CRC programming help needed, CRC32 conversion from the .NET class to C - c#

Code(written in C):
unsigned long chksum_crc32 (unsigned char *block, unsigned int length)
{
register unsigned long crc;
unsigned long i;
crc = 0xFFFFFFFF;
for (i = 0; i < length; i++)
{
crc = ((crc >> 8) & 0x00FFFFFF) ^ crc_tab[(crc ^ *block++) & 0xFF];
}
return (crc ^ 0xFFFFFFFF);
}
/* chksum_crc32gentab() -- to a global crc_tab[256], this one will
* calculate the crcTable for crc32-checksums.
* it is generated to the polynom [..]
*/
void chksum_crc32gentab ()
{
unsigned long crc, poly;
int i, j;
poly = 0xEDB88320L;
for (i = 0; i < 256; i++)
{
crc = i;
for (j = 8; j > 0; j--)
{
if (crc & 1)
{
crc = (crc >> 1) ^ poly;
}
else
{
crc >>= 1;
}
}
crc_tab[i] = crc;
}
}
For starters; I know how CRC works, first the divisor is calculated with a specified polynomial, then this FCS(frame check sequence) is appended to the data set and sent to the end users system. Once the transfer is finished, the FCS is checked with the same polynomial used to calculate the FCS, and if the remainder of the data with that divisor is zero, then you know the data is correct.
I do not understand the implementation of these two functions. From what I have learned, the function chksum_crc32gentab() generates all the possible hex values the checksum could take with the 32 bit CRC polynomial. One thing I dont get is how poly = 0xEDB88320L; is equivelent to a polynomial. I don't understand the logic in the bottom of this function either. For example, the conditional if (crc & 1), does this mean that for every bit in crc that is 1, compute, otherwise shift right one bit?
I also do not understand chksum_crc32(unsigned char *block, unsigned int length);. Does this function just take in a string of bytes and convert them to the proper crc value computed with the table?. I guess I am confused about the logic it uses within the for loop.
If anyone understands this code an explanation would be great; this does work for the crc32 conversion from the .net class, an example of how data is converted then used by these functions would be something like:
(C# source)
MemoryStream ms = new MemoryStream(System.Text.Encoding.Default.GetBytes(input));
foreach (byte b in crc32.ComputeHash(ms))
hash += b.ToString("x2").ToLower();
Here is the original site and project the C code was taken from. http://www.codeproject.com/Articles/35134/How-to-calculate-CRC-in-C
Any explanation would help

Or just google it... Second hit is: http://www.opensource.apple.com/source/xnu/xnu-1456.1.26/bsd/libkern/crc32.c
Backporting it from C#'s the hard way to do it, most of these algorithms are already in C.

In CRC calculations, binary polynomials, which are sums of x^n with either a 0 or 1 coefficient, are represented simply as binary words where the position of the 0 or 1 indicates which power of x it is a coefficient of.
0xEDB88320L represents the coefficients of the CRC32 polynomial as 1's where there is an x^n term (except for the x^32 term, which is left out). The CRC32 polynomial (why oh why doesn't stackoverflow have TeX equations like math.stackexchange -- I can't write decent equations here! sigh, sorry for the rant ...) is:
x^32 + x^26 + x^23 + x^22 + x^16 + x^12 + x^11 + x^10 + x^8 + x^7 + x^5 + x^4 + x^2 + x + 1
Because of how this CRC is defined with respect to bit-ordering, the lowest coefficients are in the highest bits. So the first E in the hex constant above is 1110 representing (in order from left to right in the bits), 1 + x + x^2.
