As it was asked, there should be several loggers and they should to be defined "dynamically".
So we end up with classes that have a Logger property.
All constructors have though an extra parameter which is the logger instance passed to the constructor with the other business parameters. As we go deep inside the code, classes inside each other are using the same pattern to pass the logger instance.
Sure it works, but I am not happy with it.
What annoys me is that the logger does not belongs to the business logic.
Maybe there is nothing to do with it.
--
More precisely this is what I am working out for the moment :
There is the ILogger interface that defines the loggers functions (LogError(string msg) for example). Different Loggers will implement this interface.
There is the ILoggable interface that will be implemented by all classes that need to do logging. This interface has a property public ILogger LoggerPte
I use a static class LoggerUtility with a [ThreadStatic] field static ILogger CurrentLogger and a function :
public static void SetLoggerReference(ILoggable loggableClass)
{
loggableClass.LoggerPte = CurrentLogger;
}
Outside of the loggable class, the CurrentLogger is defined.
In the constructor of a loggable class, I have to call LoggerUtility.SetLoggerReference(this);
If found this way more elegant although it might be twisted, but I would like to know if it can be possible to go further...
I have just started to read about custom attributes, reflection and AOP. Can somebody give me a hand about how to use an attribute like [Loggable] to automatically make the constructor call the function SetLoggerReference(this) after the constructor without having explicitly to write it in the code.
If it is possible...
Did you hear about Dependency injection desgin pattern? Your original solution is simple constructor injection. Your final solution is Property injection and all your bussines objects need to have LoggerPte property. Please look at some solutions how to deal with dependency injection and build/create your business objects via dependecy injection container (the container will inject the LoggerPte property for you and you don't need to call your static method in each object constructor). I am using Unity Container (Microsoft solution) but you can find a lot of others.
I hope it's what you need.
I most commonly am tempted to use "bastard injection" in a few cases. When I have a "proper" dependency-injection constructor:
public class ThingMaker {
...
public ThingMaker(IThingSource source){
_source = source;
}
But then, for classes I am intending as public APIs (classes that other development teams will consume), I can never find a better option than to write a default "bastard" constructor with the most-likely needed dependency:
public ThingMaker() : this(new DefaultThingSource()) {}
...
}
The obvious drawback here is that this creates a static dependency on DefaultThingSource; ideally, there would be no such dependency, and the consumer would always inject whatever IThingSource they wanted. However, this is too hard to use; consumers want to new up a ThingMaker and get to work making Things, then months later inject something else when the need arises. This leaves just a few options in my opinion:
Omit the bastard constructor; force the consumer of ThingMaker to understand IThingSource, understand how ThingMaker interacts with IThingSource, find or write a concrete class, and then inject an instance in their constructor call.
Omit the bastard constructor and provide a separate factory, container, or other bootstrapping class/method; somehow make the consumer understand that they don't need to write their own IThingSource; force the consumer of ThingMaker to find and understand the factory or bootstrapper and use it.
Keep the bastard constructor, enabling the consumer to "new up" an object and run with it, and coping with the optional static dependency on DefaultThingSource.
Boy, #3 sure seems attractive. Is there another, better option? #1 or #2 just don't seem worth it.
As far as I understand, this question relates to how to expose a loosely coupled API with some appropriate defaults. In this case, you may have a good Local Default, in which case the dependency can be regarded as optional. One way to deal with optional dependencies is to use Property Injection instead of Constructor Injection - in fact, this is sort of the poster scenario for Property Injection.
However, the real danger of Bastard Injection is when the default is a Foreign Default, because that would mean that the default constructor drags along an undesirable coupling to the assembly implementing the default. As I understand this question, however, the intended default would originate in the same assembly, in which case I don't see any particular danger.
In any case you might also consider a Facade as described in one of my earlier answers: Dependency Inject (DI) "friendly" library
BTW, the terminology used here is based on the pattern language from my book.
