Related
I have a WPF application that displays files in a folder. The user can select multiple files and select to delete them, currently I am using this logic with uses FileSystem from the VisualBasic.FileIO library:
foreach (Item item in items)
{
if (item.IsDirectory)
{
FileSystem.DeleteDirectory(item.FullPath, UIOption.AllDialogs, RecycleOption.SendToRecycleBin);
}
else
{
FileSystem.DeleteFile(item.FullPath, UIOption.AllDialogs, RecycleOption.SendToRecycleBin);
}
}
The problem here is that if users have the Windows option "Display delete confirmation dialog" turned on:
They get a Windows prompt for each file.
I want them to get a single prompt like this:
Is there a way to do this?
Even if it involves a PInvoke of some WinAPI function?
With PInvoke, we can use SHFileOperation with the FO_DELETE function to send file system objects to the recycle bin. According to the documentation, we can send multiple paths at once by joining them with a NULL character:
Although this member is declared as a single null-terminated string, it is actually a buffer that can hold multiple null-delimited file names. Each file name is terminated by a single NULL character. The last file name is terminated with a double NULL character ("\0\0") to indicate the end of the buffer.
Instead of writing everything from scratch, let's use parts of the code in this answer and adjust it to work with multiple paths. We will have something like this:
public class FileOperationAPIWrapper
{
/// <summary>
/// Possible flags for the SHFileOperation method.
/// </summary>
[Flags]
public enum FileOperationFlags : ushort
{
/// <summary>
/// Do not show a dialog during the process
/// </summary>
FOF_SILENT = 0x0004,
/// <summary>
/// Do not ask the user to confirm selection
/// </summary>
FOF_NOCONFIRMATION = 0x0010,
/// <summary>
/// Delete the file to the recycle bin. (Required flag to send a file to the bin
/// </summary>
FOF_ALLOWUNDO = 0x0040,
/// <summary>
/// Do not show the names of the files or folders that are being recycled.
/// </summary>
FOF_SIMPLEPROGRESS = 0x0100,
/// <summary>
/// Surpress errors, if any occur during the process.
/// </summary>
FOF_NOERRORUI = 0x0400,
/// <summary>
/// Warn if files are too big to fit in the recycle bin and will need
/// to be deleted completely.
/// </summary>
FOF_WANTNUKEWARNING = 0x4000,
}
/// <summary>
/// File Operation Function Type for SHFileOperation
/// </summary>
public enum FileOperationType : uint
{
/// <summary>
/// Move the objects
/// </summary>
FO_MOVE = 0x0001,
/// <summary>
/// Copy the objects
/// </summary>
FO_COPY = 0x0002,
/// <summary>
/// Delete (or recycle) the objects
/// </summary>
FO_DELETE = 0x0003,
/// <summary>
/// Rename the object(s)
/// </summary>
FO_RENAME = 0x0004,
}
/// <summary>
/// SHFILEOPSTRUCT for SHFileOperation from COM
/// </summary>
[StructLayout(LayoutKind.Sequential, CharSet = CharSet.Auto)]
private struct SHFILEOPSTRUCT
{
public IntPtr hwnd;
[MarshalAs(UnmanagedType.U4)]
public FileOperationType wFunc;
public string pFrom;
public string pTo;
public FileOperationFlags fFlags;
[MarshalAs(UnmanagedType.Bool)]
public bool fAnyOperationsAborted;
public IntPtr hNameMappings;
public string lpszProgressTitle;
}
[DllImport("shell32.dll", CharSet = CharSet.Auto)]
private static extern int SHFileOperation(ref SHFILEOPSTRUCT FileOp);
public static bool SendToRecycleBin(string path, FileOperationFlags flags)
{
return SendToRecycleBin(new[] { path }, flags);
}
public static bool SendToRecycleBin(IList<string> paths, FileOperationFlags flags)
{
try
{
var fs = new SHFILEOPSTRUCT
{
wFunc = FileOperationType.FO_DELETE,
pFrom = string.Join("\0", paths) + '\0' + '\0',
fFlags = FileOperationFlags.FOF_ALLOWUNDO | flags
};
SHFileOperation(ref fs);
return true;
}
catch (Exception)
{
return false;
}
}
}
Usage:
FileOperationAPIWrapper.SendToRecycleBin(items,
FileOperationAPIWrapper.FileOperationFlags.FOF_WANTNUKEWARNING);
I'm trying to initialize a disk and create a NTFS partition via DeviceIOControl, without using either DiskPart or WMI.
Using the below code I'm able to initialize the disk and create a RAW partition, but I'm unable to tweak the parameters so that the new partition is NTFS.
Any ideas?
//Returns true if drive Index is successfully created
//Returns false if not created successfully
public static bool CreatePartition(int driveIndex, string physicalName)
{
IntPtr handle = GetHandle(driveIndex, physicalName);
if (handle == INVALID_HANDLE_VALUE)
{
return false;
}
//Step 2: IOCTL_DISK_GET_DRIVE_GEOMETRY_EX to get the physical disk's geometry ( we need some information in it to fill partition data)
//The number of surfaces (or heads, which is the same thing), cylinders, and sectors vary a lot; the specification of the number of each is called the geometry of a hard disk.
//The geometry is usually stored in a special, battery-powered memory location called the CMOS RAM , from where the operating system can fetch it during bootup or driver initialization.
int size = 0;
DISK_GEOMETRY_EX geometry = new DISK_GEOMETRY_EX();
IntPtr lpOutBuffer = Marshal.AllocHGlobal(Marshal.SizeOf(typeof(DISK_GEOMETRY_EX)));
Marshal.StructureToPtr(geometry, lpOutBuffer, false);
int result = DeviceIoControl(handle, IOCTL_DISK_GET_DRIVE_GEOMETRY_EX, IntPtr.Zero, 0, lpOutBuffer, Marshal.SizeOf(typeof(DISK_GEOMETRY_EX)), ref size, IntPtr.Zero);
geometry = (DISK_GEOMETRY_EX)Marshal.PtrToStructure(lpOutBuffer, typeof(DISK_GEOMETRY_EX));
//Step 3: IOCTL_DISK_CREATE_DISK is used to initialize a disk with an empty partition table.
CREATE_DISK createDisk = new CREATE_DISK();
createDisk.PartitionStyle = PARTITION_STYLE.PARTITION_STYLE_MBR;
createDisk.Mbr.Signature = 1;
IntPtr createDiskBuffer = Marshal.AllocHGlobal(Marshal.SizeOf(typeof(CREATE_DISK)));
Marshal.StructureToPtr(createDisk, createDiskBuffer, false);
byte[] arr1 = new byte[Marshal.SizeOf(typeof(CREATE_DISK))];
Marshal.Copy(createDiskBuffer, arr1, 0, Marshal.SizeOf(typeof(CREATE_DISK)));
result = DeviceIoControl(handle, IOCTL_DISK_CREATE_DISK, createDiskBuffer, Marshal.SizeOf(typeof(CREATE_DISK)),
IntPtr.Zero, 0, ref size, IntPtr.Zero);
result = DeviceIoControl(handle, IOCTL_DISK_UPDATE_PROPERTIES, IntPtr.Zero, 0, IntPtr.Zero, 0, ref size, IntPtr.Zero);
//Step 4: IOCTL_DISK_SET_DRIVE_LAYOUT_EX to repartition a disk as specified.
//Note: use IOCTL_DISK_UPDATE_PROPERTIES to synchronize system view after IOCTL_DISK_CREATE_DISK and IOCTL_DISK_SET_DRIVE_LAYOUT_EX
/* DWORD driveLayoutSize = sizeof(DRIVE_LAYOUT_INFORMATION_EX) + sizeof(PARTITION_INFORMATION_EX) * 4 * 25;
DRIVE_LAYOUT_INFORMATION_EX *DriveLayoutEx = (DRIVE_LAYOUT_INFORMATION_EX *) new BYTE[driveLayoutSize];*/
IntPtr driveLayoutbuffer = Marshal.AllocHGlobal(192);
FillMemory(driveLayoutbuffer, 192, 0);
DRIVE_LAYOUT_INFORMATION_EX driveLayoutEx = new DRIVE_LAYOUT_INFORMATION_EX();
driveLayoutEx.PartitionEntry = new PARTITION_INFORMATION_EX[1];
mediaType = (int)geometry.Geometry.MediaType;
Int64 bytes_per_track = (geometry.Geometry.SectorsPerTrack) * (geometry.Geometry.BytesPerSector);
driveLayoutEx.PartitionEntry[0].StartingOffset = 0x0;
Int64 main_part_size_in_sectors, extra_part_size_in_sectors = 0;
main_part_size_in_sectors = (geometry.DiskSize - driveLayoutEx.PartitionEntry[0].StartingOffset) / geometry.Geometry.BytesPerSector;
if (main_part_size_in_sectors <= 0)
{
return false;
}
extra_part_size_in_sectors = (MIN_EXTRA_PART_SIZE + bytes_per_track - 1) / bytes_per_track;
main_part_size_in_sectors = ((main_part_size_in_sectors / geometry.Geometry.SectorsPerTrack) -
extra_part_size_in_sectors) * geometry.Geometry.SectorsPerTrack;
if (main_part_size_in_sectors <= 0)
{
return false;
}
driveLayoutEx.PartitionEntry[0].PartitionLength = 1024 * 1024 * 1024 * (long)20;
driveLayoutEx.PartitionEntry[0].PartitionStyle = PARTITION_STYLE.PARTITION_STYLE_MBR;
driveLayoutEx.PartitionEntry[0].Mbr.PartitionType = 0x80;
driveLayoutEx.PartitionEntry[0].Mbr.BootIndicator = true;
driveLayoutEx.PartitionEntry[0].PartitionNumber = 1;
driveLayoutEx.PartitionEntry[0].RewritePartition = true;
driveLayoutEx.PartitionEntry[0].Mbr.RecognizedPartition = true;
driveLayoutEx.PartitionStyle = PARTITION_STYLE.PARTITION_STYLE_MBR;
driveLayoutEx.PartitionCount = 1; //It should be a multiple of 4
driveLayoutEx.Mbr.Mbr.Signature = createDisk.Mbr.Signature;
Marshal.StructureToPtr(driveLayoutEx, driveLayoutbuffer, false);
result = DeviceIoControl(handle, IOCTL_DISK_SET_DRIVE_LAYOUT_EX, driveLayoutbuffer, 192, IntPtr.Zero, 0, ref size, IntPtr.Zero);
result = DeviceIoControl(handle, IOCTL_DISK_UPDATE_PROPERTIES, IntPtr.Zero, 0, IntPtr.Zero, 0, ref size, IntPtr.Zero);
Marshal.FreeHGlobal(driveLayoutbuffer);
Marshal.FreeHGlobal(createDiskBuffer);
Marshal.FreeHGlobal(lpOutBuffer);
return true;
}
[DllImport("kernel32.dll", SetLastError = true)]
static extern IntPtr CreateFile(string lpFileName, uint dwDesiredAccess,
uint dwShareMode, IntPtr lpSecurityAttributes, uint dwCreationDisposition,
uint dwFlagsAndAttributes, IntPtr hTemplateFile);
[DllImport("kernel32")]
static extern int CloseHandle(IntPtr handle);
[DllImport("kernel32")]
private static extern int DeviceIoControl
(IntPtr deviceHandle, uint ioControlCode,
IntPtr inBuffer, int inBufferSize,
IntPtr outBuffer, int outBufferSize,
ref int bytesReturned, IntPtr overlapped);
public const uint GENERIC_READ = 0x80000000;
public const uint GENERIC_WRITE = 0x40000000;
public const uint FILE_SHARE_READ = 0x00000001;
public const uint FILE_SHARE_WRITE = 0x00000002;
public const uint OPEN_EXISTING = 0x00000003;
public const uint FILE_ATTRIBUTE_NORMAL = 0x80;
public const uint FSCTL_ALLOW_EXTENDED_DASD_IO = 0x90083;
public const int DRIVE_ACCESS_RETRIES = 10;
public const int DRIVE_ACCESS_TIMEOUT = 15000;
public const uint FSCTL_LOCK_VOLUME = 0x00090018;
static IntPtr INVALID_HANDLE_VALUE = new IntPtr(-1);
public const uint IOCTL_DISK_GET_DRIVE_LAYOUT_EX = 0x00070050;
public const uint IOCTL_DISK_GET_DRIVE_GEOMETRY_EX = 0x000700A0;
public const uint IOCTL_DISK_CREATE_DISK = 0x0007C058;
public const uint IOCTL_DISK_UPDATE_PROPERTIES = 0x00070140;
public const uint IOCTL_DISK_SET_DRIVE_LAYOUT_EX = 0x0007C054;
public const int MIN_EXTRA_PART_SIZE = 1024 * 1024;
public static int mediaType = 0;
[DllImport("kernel32.dll", EntryPoint = "RtlFillMemory", SetLastError = false)]
public static extern void FillMemory(IntPtr destination, uint length, byte fill);
/// <summary>
/// Describes the geometry of disk devices and media.