You can find the construction in the crc32.c source file of zlib, from which a snippet is shown here:
static const unsigned char p[] = {0,1,2,4,5,7,8,10,11,12,16,22,23,26};
/* make exclusive-or pattern from polynomial (0xedb88320UL) */
poly = 0;
for (n = 0; n < (int)(sizeof(p)/sizeof(unsigned char)); n++)
poly |= (z_crc_t)1 << (31 - p[n]);
/* generate a crc for every 8-bit value */
for (n = 0; n < 256; n++) {
c = (z_crc_t)n;
for (k = 0; k < 8; k++)
c = c & 1 ? poly ^ (c >> 1) : c >> 1;
crc_table[0][n] = c;
}
The if (crc & 1) or c & 1 ? above looks at the low bit of the CRC at each step before it is shifted away. That is effectively a carry bit for the polynomial subtraction operation, so if it is a one, the polynomial is subtracted (exclusive-ored) from the shifted down polynomial in the CRC (multiplied by x). The CRC is shifted down whether the low bit is 1 or not.
The chksum_crc32() function that you show indeed computes the CRC on the provided block of data. It is the standard table-based approach for CRC calculations on strings of bytes, which indexes the table by the exclusive-or of the data byte and the low byte of the CRC. This does the same thing as shifting in a bit at a time and applying the polynomial for 1 bits, but does it in one step instead of eight. The CRC is effectively multiplied by x^8 (the >> 8), and is exclusive-ored with the effect of exclusive-oring with the polynomial 0 to 8 times at various shifted locations depending on the index value. It is simply a speed trick using a pre-computed table.
You can find even more extreme speed tricks used in zlib's crc32.c that uses larger tables and processes more data a time.

Related

Non looping way to check if every Nth bit is set, with or without an offset?

For example, is every 4th bit set.
1000.1000 true
1010.1000 true
0010.1000 false
with offset of 1
0100.0100 true
0101.0100 true
0001.0100 false
Currently I am doing this by looping through every 4 bits
int num = 170; //1010.1010
int N = 4;
int offset = 0; //[0, N-1]
bool everyNth = true;
for (int i = 0; i < intervals ; i++){
if(((num >> (N*i)) & ((1 << (N - 1)) >> offset)) == 0){
every4th = false;
break;
}
}
return everyNth;
EXPLANATION OF CODE:
num = 1010.1010
The loop makes it so I look at each 4 bits as a block by right shifting * 4.
num >> 4 = 0000.1010
Then an & for a specific bit that can be offset.
And to only look at a specific bit of the chunk, a mask is created by ((1 << (N - 1)) >> offset)
0000.1010
1000 (mask >> offset0)
OR 0100 (mask >> offset1)
OR 0010 (mask >> offset2)
OR 0001 (mask >> offset3)
Is there a purely computational way to do this? Like how you can XOR your way through to figure out parity. I am working with 64 bit integers for my case, but I am wondering this in a more general case.
Additionally, I am under the assumption that bit operators are one of the fastest methods for calculations or math in general. If this is not true, please feel free to correct me on what the time and place is for bit operators.
If we had a mask M in which every Nth bit is set, then testing whether every Nth bit in a given integer x is set could be calculated as (x & M) == M. Or with offset, you could use ((x << offset) & M) == M. Shifting M right is fine too.
If N is constant, that's all there is to it, just use the right M.
If N is variable, the question becomes, how do we get a mask in which every Nth bit is set.
Here is a simple way to do that:
Start by setting the Nth bit
"Double" the mask until done
For example,
ulong M = 1UL << (N - 1);
do
{
M |= M << N;
N += N;
} while (N < 64);
That is clearly still a loop. But it's not a bit-by-bit loop, it makes only a logarithmic number of iterations.
You could precompute the masks and store them in a small array, the range of N is necessarily small.
There may also be a way based on ulong.MaxValue / ((1UL << N) - 1) but that needs something more to "align" the mask and 64-bit division is not so great anyway. Perhaps there is a smarter way to get the mask.
I am under the assumption that bit operators are one of the fastest methods for calculations or math in general
Bitwise operations are some of the fastest operations, but addition is equally fast, and multiplication is not that far behind (and a multiplication can do a lot more work at once, compared to how much more it costs).