My trade-off is a spin on #BrokenGlass:
1) Sole constructor is parameterized constructor
2) Use factory method to create a ThingMaker and pass in that default source.
public class ThingMaker {
public ThingMaker(IThingSource source){
_source = source;
}
public static ThingMaker CreateDefault() {
return new ThingMaker(new DefaultThingSource());
}
}
Obviously this doesn't eliminate your dependency, but it does make it clearer to me that this object has dependencies that a caller can deep dive into if they care to. You can make that factory method even more explicit if you like (CreateThingMakerWithDefaultThingSource) if that helps with understanding. I prefer this to overriding the IThingSource factory method since it continues to favor composition. You can also add a new factory method when the DefaultThingSource is obsoleted and have a clear way to find all the code using the DefaultThingSource and mark it to be upgraded.
You covered the possibilities in your question. Factory class elsewhere for convenience or some convenience within the class itself. The only other unattractive option would be reflection-based, hiding the dependency even further.
One alternative is to have a factory method CreateThingSource() in your ThingMaker class that creates the dependency for you.
For testing or if you do need another type of IThingSource you would then have to create a subclass of ThingMaker and override CreateThingSource() to return the concrete type you want. Obviously this approach only is worth it if you mainly need to be able to inject the dependency in for testing, but for most/all other purposes do not need another IThingSource
I vote for #3. You'll be making your life--and the lives of other developers--easier.
If you have to have a "default" dependency, also known as Poor Man’s Dependency Injection, then you have to initialize and "wire" the dependency somewhere.
I will keep the two constructors but have a factory just for the initialization.
public class ThingMaker
{
private IThingSource _source;
public ThingMaker(IThingSource source)
{
_source = source;
}
public ThingMaker() : this(ThingFactory.Current.CreateThingSource())
{
}
}
Now in the factory create the default instance and allow the method to be overrided:
public class ThingFactory
{
public virtual IThingSource CreateThingSource()
{
return new DefaultThingSource();
}
}
Update:
Why using two constructors:
Two constructors clearly show how the class is intended to be used. The parameter-less constructor states: just create an instance and the class will perform all of it's responsibilities. Now the second constructor states that the class depends of IThingSource and provides a way of using an implementation different than the default one.
Why using a factory:
1- Discipline: Creating new instances shouldn't be part of the responsibilities of this class, a factory class is more appropriate.
2- DRY: Imagine that in the same API other classes also depend on IThingSource and do the same. Override once the factory method returning IThingSource and all the classes in your API automatically start using the new instance.
I don't see a problem in coupling ThingMaker to a default implementation of IThingSource as long as this implementation makes sense to the API as a whole and also you provide ways to override this dependency for testing and extension purposes.
You are unhappy with the OO impurity of this dependency, but you don't really say what trouble it ultimately causes.
Is ThingMaker using DefaultThingSource in any way that does not conform to IThingSource? No.
Could there come a time where you would be forced to retire the parameterless constructor? Since you are able to provide a default implementation at this time, unlikely.
I think the biggest problem here is the choice of name, not whether to use the technique.
The examples usually related to this style of injection are often extremely simplisitic: "in the default constructor for class B, call an overloaded constructor with new A() and be on your way!"
The reality is that dependencies are often extremely complex to construct. For example, what if B needs a non-class dependency like a database connection or application setting? You then tie class B to the System.Configuration namespace, increasing its complexity and coupling while lowering its coherence, all to encode details which could simply be externalized by omitting the default constructor.
This style of injection communicates to the reader that you have recognized the benefits of decoupled design but are unwilling to commit to it. We all know that when someone sees that juicy, easy, low-friction default constructor, they are going to call it no matter how rigid it makes their program from that point on. They can't understand the structure of their program without reading the source code for that default constructor, which isn't an option when you just distribute the assemblies. You can document the conventions of connection string name and app settings key, but at that point the code doesn't stand on its own and you put the onus on the developer to hunt down the right incantation.
Optimizing code so those who write it can get by without understanding what they are saying is a siren song, an anti-pattern that ultimately leads to more time lost in unraveling the magic than time saved in initial effort. Either decouple or don't; keeping a foot in each pattern diminishes the focus of both.