/// </summary>
[StructLayout(LayoutKind.Explicit)]
public struct DISK_GEOMETRY
{
/// <summary>
/// The number of cylinders.
/// </summary>
[FieldOffset(0)]
public Int64 Cylinders;
/// <summary>
/// The type of media. For a list of values, see MEDIA_TYPE.
/// </summary>
[FieldOffset(8)]
public MEDIA_TYPE MediaType;
/// <summary>
/// The number of tracks per cylinder.
/// </summary>
[FieldOffset(12)]
public uint TracksPerCylinder;
/// <summary>
/// The number of sectors per track.
/// </summary>
[FieldOffset(16)]
public uint SectorsPerTrack;
/// <summary>
/// The number of bytes per sector.
/// </summary>
[FieldOffset(20)]
public uint BytesPerSector;
}
public enum MEDIA_TYPE
{
Unknown, // Format is unknown
F5_1Pt2_512, // 5.25", 1.2MB, 512 bytes/sector
F3_1Pt44_512, // 3.5", 1.44MB, 512 bytes/sector
F3_2Pt88_512, // 3.5", 2.88MB, 512 bytes/sector
F3_20Pt8_512, // 3.5", 20.8MB, 512 bytes/sector
F3_720_512, // 3.5", 720KB, 512 bytes/sector
F5_360_512, // 5.25", 360KB, 512 bytes/sector
F5_320_512, // 5.25", 320KB, 512 bytes/sector
F5_320_1024, // 5.25", 320KB, 1024 bytes/sector
F5_180_512, // 5.25", 180KB, 512 bytes/sector
F5_160_512, // 5.25", 160KB, 512 bytes/sector
RemovableMedia, // Removable media other than floppy
FixedMedia, // Fixed hard disk media
F3_120M_512, // 3.5", 120M Floppy
F3_640_512, // 3.5" , 640KB, 512 bytes/sector
F5_640_512, // 5.25", 640KB, 512 bytes/sector
F5_720_512, // 5.25", 720KB, 512 bytes/sector
F3_1Pt2_512, // 3.5" , 1.2Mb, 512 bytes/sector
F3_1Pt23_1024, // 3.5" , 1.23Mb, 1024 bytes/sector
F5_1Pt23_1024, // 5.25", 1.23MB, 1024 bytes/sector
F3_128Mb_512, // 3.5" MO 128Mb 512 bytes/sector
F3_230Mb_512, // 3.5" MO 230Mb 512 bytes/sector
F8_256_128, // 8", 256KB, 128 bytes/sector
F3_200Mb_512, // 3.5", 200M Floppy (HiFD)
F3_240M_512, // 3.5", 240Mb Floppy (HiFD)
F3_32M_512 // 3.5", 32Mb Floppy
}
/// <summary>
/// Describes the extended geometry of disk devices and media.
/// </summary>
[StructLayout(LayoutKind.Explicit)]
private struct DISK_GEOMETRY_EX
{
/// <summary>
/// A DISK_GEOMETRY structure.
/// </summary>
[FieldOffset(0)]
public DISK_GEOMETRY Geometry;
/// <summary>
/// The disk size, in bytes.
/// </summary>
[FieldOffset(24)]
public Int64 DiskSize;
/// <summary>
/// Any additional data.
/// </summary>
[FieldOffset(32)]
public Byte Data;
}
/// <summary>
/// Represents the format of a partition.
/// </summary>
public enum PARTITION_STYLE : uint
{
/// <summary>
/// Master boot record (MBR) format.
/// </summary>
PARTITION_STYLE_MBR = 0,
/// <summary>
/// GUID Partition Table (GPT) format.
/// </summary>
PARTITION_STYLE_GPT = 1,
/// <summary>
/// Partition not formatted in either of the recognized formats—MBR or GPT.
/// </summary>
PARTITION_STYLE_RAW = 2
}
/// <summary>
/// Contains partition information specific to master boot record (MBR) disks.
/// </summary>
[StructLayout(LayoutKind.Explicit)]
public struct PARTITION_INFORMATION_MBR
{
#region Constants
/// <summary>
/// An unused entry partition.
/// </summary>
public const byte PARTITION_ENTRY_UNUSED = 0x00;
/// <summary>
/// A FAT12 file system partition.
/// </summary>
public const byte PARTITION_FAT_12 = 0x01;
/// <summary>
/// A FAT16 file system partition.
/// </summary>
public const byte PARTITION_FAT_16 = 0x04;
/// <summary>
/// An extended partition.
/// </summary>
public const byte PARTITION_EXTENDED = 0x05;
/// <summary>
/// An IFS partition.
/// </summary>
public const byte PARTITION_IFS = 0x07;
/// <summary>
/// A FAT32 file system partition.
/// </summary>
public const byte PARTITION_FAT32 = 0x0B;
/// <summary>
/// A logical disk manager (LDM) partition.
/// </summary>
public const byte PARTITION_LDM = 0x42;
/// <summary>
/// An NTFT partition.
/// </summary>
public const byte PARTITION_NTFT = 0x80;
/// <summary>
/// A valid NTFT partition.
///
/// The high bit of a partition type code indicates that a partition is part of an NTFT mirror or striped array.
/// </summary>
public const byte PARTITION_VALID_NTFT = 0xC0;
#endregion
/// <summary>
/// The type of partition. For a list of values, see Disk Partition Types.
/// </summary>
[FieldOffset(0)]
[MarshalAs(UnmanagedType.U1)]
public byte PartitionType;
/// <summary>
/// If this member is TRUE, the partition is bootable.
/// </summary>
[FieldOffset(1)]
[MarshalAs(UnmanagedType.I1)]
public bool BootIndicator;
/// <summary>
/// If this member is TRUE, the partition is of a recognized type.
/// </summary>
[FieldOffset(2)]
[MarshalAs(UnmanagedType.I1)]
public bool RecognizedPartition;
/// <summary>
/// The number of hidden sectors in the partition.
/// </summary>
[FieldOffset(4)]
public uint HiddenSectors;
}
/// <summary>
/// Contains GUID partition table (GPT) partition information.
/// </summary>
[StructLayout(LayoutKind.Explicit, CharSet = CharSet.Unicode)]
public struct PARTITION_INFORMATION_GPT
{
/// <summary>
/// A GUID that identifies the partition type.
///
/// Each partition type that the EFI specification supports is identified by its own GUID, which is
/// published by the developer of the partition.
/// </summary>
[FieldOffset(0)]
public Guid PartitionType;
/// <summary>
/// The GUID of the partition.
/// </summary>
[FieldOffset(16)]
public Guid PartitionId;
/// <summary>
/// The Extensible Firmware Interface (EFI) attributes of the partition.
///
/// </summary>
[FieldOffset(32)]
public UInt64 Attributes;
/// <summary>
/// A wide-character string that describes the partition.
/// </summary>
[FieldOffset(40)]
[MarshalAs(UnmanagedType.ByValTStr, SizeConst = 36)]
public string Name;
}
/// <summary>
/// Provides information about a drive's master boot record (MBR) partitions.
/// </summary>
[StructLayout(LayoutKind.Explicit)]
private struct DRIVE_LAYOUT_INFORMATION_MBR
{
/// <summary>
/// The signature of the drive.
/// </summary>
[FieldOffset(0)]
public uint Signature;
}
/// <summary>
/// Contains information about a drive's GUID partition table (GPT) partitions.
/// </summary>
[StructLayout(LayoutKind.Explicit)]
private struct DRIVE_LAYOUT_INFORMATION_GPT
{
/// <summary>
/// The GUID of the disk.
/// </summary>
[FieldOffset(0)]
public Guid DiskId;
/// <summary>
/// The starting byte offset of the first usable block.
/// </summary>
[FieldOffset(16)]
public Int64 StartingUsableOffset;
/// <summary>
/// The size of the usable blocks on the disk, in bytes.
/// </summary>
[FieldOffset(24)]
public Int64 UsableLength;
/// <summary>
/// The maximum number of partitions that can be defined in the usable block.