16bit CRC-ITU calculation for Concox tracker

I am creating C# code for a server program that receives data from a Concox TR06 GPS tracker via TCP:
http://www.iconcox.com/uploads/soft/140920/1-140920023130.pdf
When first starting up, the tracker sends a login message, which needs to be acknowledged before it will send any position data. My first problem is that, according to the documentation, the acknowledge message is 18 bytes long, yet the example they provide is only 10 bytes long:
P.s. in the table above, the "bits" column I'm pretty sure should be labelled "bytes" instead...
Now, my main problem is in calculating the Error Check. According to the documentation:
The check code is generated by the CRC-ITU checking method. The check codes of data in the structure of the protocol, from the Packet Length to the Information Serial Number (including "Packet Length" and "Information Serial Number"), are values of CRC-ITU.
Ok, so in the above example, I need to calculate CRC on 0x05 0x01 0x00 0x01
Now, I'm guessing it's 16 bit CRC, as according to the diagram above, the CRC is 2 bytes long. I've implemented two different CRC implementations I found online at http://www.sanity-free.org/134/standard_crc_16_in_csharp.html and http://www.sanity-free.org/133/crc_16_ccitt_in_csharp.html but neither give me the answer that, according to the diagram above I am supposed to be getting - 0xD9 0xDC. I've even used this site - https://www.lammertbies.nl/comm/info/crc-calculation.html - to manually enter the 4 bytes, but nothing gives me the result I'm supposed to be getting according to the diagram above...
Any ideas where I might be going wrong? Any pointers/hints would be greatly appreciated. Thank you
i have implemented the same logic in nodejs (javascript). I hope this helps someone.
const crc16itu = hexString => {
if (!hexString) return 0x00;
const table = [
0x0000, 0x1189, 0x2312, 0x329B, 0x4624, 0x57AD, 0x6536, 0x74BF,
0x8C48, 0x9DC1, 0xAF5A, 0xBED3, 0xCA6C, 0xDBE5, 0xE97E, 0xF8F7,
0x1081, 0x0108, 0x3393, 0x221A, 0x56A5, 0x472C, 0x75B7, 0x643E,
0x9CC9, 0x8D40, 0xBFDB, 0xAE52, 0xDAED, 0xCB64, 0xF9FF, 0xE876,
0x2102, 0x308B, 0x0210, 0x1399, 0x6726, 0x76AF, 0x4434, 0x55BD,
0xAD4A, 0xBCC3, 0x8E58, 0x9FD1, 0xEB6E, 0xFAE7, 0xC87C, 0xD9F5,
0x3183, 0x200A, 0x1291, 0x0318, 0x77A7, 0x662E, 0x54B5, 0x453C,
0xBDCB, 0xAC42, 0x9ED9, 0x8F50, 0xFBEF, 0xEA66, 0xD8FD, 0xC974,
0x4204, 0x538D, 0x6116, 0x709F, 0x0420, 0x15A9, 0x2732, 0x36BB,
0xCE4C, 0xDFC5, 0xED5E, 0xFCD7, 0x8868, 0x99E1, 0xAB7A, 0xBAF3,
0x5285, 0x430C, 0x7197, 0x601E, 0x14A1, 0x0528, 0x37B3, 0x263A,
0xDECD, 0xCF44, 0xFDDF, 0xEC56, 0x98E9, 0x8960, 0xBBFB, 0xAA72,
0x6306, 0x728F, 0x4014, 0x519D, 0x2522, 0x34AB, 0x0630, 0x17B9,