For what it is worth, all the standard code I've seen in Java does it like this:
public class ThingMaker {
private IThingSource iThingSource;
public ThingMaker() {
iThingSource = createIThingSource();
}
public virtual IThingSource createIThingSource() {
return new DefaultThingSource();
}
}
Anybody who doesn't want a DefaultThingSource object can override createIThingSource. (If possible, the call to createIThingSource would be somewhere other than the constructor.) C# does not encourage overriding like Java does, and it might not be as obvious as it would be in Java that the users can and perhaps should provide their own IThingSource implementation. (Nor as obvious how to provide it.) My guess is that #3 is the way to go, but I thought I would mention this.
Just an idea - perhaps a bit more elegant but sadly doesn't get rid of the dependency:
remove the "bastard constructor"
in the standard constructor you make the source param default to null
then you check for source being null and if this is the case you assign it "new DefaultThingSource()" otherweise whatever the consumer injects
Have an internal factory (internal to your library) that maps the DefaultThingSource to IThingSource, which is called from the default constructor.
This allows you to "new up" the ThingMaker class without parameters or any knowledge of IThingSource and without a direct dependency on DefaultThingSource.
For truly public APIs, I generally handle this using a two-part approach:
Create a helper within the API to allow an API consumer to register "default" interface implementations from the API with their IoC container of choice.
If it is desirable to allow the API consumer to use the API without their own IoC container, host an optional container within the API that is populated the same "default" implementations.
The really tricky part here is deciding when to activate the container #2, and the best choice approach will depend heavily on your intended API consumers.
I support option #1, with one extension: make DefaultThingSource a public class. Your wording above implies that DefaultThingSource will be hidden from public consumers of the API, but as I understand your situation there's no reason not to expose the default. Furthermore, you can easily document the fact that outside of special circumstances, a new DefaultThingSource() can always be passed to the ThingMaker.
I like the idea of "programming to interfaces" and avoiding the use of the "new" keyword.
However, what do I do when I have two classes that have the same interface but are fundamentally different to set up. Without going into detail about my specific code, I have an interface with a method, "DoStuff". Two classes implement this interface. One is very simple and requires no initialisation to speak of. The other has five different variables that need to be set up. When combined, they allow for literally millions of ways for the class to work when DoStuff is called.
So when do I "new" these classes? I though about using factories but I don't think they are suitable in this case because of the vast difference in setup. (BTW: there are actually about ten different classes using the interface, each allowing the formation of part of a complex pipeline and each with different configuration requirements).
I think you may be misunderstanding the concept of programming to interfaces. You always have to use the new keyword in object oriented languages to create new instances of objects. Just because you program to interfaces doesn't remove that requirement.
Programming to an interface simply means that all your concrete classes have their behavior defined in an interface instead of in the concrete class itself. So when you define the type of a variable, you define it to be the interface instead of a concrete type.
In your case, just implement DoStuff in your concrete classes as each class needs it implemented (whether doing it simply or with 10 other initialized objects and setup). For example, if you have an interface IInterface and class SomeClass which implements IInterface. You might declare an instance of SomeClass as such:
IInterface myInstance = new SomeClass();
This allows you to pass this instance around to other functions without having to have those functions worry about the implementation details of that instance's class.
Well you really have 3 options. Use new, use a factory or use an DI container. With a DI container your five variables would most likely need to be in a configuration file of some sorts.
But to be completely honest it sounds like you're making your life harder than it needs to be by forcing yourself into a corner. Instead of coding to some ideal, rather code in a manner which best facilitates solving the problem at hand. Not saying you should do a hack job of it, but really, saying you don't want to use new, that is really making your life harder than it needs to be...
Regardless of what you use, at some point you're going to have to construct instances of your classes in order to use them, there's no way around that.
How to go about doing that depends on what you want to accomplish, and the semantics of those classes.
Take the class you mention with those fields.
Can those fields be read from somewhere? A configuration file, as an example? If so, perhaps all you need is just a default constructor that initializes those fields from such a configuration file.
However, if the content of those fields really needs to be passed in from the outside world, there's no way around that.
Perhaps you should look at a IoC container and Dependency Injection?
If you are passing that many configuration parameters into your class it may have too many responsibilities. You should look into breaking it up into smaller classes that only have a single responsibility.