/// </summary>
[FieldOffset(32)]
public uint MaxPartitionCount;
}
/// <summary>
/// Contains information about a disk partition.
/// </summary>
[StructLayout(LayoutKind.Explicit)]
public struct PARTITION_INFORMATION_EX
{
/// <summary>
/// The format of the partition. For a list of values, see PARTITION_STYLE.
/// </summary>
[FieldOffset(0)]
public PARTITION_STYLE PartitionStyle;
/// <summary>
/// The starting offset of the partition.
/// </summary>
[FieldOffset(8)]
public Int64 StartingOffset;
/// <summary>
/// The length of the partition, in bytes.
/// </summary>
[FieldOffset(16)]
public Int64 PartitionLength;
/// <summary>
/// The number of the partition (1-based).
/// </summary>
[FieldOffset(24)]
public uint PartitionNumber;
/// <summary>
/// If this member is TRUE, the partition information has changed. When you change a partition (with
/// IOCTL_DISK_SET_DRIVE_LAYOUT), the system uses this member to determine which partitions have changed
/// and need their information rewritten.
/// </summary>
[FieldOffset(28)]
[MarshalAs(UnmanagedType.I1)]
public bool RewritePartition;
/// <summary>
/// A PARTITION_INFORMATION_MBR structure that specifies partition information specific to master boot
/// record (MBR) disks. The MBR partition format is the standard AT-style format.
/// </summary>
[FieldOffset(32)]
public PARTITION_INFORMATION_MBR Mbr;
/// <summary>
/// A PARTITION_INFORMATION_GPT structure that specifies partition information specific to GUID partition
/// table (GPT) disks. The GPT format corresponds to the EFI partition format.
/// </summary>
[FieldOffset(32)]
public PARTITION_INFORMATION_GPT Gpt;
}
[StructLayout(LayoutKind.Explicit)]
private struct DRIVE_LAYOUT_INFORMATION_UNION
{
[FieldOffset(0)]
public DRIVE_LAYOUT_INFORMATION_MBR Mbr;
[FieldOffset(0)]
public DRIVE_LAYOUT_INFORMATION_GPT Gpt;
}
/// <summary>
/// Contains extended information about a drive's partitions.
/// </summary>
[StructLayout(LayoutKind.Explicit)]
private struct DRIVE_LAYOUT_INFORMATION_EX
{
/// <summary>
/// The style of the partitions on the drive enumerated by the PARTITION_STYLE enumeration.
/// </summary>
[FieldOffset(0)]
public PARTITION_STYLE PartitionStyle;
/// <summary>
/// The number of partitions on a drive.
///
/// On disks with the MBR layout, this value is always a multiple of 4. Any partitions that are unused have
/// a partition type of PARTITION_ENTRY_UNUSED.
/// </summary>
[FieldOffset(4)]
public uint PartitionCount;
/// <summary>
/// A DRIVE_LAYOUT_INFORMATION_MBR structure containing information about the master boot record type
/// partitioning on the drive.
/// </summary>
[FieldOffset(8)]
public DRIVE_LAYOUT_INFORMATION_UNION Mbr;
/// <summary>
/// A DRIVE_LAYOUT_INFORMATION_GPT structure containing information about the GUID disk partition type
/// partitioning on the drive.
/// </summary>
// [FieldOffset(8)]
//public DRIVE_LAYOUT_INFORMATION_GPT Gpt;
/// <summary>
/// A variable-sized array of PARTITION_INFORMATION_EX structures, one structure for each partition on the
/// drive.
/// </summary>
[FieldOffset(48)]
[MarshalAs(UnmanagedType.ByValArray, ArraySubType = UnmanagedType.Struct, SizeConst = 1)]
public PARTITION_INFORMATION_EX[] PartitionEntry;
}
[StructLayout(LayoutKind.Explicit)]
private struct CREATE_DISK_MBR
{
[FieldOffset(0)]
public uint Signature;
}
[StructLayout(LayoutKind.Explicit)]
private struct CREATE_DISK_GPT
{
[FieldOffset(0)]
public Guid DiskId;
[FieldOffset(16)]
public uint MaxPartitionCount;
}
[StructLayout(LayoutKind.Explicit)]
private struct CREATE_DISK
{
[FieldOffset(0)]
public PARTITION_STYLE PartitionStyle;
[FieldOffset(4)]
public CREATE_DISK_MBR Mbr;
[FieldOffset(4)]
public CREATE_DISK_GPT Gpt;
}
static IntPtr GetHandle(int driveIndex, string physicalName)
{
IntPtr handle;
//bool locked = false;
Console.WriteLine(physicalName);
handle = CreateFile(physicalName, GENERIC_READ | GENERIC_WRITE, FILE_SHARE_READ | FILE_SHARE_WRITE,
IntPtr.Zero, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, IntPtr.Zero);
if (handle == INVALID_HANDLE_VALUE)
{
Console.WriteLine(Marshal.GetLastWin32Error());
return IntPtr.Zero;
}
return handle;
}
partition can be formatted by any FS. for do this you can use fmifs.dll - he export function
VOID WINAPI FormatEx( PWSTR DriveRoot,
FMIFS_MEDIA_TYPE MediaType,
PWSTR FileSystemName, // L"NTFS"
PWSTR VolumeLabel, // OPTIONAL
BOOL QuickFormat,
DWORD ClusterSize, // 0 - default cluster size
PFMIFSCALLBACK Callback );
you can use it for format. code example on c++:
//
// Callback command types
//
enum CALLBACKCOMMAND {
PROGRESS,
DONEWITHSTRUCTURE,
UNKNOWN2,
UNKNOWN3,
UNKNOWN4,
UNKNOWN5,
INSUFFICIENTRIGHTS,
UNKNOWN7,
UNKNOWN8,
UNKNOWN9,
UNKNOWNA,
DONE, // format OK!
UNKNOWNC,
UNKNOWND,
OUTPUT,
STRUCTUREPROGRESS
};
//
// FMIFS callback definition
//
typedef BOOLEAN (WINAPI *PFMIFSCALLBACK)( CALLBACKCOMMAND Command, DWORD SubAction, PVOID ActionInfo );
enum FMIFS_MEDIA_TYPE {
Unknown = MEDIA_TYPE::Unknown, // Format is unknown
RemovableMedia = MEDIA_TYPE::RemovableMedia, // Removable media other than floppy
FixedMedia = MEDIA_TYPE::FixedMedia, // Fixed hard disk media
};
ULONG g_dwTlsIndex;
struct FORMAT_DATA
{
BOOLEAN fOk;
};
BOOLEAN FormatCb( CALLBACKCOMMAND Command, DWORD SubAction, PVOID ActionInfo )
{
DbgPrint("FormatCb(%u, %x, %p)\n", Command, SubAction, ActionInfo);
FORMAT_DATA* fd = (FORMAT_DATA*)TlsGetValue(g_dwTlsIndex);
if (Command == DONE)
{
fd->fOk = TRUE;
}
return TRUE;
}
BOOL TryFormat()
{
FORMAT_DATA fd;
fd.fOk = FALSE;
if ((g_dwTlsIndex = TlsAlloc()) != TLS_OUT_OF_INDEXES)
{
if (HMODULE hmod = LoadLibrary(L"fmifs"))
{
VOID (WINAPI * FormatEx)( PWSTR DriveRoot,
FMIFS_MEDIA_TYPE MediaType,
PWSTR FileSystemName,
PWSTR VolumeLabel,
BOOL QuickFormat,
DWORD ClusterSize,
PFMIFSCALLBACK Callback );
*(void**)&FormatEx = GetProcAddress(hmod, "FormatEx");
if (FormatEx)
{
TlsSetValue(g_dwTlsIndex, &fd);
FormatEx(L"e:", RemovableMedia, L"NTFS", L"SomeLabel", TRUE, 512, FormatCb);
}
FreeLibrary(hmod);
}
TlsFree(g_dwTlsIndex);
}
return fd.fOk;
}
Assuming that you want to use a supported API, I believe that you need either the Virtual Disk Service or the Windows Storage Management Provider depending on the version of Windows.
To the best of my knowledge, there is no I/O control code for formatting partitions. Presumably this is because doing so would require the formatting code to be part of the file system driver, which means it would always be in (virtual) memory, which would be inefficient for functionality that is used so very infrequently.
Iam trying to use DeviceIOControl to create multiple partiions in USB. It is always creating only one partition.
Here is my source code
[DllImport("kernel32.dll", SetLastError = true)]
static extern IntPtr CreateFile(string lpFileName, uint dwDesiredAccess,
uint dwShareMode, IntPtr lpSecurityAttributes, uint dwCreationDisposition,
uint dwFlagsAndAttributes, IntPtr hTemplateFile);
[DllImport("kernel32")]
static extern int CloseHandle(IntPtr handle);
[DllImport("kernel32")]
private static extern int DeviceIoControl
(IntPtr deviceHandle, uint ioControlCode,
IntPtr inBuffer, int inBufferSize,
IntPtr outBuffer, int outBufferSize,
ref int bytesReturned, IntPtr overlapped);
public const uint GENERIC_READ = 0x80000000;
public const uint GENERIC_WRITE = 0x40000000;
public const uint FILE_SHARE_READ = 0x00000001;
public const uint FILE_SHARE_WRITE = 0x00000002;
public const uint OPEN_EXISTING = 0x00000003;
public const uint FILE_ATTRIBUTE_NORMAL = 0x80;
public const uint FSCTL_ALLOW_EXTENDED_DASD_IO = 0x90083;
public const int DRIVE_ACCESS_RETRIES = 10;
public const int DRIVE_ACCESS_TIMEOUT = 15000;
public const uint FSCTL_LOCK_VOLUME = 0x00090018;
static IntPtr INVALID_HANDLE_VALUE = new IntPtr(-1);
public const uint IOCTL_DISK_GET_DRIVE_LAYOUT_EX = 0x00070050;
public const uint IOCTL_DISK_GET_DRIVE_GEOMETRY_EX = 0x000700A0;
public const uint IOCTL_DISK_CREATE_DISK = 0x0007C058;
public const uint IOCTL_DISK_UPDATE_PROPERTIES = 0x00070140;
public const uint IOCTL_DISK_SET_DRIVE_LAYOUT_EX = 0x0007C054;
public const int MIN_EXTRA_PART_SIZE = 1024 * 1024;
public static int mediaType = 0;
/// <summary>
/// Describes the geometry of disk devices and media.
/// </summary>
[StructLayout(LayoutKind.Explicit)]
public struct DISK_GEOMETRY
{
/// <summary>
/// The number of cylinders.