0xEF4E, 0xFEC7, 0xCC5C, 0xDDD5, 0xA96A, 0xB8E3, 0x8A78, 0x9BF1,
0x7387, 0x620E, 0x5095, 0x411C, 0x35A3, 0x242A, 0x16B1, 0x0738,
0xFFCF, 0xEE46, 0xDCDD, 0xCD54, 0xB9EB, 0xA862, 0x9AF9, 0x8B70,
0x8408, 0x9581, 0xA71A, 0xB693, 0xC22C, 0xD3A5, 0xE13E, 0xF0B7,
0x0840, 0x19C9, 0x2B52, 0x3ADB, 0x4E64, 0x5FED, 0x6D76, 0x7CFF,
0x9489, 0x8500, 0xB79B, 0xA612, 0xD2AD, 0xC324, 0xF1BF, 0xE036,
0x18C1, 0x0948, 0x3BD3, 0x2A5A, 0x5EE5, 0x4F6C, 0x7DF7, 0x6C7E,
0xA50A, 0xB483, 0x8618, 0x9791, 0xE32E, 0xF2A7, 0xC03C, 0xD1B5,
0x2942, 0x38CB, 0x0A50, 0x1BD9, 0x6F66, 0x7EEF, 0x4C74, 0x5DFD,
0xB58B, 0xA402, 0x9699, 0x8710, 0xF3AF, 0xE226, 0xD0BD, 0xC134,
0x39C3, 0x284A, 0x1AD1, 0x0B58, 0x7FE7, 0x6E6E, 0x5CF5, 0x4D7C,
0xC60C, 0xD785, 0xE51E, 0xF497, 0x8028, 0x91A1, 0xA33A, 0xB2B3,
0x4A44, 0x5BCD, 0x6956, 0x78DF, 0x0C60, 0x1DE9, 0x2F72, 0x3EFB,
0xD68D, 0xC704, 0xF59F, 0xE416, 0x90A9, 0x8120, 0xB3BB, 0xA232,
0x5AC5, 0x4B4C, 0x79D7, 0x685E, 0x1CE1, 0x0D68, 0x3FF3, 0x2E7A,
0xE70E, 0xF687, 0xC41C, 0xD595, 0xA12A, 0xB0A3, 0x8238, 0x93B1,
0x6B46, 0x7ACF, 0x4854, 0x59DD, 0x2D62, 0x3CEB, 0x0E70, 0x1FF9,
0xF78F, 0xE606, 0xD49D, 0xC514, 0xB1AB, 0xA022, 0x92B9, 0x8330,
0x7BC7, 0x6A4E, 0x58D5, 0x495C, 0x3DE3, 0x2C6A, 0x1EF1, 0x0F78
];
let fcs = parseInt("FFFF", 16);
let i = 0;
while (i < hexString.length) {
let strHexNumber = hexString.substring(i, i + 2);
let intNumber = parseInt(strHexNumber, 16);
let crc16tabIndex = (fcs ^ intNumber) & parseInt("FF", 16);
fcs = (fcs >> 8) ^ table[crc16tabIndex];
i = i + 2;
}
return fcs ^ 0xFFFF;
};
module.exports = crc16itu;
The ITU CRC-16 is also called the X-25 CRC. You can find its specification here, which is:
width=16 poly=0x1021 init=0xffff refin=true refout=true xorout=0xffff check=0x906e name="X-25"
My crcany code will take that specification and generate C code to compute the CRC.
Here is the bit-wise (slow) code thusly generated:
#include <stddef.h>
unsigned crc16x_25_bit(unsigned crc, void const *data, size_t len) {
if (data == NULL)
return 0;
crc = ~crc;
crc &= 0xffff;
while (len--) {
crc ^= *(unsigned char const *)data++;
for (unsigned k = 0; k < 8; k++)
crc = crc & 1 ? (crc >> 1) ^ 0x8408 : crc >> 1;
}
crc ^= 0xffff;
return crc;
}

CRC-16 and CRC-32 Checks

I need help trying to verify CRC-16 values (also need help with CRC-32 values). I tried to sit down and understand how CRC works but I am drawing a blank.
My first problem is when trying to use an online calculator for calculating the message "BD001325E032091B94C412AC" into CRC16 = 12AC. The documentation states that the last two octets are the CRC16 value, so I am inputting "BD001325E032091B94C4" into the site http://www.lammertbies.nl/comm/info/crc-calculation.html and receive 5A90 as the result instead of 12AC.