Avoiding the new keyword can be valuable because it creates a dependancy on the implementing class. A better solution would be to use Dependancy Injection.
for example
public interface IDoStuff
{
void DoStuff();
}
public class DoStuffService
{
private IDoStuff doer;
public DoStuffService()
{
//Class is now dependant on DoLotsOfStuff
doer = new DoLotsOfStuff(1,true, "config string");
}
}
public class DoStuffBetterService
{
private IDoStuff doer;
//inject dependancy - no longer dependant on DoLotsOfStuff
public DoStuffBetterService(IDoStuff doer)
{
this.doer = doer;
}
}
Obviously you still have to create the IDoStuff object being passed in somewhere.
An Inversion of Control (IoC) container is a good tool to help with implementing this.
Here is a good tutorial for Castle Windsor Container if you are interested in learning more. (There are many other IoC containers, I just happen to use this one.)
The example in your question was very abstract, so I hope this answer is helpful.
If I understand you correctly the problem is with different initialization. You need to provide for two classes that have the same interface. One does not need anything, and the other needs some paramaters and calls some complex initialization.
You should use have a constructor that gets InitializationParameter. Both classes should get it. One with a simple interface that does not need to get anything from it. The other that needs params and will get them from it.
If you are concerned about initialization you can use factory, just ask it for some interface providing this init parameter and factory will create, init and return to you the object according to the values you provided.
If something is not clear - please ask.
I'm implementing a notification framework for one of my projects. As i want it to be very generic, the user can use several transport layers, so that he doesn't really need to care about using one delivery method (lets say WCF) or another (for eg ActiveMQ).
The interface the user has access is of course independent of the delivery method (WCF or ActiveMQ).
Still, the two classes (consumer and producer) implements singletons, so they actually use default constructors (meaning, no parameters).
My problem is that i would like to have one parameter, the delivery method the user want to use.
But as far as i know, singleton only use default constructors? which is normal, as there should be no point of using singletons with parameters.
So, what are my options here? not to create a singleton? create a method to set the delivery method?
Thank you very much for your help,
Sebastian
You can certainly have parameters with singletons, except instead of passing the parameter into a constructor, you are passing it into the getInstance() method. Your overridden constructor needs to be private of course for a true singleton implementation. My example is written in Java but applies for C# as well.
Example:
Singleton s = Singleton.getInstance(42);
In the Singleton code:
private Singleton() {
}
private Singleton(int num) {
//set num
}
public getInstance(int num) {
//singleton code (calls the private non-default constructor if an object
//does not already exist)
}
There are some dependency injection frameworks like Spring.Net which might help you. You can effectively pass a parameter in a configuration file for your singletons constructor.
Link to a Spring Framework example
Might I suggest that if you have two different behaviours required of your singleton that you might want to subclass. That way you get the behaviour that you want by calling the singleton of the class behaviour you want.
You can do this easily with a dependency injection framework. I have a similar construct in my current project using MEF. All that's required is to use the constructor injection options, and add that assembly and the requested dependency's assembly to the catalog, and it wires it up correctly.
Another option is to have some form of initialize function that takes your option, and constructs the singleton instance. Instead of constructing it on first access, you can construct it during the initialization call. The downside here is that you need to make sure to initialize your singleton before you use it (typically at program start, using a config file).
A similar, but less error-prone option, is to just have the singleton lazy initialize, and give it a "default" option. Allow the caller to set a static property to alter which option is constructed, so if it's set prior to the singleton's construction, you'll get a different default. This can be confusing, though, since again, you need to make sure you set the property before accessing the singleton, or you'll get unexpected behavior.
I know it is late to answer the original question, but i just had this problem and here is how i solved it. Might not be ideal, but it seems to work.
I created a Init method that must be called before trying to use the singleton instance.
public void Init(/*parameters*/)
{
if (_isInitialized)
{
throw new InvalidOperationException("Component is already initialized!");
}
//do your work here
}
Any other access to the singleton instance (properties get, set, method calls) will throw an invalid operation exception telling that the object was not initialized.
I think this does what i need, is less confusing than GetInstance(params) because there is no risk of misunderstanding what the method does. The downside is it will not throw compilation time errors, but the first run without the initialization done will throw an exception, so it should be good enough.