/// </summary>
[FieldOffset(0)]
public Int64 Cylinders;
/// <summary>
/// The type of media. For a list of values, see MEDIA_TYPE.
/// </summary>
[FieldOffset(8)]
public MEDIA_TYPE MediaType;
/// <summary>
/// The number of tracks per cylinder.
/// </summary>
[FieldOffset(12)]
public uint TracksPerCylinder;
/// <summary>
/// The number of sectors per track.
/// </summary>
[FieldOffset(16)]
public uint SectorsPerTrack;
/// <summary>
/// The number of bytes per sector.
/// </summary>
[FieldOffset(20)]
public uint BytesPerSector;
}
/// <summary>
/// Describes the extended geometry of disk devices and media.
/// </summary>
[StructLayout(LayoutKind.Explicit)]
private struct DISK_GEOMETRY_EX
{
/// <summary>
/// A DISK_GEOMETRY structure.
/// </summary>
[FieldOffset(0)]
public DISK_GEOMETRY Geometry;
/// <summary>
/// The disk size, in bytes.
/// </summary>
[FieldOffset(24)]
public Int64 DiskSize;
/// <summary>
/// Any additional data.
/// </summary>
[FieldOffset(32)]
public Byte Data;
}
/// <summary>
/// Represents the format of a partition.
/// </summary>
public enum PARTITION_STYLE : uint
{
/// <summary>
/// Master boot record (MBR) format.
/// </summary>
PARTITION_STYLE_MBR = 0,
/// <summary>
/// GUID Partition Table (GPT) format.
/// </summary>
PARTITION_STYLE_GPT = 1,
/// <summary>
/// Partition not formatted in either of the recognized formats—MBR or GPT.
/// </summary>
PARTITION_STYLE_RAW = 2
}
/// <summary>
/// Contains partition information specific to master boot record (MBR) disks.
/// </summary>
[StructLayout(LayoutKind.Explicit)]
public struct PARTITION_INFORMATION_MBR
{
#region Constants
/// <summary>
/// An unused entry partition.
/// </summary>
public const byte PARTITION_ENTRY_UNUSED = 0x00;
/// <summary>
/// A FAT12 file system partition.
/// </summary>
public const byte PARTITION_FAT_12 = 0x01;
/// <summary>
/// A FAT16 file system partition.
/// </summary>
public const byte PARTITION_FAT_16 = 0x04;
/// <summary>
/// An extended partition.
/// </summary>
public const byte PARTITION_EXTENDED = 0x05;
/// <summary>
/// An IFS partition.
/// </summary>
public const byte PARTITION_IFS = 0x07;
/// <summary>
/// A FAT32 file system partition.
/// </summary>
public const byte PARTITION_FAT32 = 0x0B;
/// <summary>
/// A logical disk manager (LDM) partition.
/// </summary>
public const byte PARTITION_LDM = 0x42;
/// <summary>
/// An NTFT partition.
/// </summary>
public const byte PARTITION_NTFT = 0x80;
/// <summary>
/// A valid NTFT partition.
///
/// The high bit of a partition type code indicates that a partition is part of an NTFT mirror or striped array.
/// </summary>
public const byte PARTITION_VALID_NTFT = 0xC0;
#endregion
/// <summary>
/// The type of partition. For a list of values, see Disk Partition Types.
/// </summary>
[FieldOffset(0)]
[MarshalAs(UnmanagedType.U1)]
public byte PartitionType;
/// <summary>
/// If this member is TRUE, the partition is bootable.
/// </summary>
[FieldOffset(1)]
[MarshalAs(UnmanagedType.I1)]
public bool BootIndicator;
/// <summary>
/// If this member is TRUE, the partition is of a recognized type.
/// </summary>
[FieldOffset(2)]
[MarshalAs(UnmanagedType.I1)]
public bool RecognizedPartition;
/// <summary>
/// The number of hidden sectors in the partition.
/// </summary>
[FieldOffset(4)]
public uint HiddenSectors;
}
/// <summary>
/// Contains GUID partition table (GPT) partition information.
/// </summary>
[StructLayout(LayoutKind.Explicit, CharSet = CharSet.Unicode)]
public struct PARTITION_INFORMATION_GPT
{
/// <summary>
/// A GUID that identifies the partition type.
///
/// Each partition type that the EFI specification supports is identified by its own GUID, which is
/// published by the developer of the partition.
/// </summary>
[FieldOffset(0)]
public Guid PartitionType;
/// <summary>
/// The GUID of the partition.
/// </summary>
[FieldOffset(16)]
public Guid PartitionId;
/// <summary>
/// The Extensible Firmware Interface (EFI) attributes of the partition.
///
/// </summary>
[FieldOffset(32)]
public UInt64 Attributes;
/// <summary>
/// A wide-character string that describes the partition.
/// </summary>
[FieldOffset(40)]
public string Name;
}
/// <summary>
/// Provides information about a drive's master boot record (MBR) partitions.
/// </summary>
[StructLayout(LayoutKind.Explicit)]
private struct DRIVE_LAYOUT_INFORMATION_MBR
{
/// <summary>
/// The signature of the drive.
/// </summary>
[FieldOffset(0)]
public uint Signature;
}
/// <summary>
/// Contains information about a drive's GUID partition table (GPT) partitions.
/// </summary>
[StructLayout(LayoutKind.Explicit)]
private struct DRIVE_LAYOUT_INFORMATION_GPT
{
/// <summary>
/// The GUID of the disk.
/// </summary>
[FieldOffset(0)]
public Guid DiskId;
/// <summary>
/// The starting byte offset of the first usable block.
/// </summary>
[FieldOffset(16)]
public Int64 StartingUsableOffset;
/// <summary>
/// The size of the usable blocks on the disk, in bytes.
/// </summary>
[FieldOffset(24)]
public Int64 UsableLength;
/// <summary>
/// The maximum number of partitions that can be defined in the usable block.
/// </summary>
[FieldOffset(32)]
public uint MaxPartitionCount;
}
/// <summary>
/// Contains information about a disk partition.
/// </summary>
[StructLayout(LayoutKind.Explicit)]
public struct PARTITION_INFORMATION_EX
{
/// <summary>
/// The format of the partition. For a list of values, see PARTITION_STYLE.
/// </summary>
[FieldOffset(0)]
public PARTITION_STYLE PartitionStyle;
/// <summary>
/// The starting offset of the partition.
/// </summary>
[FieldOffset(8)]
public Int64 StartingOffset;
/// <summary>
/// The length of the partition, in bytes.
/// </summary>
[FieldOffset(16)]
public Int64 PartitionLength;
/// <summary>
/// The number of the partition (1-based).
/// </summary>
[FieldOffset(24)]
public uint PartitionNumber;
/// <summary>
/// If this member is TRUE, the partition information has changed. When you change a partition (with
/// IOCTL_DISK_SET_DRIVE_LAYOUT), the system uses this member to determine which partitions have changed
/// and need their information rewritten.
/// </summary>
[FieldOffset(28)]
[MarshalAs(UnmanagedType.I1)]
public bool RewritePartition;
/// <summary>
/// A PARTITION_INFORMATION_MBR structure that specifies partition information specific to master boot
/// record (MBR) disks. The MBR partition format is the standard AT-style format.
/// </summary>
[FieldOffset(32)]
public PARTITION_INFORMATION_MBR Mbr;
/// <summary>
/// A PARTITION_INFORMATION_GPT structure that specifies partition information specific to GUID partition
/// table (GPT) disks. The GPT format corresponds to the EFI partition format.
/// </summary>
[FieldOffset(32)]
public PARTITION_INFORMATION_GPT Gpt;
}
[StructLayout(LayoutKind.Explicit)]
private struct DRIVE_LAYOUT_INFORMATION_UNION
{
[FieldOffset(0)]
public DRIVE_LAYOUT_INFORMATION_MBR Mbr;
[FieldOffset(0)]
public DRIVE_LAYOUT_INFORMATION_GPT Gpt;
}
/// <summary>
/// Contains extended information about a drive's partitions.
/// </summary>
[StructLayout(LayoutKind.Explicit)]
private struct DRIVE_LAYOUT_INFORMATION_EX
{
/// <summary>
/// The style of the partitions on the drive enumerated by the PARTITION_STYLE enumeration.
/// </summary>
[FieldOffset(0)]
public PARTITION_STYLE PartitionStyle;
/// <summary>
/// The number of partitions on a drive.
///
/// On disks with the MBR layout, this value is always a multiple of 4. Any partitions that are unused have
/// a partition type of PARTITION_ENTRY_UNUSED.
/// </summary>
[FieldOffset(4)]
public uint PartitionCount;
/// <summary>
/// A DRIVE_LAYOUT_INFORMATION_MBR structure containing information about the master boot record type
/// partitioning on the drive.
/// </summary>
[FieldOffset(8)]
public DRIVE_LAYOUT_INFORMATION_UNION Mbr;
/// <summary>
/// A DRIVE_LAYOUT_INFORMATION_GPT structure containing information about the GUID disk partition type
/// partitioning on the drive.
/// </summary>
// [FieldOffset(8)]
//public DRIVE_LAYOUT_INFORMATION_GPT Gpt;
/// <summary>
/// A variable-sized array of PARTITION_INFORMATION_EX structures, one structure for each partition on the
/// drive.
/// </summary>
[FieldOffset(48)]
[MarshalAs(UnmanagedType.ByValArray, ArraySubType = UnmanagedType.Struct, SizeConst = 4)]
public PARTITION_INFORMATION_EX[] PartitionEntry;
}
[StructLayout(LayoutKind.Explicit)]
private struct CREATE_DISK_MBR
{
[FieldOffset(0)]
public uint Signature;
}
[StructLayout(LayoutKind.Explicit)]
private struct CREATE_DISK_GPT
{
[FieldOffset(0)]
public Guid DiskId;
[FieldOffset(16)]
public uint MaxPartitionCount;
}
[StructLayout(LayoutKind.Explicit)]
private struct CREATE_DISK
{
[FieldOffset(0)]
public PARTITION_STYLE PartitionStyle;
[FieldOffset(4)]
public CREATE_DISK_MBR Mbr;
[FieldOffset(4)]
public CREATE_DISK_GPT Gpt;
}
static IntPtr GetHandle(int driveIndex)
{
IntPtr handle;
//bool locked = false;
Program p = new Program();
string physicalName = p.GetPhysicalName(driveIndex);
Debug.WriteLine(physicalName);
handle = CreateFile(physicalName, GENERIC_READ | GENERIC_WRITE, FILE_SHARE_READ | FILE_SHARE_WRITE,
IntPtr.Zero, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, IntPtr.Zero);
if (handle == INVALID_HANDLE_VALUE)
{
Debug.WriteLine(Marshal.GetLastWin32Error());
return IntPtr.Zero;
}
return handle;
}
//Returns true if drive Index is successfully created
//Returns false if not created successfully
static bool CreatePartition(int driveIndex)
{
IntPtr handle = GetHandle(driveIndex);
if (handle == INVALID_HANDLE_VALUE)
{
return false;
}
//Step 2: IOCTL_DISK_GET_DRIVE_GEOMETRY_EX to get the physical disk's geometry ( we need some information in it to fill partition data)
//The number of surfaces (or heads, which is the same thing), cylinders, and sectors vary a lot; the specification of the number of each is called the geometry of a hard disk.