Does anybody know why these values are different and where I can find code for how to calculate CRC16 and CRC32 values (I plan to later learn how to do this but times doesn't allow right now)?
Some more messages are as following:
16000040FFFFFFFF00015FCB
3C00003144010405E57022C7
BA00001144010101B970F0ED
3900010101390401B3049FF1
09900C800000000000008CF3
8590000000000000000035F7
00900259025902590259EBC9
0200002B00080191014BF5A2
BB0000BEE0014401B970E51E
3D000322D0320A2510A263A0
2C0001440000D60000D65E54
--Edit--
I have included more information. The documentation I was referencing is TIA-102.BAAA-A (from the TIA standard). The following is what the documentation states (trying to avoid copyright infringement as much as possible):
The Last Block in a packet comprises several octets of user information and / or
pad octets, followed by a 4-octet CRC parity check. This is referred to as the
packet CRC.
The packet CRC is a 4-octet cyclic redundancy check coded over all of the data
octets included in the Intermediate Blocks and the octets of user information of
the Last Block. The specific calculation is as follows.
Let k be the total number of user information and pad bits over which the packet
CRC is to be calculated. Consider the k message bits as the coefficients of a
polynomial M(x) of degree k–1, associating the MSB of the zero-th message
octet with x^k–1 and the LSB of the last message octet with x^0. Define the
generator polynomial, GM(x), and the inversion polynomial, IM(x).
GM(x) = x^32 + x^26 + x^23 + x^22 + x^16 + x^12 + x^11 + x^10 + x^8 + x^7 + x^5 +
x^4 + x^2 + x + 1
IM(x) = x^31 + x^30 + x^29 + ... + x^2 + x +1
The packet CRC polynomial, FM(x), is then computed from the following formula.
FM(x) = ( x^32 M(x) mod GM(x) ) + IM(x) modulo 2, i.e., in GF(2)
The coefficients of FM(x) are placed in the CRC field with the MSB of the zero-th
octet of the CRC corresponding to x^31 and the LSB of the third octet of the CRC
corresponding to x^0.
In the above quote, I have put ^ to show powers as the formatting didn't stay the same when quoted. I'm not sure what goes to what but does this help?
I have a class I converted from a C++ I found in internet, it uses a long to calculate a CRC32. It adhere to the standard and is the one use by PKZIP, WinZip and Ethernet. To test it, use Winzip and compress a file then calculate the same file with this class, it should return the same CRC. It does for me.
public class CRC32
{
private int[] iTable;
public CRC32() {
this.iTable = new int[256];
Init();
}
/**
* Initialize the iTable aplying the polynomial used by PKZIP, WINZIP and Ethernet.
*/
private void Init()
{
// 0x04C11DB7 is the official polynomial used by PKZip, WinZip and Ethernet.
int iPolynomial = 0x04C11DB7;
// 256 values representing ASCII character codes.
for (int iAscii = 0; iAscii <= 0xFF; iAscii++)
{
this.iTable[iAscii] = this.Reflect(iAscii, (byte) 8) << 24;
for (int i = 0; i <= 7; i++)
{
if ((this.iTable[iAscii] & 0x80000000L) == 0) this.iTable[iAscii] = (this.iTable[iAscii] << 1) ^ 0;
else this.iTable[iAscii] = (this.iTable[iAscii] << 1) ^ iPolynomial;
}
this.iTable[iAscii] = this.Reflect(this.iTable[iAscii], (byte) 32);
}
}
/**
* Reflection is a requirement for the official CRC-32 standard. Note that you can create CRC without it,
* but it won't conform to the standard.