//The geometry is usually stored in a special, battery-powered memory location called the CMOS RAM , from where the operating system can fetch it during bootup or driver initialization.
int size = 0;
DISK_GEOMETRY_EX geometry = new DISK_GEOMETRY_EX();
IntPtr lpOutBuffer = Marshal.AllocHGlobal(Marshal.SizeOf(typeof(DISK_GEOMETRY_EX)));
Marshal.StructureToPtr(geometry, lpOutBuffer, false);
int result = DeviceIoControl( handle, IOCTL_DISK_GET_DRIVE_GEOMETRY_EX, IntPtr.Zero, 0, lpOutBuffer,
Marshal.SizeOf(typeof(DISK_GEOMETRY_EX)),
ref size, IntPtr.Zero);
geometry = (DISK_GEOMETRY_EX)Marshal.PtrToStructure(lpOutBuffer, typeof(DISK_GEOMETRY_EX));
//Step 3: IOCTL_DISK_CREATE_DISK is used to initialize a disk with an empty partition table.
CREATE_DISK createDisk = new CREATE_DISK();
createDisk.PartitionStyle = PARTITION_STYLE.PARTITION_STYLE_MBR;
createDisk.Mbr.Signature = 1;
IntPtr createDiskBuffer = Marshal.AllocHGlobal(Marshal.SizeOf(typeof(CREATE_DISK)));
Marshal.StructureToPtr(createDisk, createDiskBuffer, false);
byte[] arr1 = new byte[Marshal.SizeOf(typeof(CREATE_DISK))];
Marshal.Copy(createDiskBuffer, arr1, 0, Marshal.SizeOf(typeof(CREATE_DISK)));
result = DeviceIoControl(handle, IOCTL_DISK_CREATE_DISK, createDiskBuffer, Marshal.SizeOf(typeof(CREATE_DISK)),
IntPtr.Zero, 0, ref size, IntPtr.Zero);
result = DeviceIoControl(handle, IOCTL_DISK_UPDATE_PROPERTIES, IntPtr.Zero, 0, IntPtr.Zero, 0, ref size, IntPtr.Zero);
//Step 4: IOCTL_DISK_SET_DRIVE_LAYOUT_EX to repartition a disk as specified.
//Note: use IOCTL_DISK_UPDATE_PROPERTIES to synchronize system view after IOCTL_DISK_CREATE_DISK and IOCTL_DISK_SET_DRIVE_LAYOUT_EX
/* DWORD driveLayoutSize = sizeof(DRIVE_LAYOUT_INFORMATION_EX) + sizeof(PARTITION_INFORMATION_EX) * 4 * 25;
DRIVE_LAYOUT_INFORMATION_EX *DriveLayoutEx = (DRIVE_LAYOUT_INFORMATION_EX *) new BYTE[driveLayoutSize];*/
IntPtr driveLayoutbuffer = Marshal.AllocHGlobal(624);
DRIVE_LAYOUT_INFORMATION_EX driveLayoutEx = new DRIVE_LAYOUT_INFORMATION_EX();
int pn = 0;
driveLayoutEx.PartitionEntry = new PARTITION_INFORMATION_EX[4];
mediaType = (int)geometry.Geometry.MediaType;
Int64 bytes_per_track = (geometry.Geometry.SectorsPerTrack) * (geometry.Geometry.BytesPerSector);
driveLayoutEx.PartitionEntry[pn].StartingOffset = 0x123;
Int64 main_part_size_in_sectors, extra_part_size_in_sectors = 0;
main_part_size_in_sectors = (geometry.DiskSize - driveLayoutEx.PartitionEntry[pn].StartingOffset) / geometry.Geometry.BytesPerSector;
if (main_part_size_in_sectors <= 0)
{
return false;
}
extra_part_size_in_sectors = (MIN_EXTRA_PART_SIZE + bytes_per_track - 1) / bytes_per_track;
main_part_size_in_sectors = ((main_part_size_in_sectors / geometry.Geometry.SectorsPerTrack) -
extra_part_size_in_sectors) * geometry.Geometry.SectorsPerTrack;
if (main_part_size_in_sectors <= 0)
{
return false;
}
driveLayoutEx.PartitionEntry[pn].PartitionLength = 50000;
driveLayoutEx.PartitionEntry[pn].PartitionStyle = PARTITION_STYLE.PARTITION_STYLE_MBR;
driveLayoutEx.PartitionEntry[pn].Mbr.PartitionType = 0x07;
driveLayoutEx.PartitionEntry[pn].Mbr.BootIndicator = true;
pn++;
// Set the optional extra partition
// Should end on a track boundary
driveLayoutEx.PartitionEntry[pn].StartingOffset = 0x400;
driveLayoutEx.PartitionEntry[pn].PartitionLength = 26244; //TODO: Has to change
driveLayoutEx.PartitionEntry[pn].Mbr.PartitionType = 0xef;
pn++;
for (uint i = 0; i < pn; i++)
{
driveLayoutEx.PartitionEntry[i].PartitionNumber = i + 1;
driveLayoutEx.PartitionEntry[i].PartitionStyle = PARTITION_STYLE.PARTITION_STYLE_MBR;
driveLayoutEx.PartitionEntry[i].RewritePartition = true;
}
driveLayoutEx.PartitionStyle = PARTITION_STYLE.PARTITION_STYLE_MBR;
driveLayoutEx.PartitionCount = 4; //It should be a multiple of 4
driveLayoutEx.Mbr.Mbr.Signature = createDisk.Mbr.Signature;
Marshal.StructureToPtr(driveLayoutEx, driveLayoutbuffer, false);
result = DeviceIoControl(handle, IOCTL_DISK_SET_DRIVE_LAYOUT_EX, driveLayoutbuffer, 624, IntPtr.Zero, 0, ref size, IntPtr.Zero);
result = DeviceIoControl(handle, IOCTL_DISK_UPDATE_PROPERTIES, IntPtr.Zero, 0, IntPtr.Zero, 0, ref size, IntPtr.Zero);
Marshal.FreeHGlobal(driveLayoutbuffer);
Marshal.FreeHGlobal(createDiskBuffer);
Marshal.FreeHGlobal(lpOutBuffer);
return true;
}
It only creates one partition with offset to zero and partition length to full size of USB.
Iam trying this from past two days but still no solution.
I got the Solution.
It was because:
Marshal.AllocHGlobal allocated memory is not zero filled.
PARTITION_INFORMATION_GPT structure name member filled is only has 8
bytes of memory allocated instead it requires 72 bytes.
[StructLayout(LayoutKind.Explicit, CharSet = CharSet.Unicode)]
public struct PARTITION_INFORMATION_GPT
{
/// <summary>
/// A GUID that identifies the partition type.
///
/// Each partition type that the EFI specification supports is identified by its own GUID, which is
/// published by the developer of the partition.
/// </summary>
[FieldOffset(0)]
public Guid PartitionType;
/// <summary>
/// The GUID of the partition.
/// </summary>
[FieldOffset(16)]
public Guid PartitionId;
/// <summary>
/// The Extensible Firmware Interface (EFI) attributes of the partition.
///
/// </summary>
[FieldOffset(32)]
public UInt64 Attributes;
/// <summary>
/// A wide-character string that describes the partition.
/// </summary>
[FieldOffset(40)]
[MarshalAs(UnmanagedType.ByValTStr, SizeConst = 36)]
public string Name;
}
I'm trying to write general interactive shell wrapper class from c#/.Net using CreateProcess() for Dos, Powershell, Plink, etc, and I've found the article Why does StandardOutput.Read() block when StartInfo.RedirectStandardInput is set to true? to write wrapper classes which redirect child process's stdin/stdout for getting powershell command execution output. As he directed, I got his source code from http://sixfeetsix.blogspot.com/2012/08/interacting-with-sub-processed-shell-in.html. However, any command line execution such as plink.exe, cmd.exe works great for redirection of stdin/stdout but powershell.exe doesn't get me the input/output correctly. It looks like powershell.exe doesn't inherit from parant process and thread for pipe. Would you give me any feedbacks for getting retValue as of "get-help" powershell command successfully?
When I run "dir" command from DosShell, it returns the output of dos command "dir" successfully. However, Powershell doesn't return "get-help" command from powershell prompt.
using System;
using System.ComponentModel;
using System.Collections;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Runtime.InteropServices;
using System.Threading;
using System.Reflection;
using System.Text.RegularExpressions;
using System.Diagnostics;
namespace PowershellWrapperPOC
{
class Program
{
static void Main(string[] args)
{
StringBuilder testOutput = new StringBuilder();
string retValue = null;
DosShell ds = new DosShell();
retValue = ds.Start(#"C:\Windows\System32\cmd.exe /k", #"C:\Windows\System32\");
testOutput.Append(retValue.ToString());
retValue = ds.SendAndReceive("dir");
testOutput.Append(retValue.ToString());
ds.Terminate();
Debug.Print(testOutput.ToString());
testOutput = new StringBuilder();
PowerShell ps = new PowerShell();
retValue = ps.Start(#"C:\Windows\System32\WindowsPowerShell\v1.0\powershell.exe", #"C:\Windows\System32\");
testOutput.Append(retValue.ToString());
retValue = ps.SendAndReceive("get-help");
testOutput.Append(retValue.ToString());
ps.Terminate();
Debug.Print(testOutput.ToString());
}
}
public class PowerShell : CommonShell
{
public PowerShell()
{
base.SetPrintSendCommand(false);
base.SetEncoding("utf8");
base.SetExitCommand("exit");
base.SetPrompts("> ; ");
}
}
public class DosShell : CommonShell
{
public DosShell()
{
base.SetPrintSendCommand(false);
base.SetEncoding("utf8");
base.SetExitCommand("exit");
base.SetPrompts(">");
}
}
public class CommonShell : ShellProcess
{
private StringBuilder _strOutput;
private StringBuilder _strLastOutput;
private static string _escapeCharsPattern = "[\\[|\\(][0-9;?]*[^0-9;]";
private int _timeout;
public CommonShell()
{
_strOutput = new StringBuilder();
_strLastOutput = new StringBuilder();
}
public bool RemoveEscChars
{
get;
set;
}
protected override string Prompt
{
get;
set;
}
protected override string ExitCommand
{
get;
set;
}
protected override Encoding Encoding
{
get;
set;
}
public bool PrintSendCommand
{
get;
set;
}
new public string Start(string applicationName, string workDirectory)
{
if (PrintSendCommand == true)
{
_strOutput.Append(applicationName + "\r\n");
_strLastOutput.Append(applicationName + "\r\n");
}
var results = base.Start(applicationName, workDirectory);
// if remove esc chars?
if (RemoveEscChars == true)
{
string str = results.Item3;
str = Regex.Replace(str, _escapeCharsPattern, "");
_strOutput.Append(str);
_strLastOutput.Append(str);
}
else
{
_strOutput.Append(results.Item3);
_strLastOutput.Append(results.Item3);
}
return _strLastOutput.ToString();
}
new public string SendAndReceive(string toSend)
{
_strLastOutput = new StringBuilder();
if (PrintSendCommand == true)
{
_strLastOutput.Append(toSend + "\r\n");
_strOutput.Append(toSend + "\r\n");
}
// Wait forever till getting the expected prompt
var results = base.SendAndReceive(toSend + "\r\n");
// if remove esc chars?
if (RemoveEscChars == true)
{
string str = results.Item3;
str = Regex.Replace(str, _escapeCharsPattern, "");
_strOutput.Append(str);
_strLastOutput.Append(str);
}
else
{
_strOutput.Append(results.Item3);
_strLastOutput.Append(results.Item3);
}
return _strLastOutput.ToString();
}
public void SetPrompts(string prompt)
{
var enc = this.Encoding;
byte[] utfBytes = enc.GetBytes(prompt);
Prompt = enc.GetString(utfBytes);
}
public void SetEncoding(string enc)
{
string l_enc = enc.ToLower();
switch (l_enc)
{
case "utf8":
this.Encoding = Encoding.UTF8;
break;
case "utf7":
this.Encoding = Encoding.UTF7;
break;
case "utf32":
this.Encoding = Encoding.UTF32;
break;
case "ascii":
this.Encoding = Encoding.ASCII;
break;
default:
return;
}
}
public void SetExitCommand(string command)
{
ExitCommand = command;
}
public void SetPrintSendCommand(bool bPrintSendCommand)
{
PrintSendCommand = bPrintSendCommand;
}
public void SetRemoveEscChars(bool bRemove)
{
RemoveEscChars = bRemove;
}
public void SetTimeout(int timeout)
{
this._timeout = timeout;
}
public void Flush()
{
_strOutput = new StringBuilder();
_strLastOutput = new StringBuilder();
}
public string GetLastOutput()
{
return _strLastOutput.ToString();
}
public string GetOutput()
{
return _strLastOutput.ToString();
}
}
/// <summary>
/// Kernel32 Marshaling
/// </summary>
public static class Kernel32
{
/// <summary>
/// HANDLE_FLAG_INHERIT
///
/// If this flag is set, a child process created with the bInheritHandles parameter of CreateProcess set to TRUE will inherit the object handle.
///
/// http://msdn.microsoft.com/en-us/library/windows/desktop/ms724935(v=vs.85).aspx
/// </summary>
public const int HANDLE_FLAG_INHERIT = 1;
/// <summary>
/// STARTF_USESTDHANDLES
///
/// The hStdInput, hStdOutput, and hStdError members contain additional information.
/// If this flag is specified when calling one of the process creation functions, the handles must be inheritable and the function's
/// bInheritHandles parameter must be set to TRUE. For more information, see Handle Inheritance.
///
/// If this flag is specified when calling the GetStartupInfo function, these members are either the handle value specified during
/// process creation or INVALID_HANDLE_VALUE.
///
/// Handles must be closed with CloseHandle when they are no longer needed.
/// This flag cannot be used with STARTF_USEHOTKEY.
///
/// http://msdn.microsoft.com/en-us/library/windows/desktop/ms686331(v=vs.85).aspx
/// </summary>
public const UInt32 STARTF_USESTDHANDLES = 0x00000100;
/// <summary>
/// STARTF_USESHOWWINDOW
///
/// http://msdn.microsoft.com/en-us/library/windows/desktop/ms686331(v=vs.85).aspx
/// </summary>
public const UInt32 STARTF_USESHOWWINDOW = 0x00000001;
/// <summary>
/// SECURITY_ATTRIBUTES
/// </summary>
public struct SECURITY_ATTRIBUTES
{
/// <summary>
/// The size, in bytes, of this structure. Set this value to the size of the SECURITY_ATTRIBUTES structure.
/// </summary>
public int length;
/// <summary>
/// A pointer to a SECURITY_DESCRIPTOR structure that controls access to the object.
/// If the value of this member is NULL, the object is assigned the default security descriptor associated with the access token of the calling process.
/// This is not the same as granting access to everyone by assigning a NULL discretionary access control list (DACL).
/// By default, the default DACL in the access token of a process allows access only to the user represented by the access token.
///
/// http://msdn.microsoft.com/en-us/library/windows/desktop/aa379560(v=vs.85).aspx
/// </summary>
public IntPtr lpSecurityDescriptor;
/// <summary>
/// A Boolean value that specifies whether the returned handle is inherited when a new process is created.
/// If this member is TRUE, the new process inherits the handle.
/// </summary>
[MarshalAs(UnmanagedType.Bool)]
public bool bInheritHandle;
}
/// <summary>
/// STARTUPINFO
/// </summary>
public struct STARTUPINFO
{
/// <summary>
/// The size of the structure, in bytes.
/// </summary>
public uint cb;
/// <summary>
/// Reserved; must be NULL.
/// </summary>
public string lpReserved;
/// <summary>
/// The name of the desktop, or the name of both the desktop and window station for this process.
/// A backslash in the string indicates that the string includes both the desktop and window station names.
/// </summary>
public string lpDesktop;
/// <summary>
/// For console processes, this is the title displayed in the title bar if a new console window is created.
/// If NULL, the name of the executable file is used as the window title instead.
/// This parameter must be NULL for GUI or console processes that do not create a new console window.
/// </summary>
public string lpTitle;
/// <summary>
/// If dwFlags specifies STARTF_USEPOSITION, this member is the x offset of the upper left corner of a window if a new window is created, in pixels.
/// Otherwise, this member is ignored.
///
/// The offset is from the upper left corner of the screen. For GUI processes, the specified position is used the first time the new process calls
/// CreateWindow to create an overlapped window if the x parameter of CreateWindow is CW_USEDEFAULT.
/// </summary>
public uint dwX;
/// <summary>
/// If dwFlags specifies STARTF_USEPOSITION, this member is the y offset of the upper left corner of a window if a new window is created, in pixels.
/// Otherwise, this member is ignored.
///
/// The offset is from the upper left corner of the screen. For GUI processes, the specified position is used the first time the new process calls
/// CreateWindow to create an overlapped window if the y parameter of CreateWindow is CW_USEDEFAULT.
/// </summary>
public uint dwY;
/// <summary>
/// If dwFlags specifies STARTF_USESIZE, this member is the width of the window if a new window is created, in pixels.
/// Otherwise, this member is ignored.
///
/// For GUI processes, this is used only the first time the new process calls CreateWindow to create an overlapped window
/// if the nWidth parameter of CreateWindow is CW_USEDEFAULT.
/// </summary>
public uint dwXSize;
/// <summary>
/// If dwFlags specifies STARTF_USESIZE, this member is the height of the window if a new window is created, in pixels.
/// Otherwise, this member is ignored.
///
/// For GUI processes, this is used only the first time the new process calls CreateWindow to create an overlapped window
/// if the nHeight parameter of CreateWindow is CW_USEDEFAULT.
/// </summary>
public uint dwYSize;
/// <summary>
/// If dwFlags specifies STARTF_USECOUNTCHARS, if a new console window is created in a console process,
/// this member specifies the screen buffer width, in character columns. Otherwise, this member is ignored.
/// </summary>
public uint dwXCountChars;
/// <summary>
/// If dwFlags specifies STARTF_USECOUNTCHARS, if a new console window is created in a console process,
/// this member specifies the screen buffer height, in character rows. Otherwise, this member is ignored.
/// </summary>
public uint dwYCountChars;
/// <summary>
/// If dwFlags specifies STARTF_USEFILLATTRIBUTE, this member is the initial text and background colors
/// if a new console window is created in a console application. Otherwise, this member is ignored.
///
/// This value can be any combination of the following values:
/// FOREGROUND_BLUE, FOREGROUND_GREEN, FOREGROUND_RED, FOREGROUND_INTENSITY, BACKGROUND_BLUE, BACKGROUND_GREEN,
/// BACKGROUND_RED, and BACKGROUND_INTENSITY. For example, the following combination of values produces red text on a white background:
///
/// FOREGROUND_RED| BACKGROUND_RED| BACKGROUND_GREEN| BACKGROUND_BLUE
/// </summary>
public uint dwFillAttribute;
/// <summary>
/// A bitfield that determines whether certain STARTUPINFO members are used when the process creates a window.
/// This member can be one or more of the following values.
///
/// http://msdn.microsoft.com/en-us/library/windows/desktop/ms686331(v=vs.85).aspx
/// </summary>
public uint dwFlags;
/// <summary>
/// If dwFlags specifies STARTF_USESHOWWINDOW, this member can be any of the values that can be specified in the nCmdShow parameter for the
/// ShowWindow function, except for SW_SHOWDEFAULT. Otherwise, this member is ignored.
///
/// For GUI processes, the first time ShowWindow is called, its nCmdShow parameter is ignored wShowWindow specifies the default value.
/// In subsequent calls to ShowWindow, the wShowWindow member is used if the nCmdShow parameter of ShowWindow is set to SW_SHOWDEFAULT.
/// </summary>
public short wShowWindow;
/// <summary>
/// Reserved for use by the C Run-time; must be zero.
/// </summary>
public short cbReserved2;
/// <summary>
/// Reserved for use by the C Run-time; must be NULL.
/// </summary>
public IntPtr lpReserved2;
/// <summary>
/// If dwFlags specifies STARTF_USESTDHANDLES, this member is the standard input handle for the process.
/// If STARTF_USESTDHANDLES is not specified, the default for standard input is the keyboard buffer.
///
/// If dwFlags specifies STARTF_USEHOTKEY, this member specifies a hotkey value that is sent as the wParam parameter of a
/// WM_SETHOTKEY message to the first eligible top-level window created by the application that owns the process.
/// If the window is created with the WS_POPUP window style, it is not eligible unless the WS_EX_APPWINDOW extended window style is also set.
///
/// For more information, see CreateWindowEx.
///
/// Otherwise, this member is ignored.
/// </summary>
public IntPtr hStdInput;
/// <summary>
/// If dwFlags specifies STARTF_USESTDHANDLES, this member is the standard output handle for the process.
/// Otherwise, this member is ignored and the default for standard output is the console window's buffer.
///
/// If a process is launched from the taskbar or jump list, the system sets hStdOutput to a handle to the monitor
/// that contains the taskbar or jump list used to launch the process. For more information, see Remarks.
///
/// Windows 7, Windows Server 2008 R2, Windows Vista, Windows Server 2008, Windows XP, and Windows Server 2003:
/// This behavior was introduced in Windows 8 and Windows Server 2012.
/// </summary>
public IntPtr hStdOutput;
/// <summary>
/// If dwFlags specifies STARTF_USESTDHANDLES, this member is the standard error handle for the process.
/// Otherwise, this member is ignored and the default for standard error is the console window's buffer.
/// </summary>
public IntPtr hStdError;
}
/// <summary>
/// http://msdn.microsoft.com/en-us/library/windows/desktop/ms684873(v=vs.85).aspx
/// </summary>
public struct PROCESS_INFORMATION
{
/// <summary>
/// A handle to the newly created process. The handle is used to specify the process in all functions that perform operations on the process object.
/// </summary>
public IntPtr hProcess;
/// <summary>
/// A handle to the primary thread of the newly created process. The handle is used to specify the thread in all functions that perform operations on the thread object.
/// </summary>
public IntPtr hThread;
/// <summary>
/// A value that can be used to identify a process. The value is valid from the time the process is created until all handles to the process are closed and the process object is freed; at this point, the identifier may be reused.
/// </summary>
public uint dwProcessId;
/// <summary>
/// A value that can be used to identify a thread. The value is valid from the time the thread is created until all handles to the thread are closed and the thread object is freed; at this point, the identifier may be reused.
/// </summary>
public uint dwThreadId;
}
/// <summary>
/// http://msdn.microsoft.com/en-us/library/windows/desktop/ms682425(v=vs.85).aspx
/// </summary>
/// <param name="lpApplicationName"></param>
/// <param name="lpCommandLine"></param>
/// <param name="lpProcessAttributes"></param>
/// <param name="lpThreadAttributes"></param>
/// <param name="bInheritHandles"></param>
/// <param name="dwCreationFlags"></param>
/// <param name="lpEnvironment"></param>
/// <param name="lpCurrentDirectory"></param>
/// <param name="lpStartupInfo"></param>
/// <param name="lpProcessInformation"></param>
/// <returns></returns>
[DllImport("kernel32.dll", SetLastError = true)]
[return: MarshalAs(UnmanagedType.Bool)]
public static extern bool CreateProcess(string lpApplicationName,
string lpCommandLine,
IntPtr lpProcessAttributes,
IntPtr lpThreadAttributes,
[MarshalAs(UnmanagedType.Bool)] bool bInheritHandles,
uint dwCreationFlags,
IntPtr lpEnvironment,
string lpCurrentDirectory,
ref STARTUPINFO lpStartupInfo,
out PROCESS_INFORMATION lpProcessInformation);
/// <summary>
/// http://msdn.microsoft.com/en-us/library/windows/desktop/ms724211(v=vs.85).aspx
/// </summary>
/// <param name="hObject"></param>
/// <returns></returns>
[DllImport("kernel32.dll", SetLastError = true)]
[return: MarshalAs(UnmanagedType.Bool)]
public static extern bool CloseHandle(IntPtr hObject);
/// <summary>
/// http://msdn.microsoft.com/en-us/library/windows/desktop/aa365152(v=vs.85).aspx
/// </summary>
/// <param name="hReadPipe"></param>
/// <param name="hWritePipe"></param>
/// <param name="lpPipeAttributes"></param>
/// <param name="nSize"></param>
/// <returns></returns>
[DllImport("kernel32.dll", SetLastError = true)]
[return: MarshalAs(UnmanagedType.Bool)]
public static extern bool CreatePipe(out IntPtr hReadPipe,
out IntPtr hWritePipe,
ref SECURITY_ATTRIBUTES lpPipeAttributes,
uint nSize);
/// <summary>
/// http://msdn.microsoft.com/en-us/library/windows/desktop/aa365779(v=vs.85).aspx
/// </summary>
/// <param name="hNamedPipe"></param>
/// <param name="pBuffer"></param>
/// <param name="nBufferSize"></param>
/// <param name="lpBytesRead"></param>
/// <param name="lpTotalBytesAvail"></param>
/// <param name="lpBytesLeftThisMessage"></param>
/// <returns></returns>
[DllImport("kernel32.dll", SetLastError = true)]
[return: MarshalAs(UnmanagedType.Bool)]
public static extern unsafe bool PeekNamedPipe(IntPtr hNamedPipe,
IntPtr pBuffer,
int nBufferSize,
IntPtr lpBytesRead,
int* lpTotalBytesAvail,
IntPtr lpBytesLeftThisMessage);
/// <summary>
/// http://msdn.microsoft.com/en-us/library/windows/desktop/aa365467(v=vs.85).aspx
/// </summary>
/// <param name="hFile"></param>
/// <param name="pBuffer"></param>
/// <param name="nNumberOfBytesToRead"></param>
/// <param name="lpNumberOfBytesRead"></param>
/// <param name="lpOverlapped"></param>
/// <returns></returns>
[DllImport("kernel32.dll", SetLastError = true)]
[return: MarshalAs(UnmanagedType.Bool)]
public static extern unsafe bool ReadFile(IntPtr hFile,
void* pBuffer,
int nNumberOfBytesToRead,
int* lpNumberOfBytesRead,
IntPtr lpOverlapped);
/// <summary>
/// http://msdn.microsoft.com/en-us/library/windows/desktop/aa365747(v=vs.85).aspx
/// </summary>
/// <param name="hFile"></param>
/// <param name="pBuffer"></param>
/// <param name="nNumberOfBytesToWrite"></param>
/// <param name="lpNumberOfBytesWritten"></param>
/// <param name="lpOverlapped"></param>
/// <returns></returns>
[DllImport("kernel32.dll", SetLastError = true)]
[return: MarshalAs(UnmanagedType.Bool)]
public static extern unsafe bool WriteFile(IntPtr hFile,
void* pBuffer,
int nNumberOfBytesToWrite,
int* lpNumberOfBytesWritten,
IntPtr lpOverlapped);
/// <summary>
/// http://msdn.microsoft.com/en-us/library/windows/desktop/ms724935(v=vs.85).aspx
/// </summary>
/// <param name="hObject"></param>
/// <param name="dwMask"></param>
/// <param name="dwFlags"></param>
/// <returns></returns>
[DllImport("kernel32.dll", SetLastError = true)]
[return: MarshalAs(UnmanagedType.Bool)]
public static extern bool SetHandleInformation(IntPtr hObject, int dwMask, uint dwFlags);
}
public abstract class ShellProcess
{
IntPtr _hChildStdoutR, _hChildStdoutW, _hChildStderrR, _hChildStderrW, _hChildStdinR, _hChildStdinW;
Kernel32.SECURITY_ATTRIBUTES _sa, _sa_process, _sa_thread;
Kernel32.STARTUPINFO _si;
Kernel32.PROCESS_INFORMATION _pi;
string _applicationName;
protected abstract string Prompt { get; set; }
protected abstract string ExitCommand { get; set; }
protected abstract Encoding Encoding { get; set; }
static unsafe int Write(IntPtr h, byte[] buffer, int index, int count)
{
int n = 0;
fixed (byte* p = buffer)
{
if (!Kernel32.WriteFile(h, p + index, count, &n, IntPtr.Zero))
throw new Win32Exception(Marshal.GetLastWin32Error());
}
return n;
}
static unsafe int Peek(IntPtr h)
{
int n = 0;
if (!Kernel32.PeekNamedPipe(h, IntPtr.Zero, 0, IntPtr.Zero, &n, IntPtr.Zero))
throw new Win32Exception(Marshal.GetLastWin32Error());
return n;
}
static unsafe int Read(IntPtr h, byte[] buffer, int index, int count)
{
int n = 0;
fixed (byte* p = buffer)
{
if (!Kernel32.ReadFile(h, p + index, count, &n, IntPtr.Zero))
throw new Win32Exception(Marshal.GetLastWin32Error());
}
return n;
}
public virtual void SendCommand(string s)
{
byte[] bytesToWrite = Encoding.GetBytes(s);
Write(_hChildStdinW, bytesToWrite, 0, bytesToWrite.Length);
}
Tuple<string, string, string> ReadToPrompt()
{
StringBuilder strOutput = new StringBuilder();
const int bufferLength = 128;
byte[] buffer = new byte[bufferLength];
int bytesReadCount;
var stdOut = new StringBuilder(4096);
var stdErr = new StringBuilder();
string[] prompts = Prompt.Split(';');
bool foundPrompt = false;
while (!foundPrompt)
{
while (Peek(_hChildStdoutR) > 0)
{
bytesReadCount = Read(_hChildStdoutR, buffer, 0, bufferLength);
stdOut.Append(Encoding.GetString(buffer, 0, bytesReadCount));
strOutput.Append(Encoding.GetString(buffer, 0, bytesReadCount));
}
foreach (string prompt in prompts)
{
if (stdOut.ToString().Contains(prompt))
{
foundPrompt = true;
break;
}
}
//strOutput.Append(stdOut);
while (Peek(_hChildStderrR) > 0)
{
bytesReadCount = Read(_hChildStderrR, buffer, 0, bufferLength);
stdErr.Append(Encoding.GetString(buffer, 0, bytesReadCount));
strOutput.Append(Encoding.GetString(buffer, 0, bytesReadCount));
}
foreach (string prompt in prompts)
{
if (stdErr.ToString().Contains(prompt))
{
foundPrompt = true;
break;
}
}
//strOutput.Append(stdErr);
Thread.Sleep(20);
}
while (Peek(_hChildStderrR) > 0)
{
bytesReadCount = Read(_hChildStderrR, buffer, 0, bufferLength);
stdErr.Append(Encoding.GetString(buffer, 0, bytesReadCount));
strOutput.Append(Encoding.GetString(buffer, 0, bytesReadCount));
}
return new Tuple<string, string, string>(stdOut.ToString(), stdErr.ToString(), strOutput.ToString());
}
public virtual Tuple<string, string, string> SendAndReceive(string toSend)
{
SendCommand(toSend);
return ReadToPrompt();
}
public virtual Tuple<string, string, string> Start(string applicationName, string workDirectory)
{
_sa = new Kernel32.SECURITY_ATTRIBUTES
{
bInheritHandle = true,
lpSecurityDescriptor = IntPtr.Zero,
length = Marshal.SizeOf(typeof(Kernel32.SECURITY_ATTRIBUTES))
};
_sa.lpSecurityDescriptor = IntPtr.Zero;
_sa_process = new Kernel32.SECURITY_ATTRIBUTES
{
bInheritHandle = true,
lpSecurityDescriptor = IntPtr.Zero,
length = Marshal.SizeOf(typeof(Kernel32.SECURITY_ATTRIBUTES))
};
_sa_process.lpSecurityDescriptor = IntPtr.Zero;
_sa_thread = new Kernel32.SECURITY_ATTRIBUTES
{
bInheritHandle = true,
lpSecurityDescriptor = IntPtr.Zero,
length = Marshal.SizeOf(typeof(Kernel32.SECURITY_ATTRIBUTES))
};
_sa_thread.lpSecurityDescriptor = IntPtr.Zero;
if (!Kernel32.CreatePipe(out _hChildStdoutR, out _hChildStdoutW, ref _sa, 0))
throw new Win32Exception(Marshal.GetLastWin32Error());
if (!Kernel32.CreatePipe(out _hChildStderrR, out _hChildStderrW, ref _sa, 0))
throw new Win32Exception(Marshal.GetLastWin32Error());
if (!Kernel32.CreatePipe(out _hChildStdinR, out _hChildStdinW, ref _sa, 0))
throw new Win32Exception(Marshal.GetLastWin32Error());
if (!Kernel32.SetHandleInformation(_hChildStdoutR, Kernel32.HANDLE_FLAG_INHERIT, 0))
throw new Win32Exception(Marshal.GetLastWin32Error());
if (!Kernel32.SetHandleInformation(_hChildStderrR, Kernel32.HANDLE_FLAG_INHERIT, 0))
throw new Win32Exception(Marshal.GetLastWin32Error());
if (!Kernel32.SetHandleInformation(_hChildStdinW, Kernel32.HANDLE_FLAG_INHERIT, 0))
throw new Win32Exception(Marshal.GetLastWin32Error());
_si = new Kernel32.STARTUPINFO
{
wShowWindow = 0,
dwFlags = Kernel32.STARTF_USESTDHANDLES | Kernel32.STARTF_USESHOWWINDOW,
hStdOutput = _hChildStdoutW,
hStdError = _hChildStderrW,
hStdInput = _hChildStdinR
};
_si.cb = (uint)Marshal.SizeOf(_si);
_pi = new Kernel32.PROCESS_INFORMATION();
if (!Kernel32.CreateProcess(null, applicationName, IntPtr.Zero, IntPtr.Zero, true, 0, IntPtr.Zero, workDirectory, ref _si, out _pi))
throw new Win32Exception(Marshal.GetLastWin32Error());
_applicationName = applicationName;
return ReadToPrompt();
}
public void Terminate()
{
SendCommand(ExitCommand);
if (!Kernel32.CloseHandle(_hChildStderrW))
throw new Win32Exception(Marshal.GetLastWin32Error());
if (!Kernel32.CloseHandle(_hChildStdoutW))
throw new Win32Exception(Marshal.GetLastWin32Error());
if (!Kernel32.CloseHandle(_hChildStdinW))
throw new Win32Exception(Marshal.GetLastWin32Error());
if (!Kernel32.CloseHandle(_pi.hProcess))
throw new Win32Exception(Marshal.GetLastWin32Error());
if (!Kernel32.CloseHandle(_pi.hThread))
throw new Win32Exception(Marshal.GetLastWin32Error());
}
}
}
powershell is different. I think you can not simple redirect its input and output. that's why we need to use runspace to get the output object. search "powershell c# example", lots code. here is a simple one:
Calling PowerShell From C#
depends on the powershell you use (exchange powers shell, sharepoint power shell..), you will need to add the correct snapin.
It sounds like you don't want to just call powershell commands from C#, but to act as a powershell host. Being a powershell host allows you to receive the output from commands like Write-Host and Out-String and just have a stream of strings as input and output. Examples of hosts are powershell.exe and powershell_ise.exe, but it can be a lot of work and won't make processing the results of powershell commands easier, only harder. The power of powershell is that the input and output of commands are real objects, not just strings. You can read more about it here.
If you just want to execute some powershell commands and receive their output you would be better of with this here and work with the objects the powershell commands are returning instead of wanting them to be strings. This means you have to stop using commands like Write-Host, Out-String, Format-Table, etc. Those are for formatting, not for processing results.
I stumbled on this code below and tried to implement it in my WinForm App to help my users as many are very NOT tech-savy.
Unfortunately, it does nothing. It does not generate any errors or anything. It just doesn't make it Flash.
Can anyone offer any insight? I have tried it on Win 7(x64) & Win XP (x86) with the same results on both.
I am calling it like so --> TaskbarFlasher.FlashWindow(this); From my Main Form.
[DllImport("user32.dll")]
private extern static bool FlashWindow(IntPtr hwnd, bool bInvert);
[DllImport("user32.dll")]
private extern static IntPtr GetForegroundWindow();
/// <summary>
/// Notifies the user that the application requests attention
/// by flashing the taskbar if the form is not the current window.
/// </summary>
/// <param name="myForm">The form in question.</param>
public static void FlashWindow(Form myForm)
{
// if the current foreground window isn't this window,
// flash this window in task bar once every 1 second
if (GetForegroundWindow() != myForm.Handle)
{
FlashWindow(myForm.Handle, true);
}
}
Nevermind, I figured it out with the Following Links Help --> http://pietschsoft.com/post/2009/01/26/CSharp-Flash-Window-in-Taskbar-via-Win32-FlashWindowEx.aspx
Thanks Chris Pietschmann from a fellow SO Wisconsinite!!
public static class FlashWindow
{
[DllImport("user32.dll")]
[return: MarshalAs(UnmanagedType.Bool)]
private static extern bool FlashWindowEx(ref FLASHWINFO pwfi);
[StructLayout(LayoutKind.Sequential)]
private struct FLASHWINFO
{
/// <summary>
/// The size of the structure in bytes.
/// </summary>
public uint cbSize;
/// <summary>
/// A Handle to the Window to be Flashed. The window can be either opened or minimized.
/// </summary>
public IntPtr hwnd;
/// <summary>
/// The Flash Status.
/// </summary>
public uint dwFlags;
/// <summary>
/// The number of times to Flash the window.
/// </summary>
public uint uCount;
/// <summary>
/// The rate at which the Window is to be flashed, in milliseconds. If Zero, the function uses the default cursor blink rate.
/// </summary>
public uint dwTimeout;
}
/// <summary>
/// Stop flashing. The system restores the window to its original stae.
/// </summary>
public const uint FLASHW_STOP = 0;
/// <summary>
/// Flash the window caption.
/// </summary>
public const uint FLASHW_CAPTION = 1;
/// <summary>
/// Flash the taskbar button.
/// </summary>
public const uint FLASHW_TRAY = 2;
/// <summary>
/// Flash both the window caption and taskbar button.
/// This is equivalent to setting the FLASHW_CAPTION | FLASHW_TRAY flags.
/// </summary>
public const uint FLASHW_ALL = 3;
/// <summary>
/// Flash continuously, until the FLASHW_STOP flag is set.
/// </summary>
public const uint FLASHW_TIMER = 4;
/// <summary>
/// Flash continuously until the window comes to the foreground.
/// </summary>
public const uint FLASHW_TIMERNOFG = 12;
/// <summary>
/// Flash the spacified Window (Form) until it recieves focus.
/// </summary>
/// <param name="form">The Form (Window) to Flash.</param>
/// <returns></returns>
public static bool Flash(System.Windows.Forms.Form form)
{
// Make sure we're running under Windows 2000 or later
if (Win2000OrLater)
{
FLASHWINFO fi = Create_FLASHWINFO(form.Handle, FLASHW_ALL | FLASHW_TIMERNOFG, uint.MaxValue, 0);
return FlashWindowEx(ref fi);
}
return false;
}
private static FLASHWINFO Create_FLASHWINFO(IntPtr handle, uint flags, uint count, uint timeout)
{
FLASHWINFO fi = new FLASHWINFO();
fi.cbSize = Convert.ToUInt32(Marshal.SizeOf(fi));
fi.hwnd = handle;
fi.dwFlags = flags;
fi.uCount = count;
fi.dwTimeout = timeout;
return fi;
}
/// <summary>
/// Flash the specified Window (form) for the specified number of times
/// </summary>
/// <param name="form">The Form (Window) to Flash.</param>
/// <param name="count">The number of times to Flash.</param>
/// <returns></returns>
public static bool Flash(System.Windows.Forms.Form form, uint count)
{
if (Win2000OrLater)
{
FLASHWINFO fi = Create_FLASHWINFO(form.Handle, FLASHW_ALL, count, 0);
return FlashWindowEx(ref fi);
}
return false;
}
/// <summary>
/// Start Flashing the specified Window (form)
/// </summary>
/// <param name="form">The Form (Window) to Flash.</param>
/// <returns></returns>
public static bool Start(System.Windows.Forms.Form form)
{
if (Win2000OrLater)
{
FLASHWINFO fi = Create_FLASHWINFO(form.Handle, FLASHW_ALL, uint.MaxValue, 0);
return FlashWindowEx(ref fi);
}
return false;
}
/// <summary>
/// Stop Flashing the specified Window (form)
/// </summary>
/// <param name="form"></param>
/// <returns></returns>
public static bool Stop(System.Windows.Forms.Form form)
{
if (Win2000OrLater)
{
FLASHWINFO fi = Create_FLASHWINFO(form.Handle, FLASHW_STOP, uint.MaxValue, 0);
return FlashWindowEx(ref fi);
}
return false;
}
/// <summary>
/// A boolean value indicating whether the application is running on Windows 2000 or later.
/// </summary>
private static bool Win2000OrLater
{
get { return System.Environment.OSVersion.Version.Major >= 5; }
}
}