*
* #param iReflect
* value to apply the reflection
* #param iValue
* #return the calculated value
*/
private int Reflect(int iReflect, int iValue)
{
int iReturned = 0;
// Swap bit 0 for bit 7, bit 1 For bit 6, etc....
for (int i = 1; i < (iValue + 1); i++)
{
if ((iReflect & 1) != 0)
{
iReturned |= (1 << (iValue - i));
}
iReflect >>= 1;
}
return iReturned;
}
/**
* PartialCRC caculates the CRC32 by looping through each byte in sData
*
* #param lCRC
* the variable to hold the CRC. It must have been initialize.
* <p>
* See fullCRC for an example
* </p>
* #param sData
* array of byte to calculate the CRC
* #param iDataLength
* the length of the data
* #return the new caculated CRC
*/
public long CalculateCRC(long lCRC, byte[] sData, int iDataLength)
{
for (int i = 0; i < iDataLength; i++)
{
lCRC = (lCRC >> 8) ^ (long) (this.iTable[(int) (lCRC & 0xFF) ^ (int) (sData[i] & 0xff)] & 0xffffffffL);
}
return lCRC;
}
/**
* Caculates the CRC32 for the given Data
*
* #param sData
* the data to calculate the CRC
* #param iDataLength
* then length of the data
* #return the calculated CRC32
*/
public long FullCRC(byte[] sData, int iDataLength)
{
long lCRC = 0xffffffffL;
lCRC = this.CalculateCRC(lCRC, sData, iDataLength);
return (lCRC /*& 0xffffffffL)*/^ 0xffffffffL);
}
/**
* Calculates the CRC32 of a file
*
* #param sFileName
* The complete file path
* #param context
* The context to open the files.
* #return the calculated CRC32 or -1 if an error occurs (file not found).
*/
long FileCRC(String sFileName, Context context)
{
long iOutCRC = 0xffffffffL; // Initilaize the CRC.
int iBytesRead = 0;
int buffSize = 32 * 1024;
FileInputStream isFile = null;
try
{
byte[] data = new byte[buffSize]; // buffer de 32Kb
isFile = context.openFileInput(sFileName);
try
{
while ((iBytesRead = isFile.read(data, 0, buffSize)) > 0)
{
iOutCRC = this.CalculateCRC(iOutCRC, data, iBytesRead);
}
return (iOutCRC ^ 0xffffffffL); // Finalize the CRC.
}
catch (Exception e)
{
// Error reading file
}
finally
{
isFile.close();
}
}
catch (Exception e)
{
// file not found
}
return -1l;
}
}
Read Ross Williams tutorial on CRCs to get a better understanding of CRC's, what defines a particular CRC, and their implementations.
The reveng website has an excellent catalog of known CRCs, and for each the CRC of a test string (nine bytes: "123456789" in ASCII/UTF-8). Note that there are 22 different 16-bit CRCs defined there.
The reveng software on that same site can be used to reverse engineer the polynomial, initialization, post-processing, and bit reversal given several examples as you have for the 16-bit CRC. (Hence the name "reveng".) I ran your data through and got:
./reveng -w 16 -s 16000040FFFFFFFF00015FCB 3C00003144010405E57022C7 BA00001144010101B970F0ED 3900010101390401B3049FF1 09900C800000000000008CF3 8590000000000000000035F7 00900259025902590259EBC9 0200002B00080191014BF5A2 BB0000BEE0014401B970E51E 3D000322D0320A2510A263A0 2C0001440000D60000D65E54
width=16 poly=0x1021 init=0xc921 refin=false refout=false xorout=0x0000 check=0x2fcf name=(none)
As indicated by the "(none)", that 16-bit CRC is not any of the 22 listed on reveng, though it is similar to several of them, differing only in the initialization.
The additional information you provided is for a 32-bit CRC, either CRC-32 or CRC-32/BZIP in the reveng catalog, depending on whether the bits are reversed or not.
There are quite a few parameters to CRC calculations: Polynomial, initial value, final XOR... see Wikipedia for details. Your CRC does not seem to fit the ones on the site you used, but you can try to find the right parameters from your documentation and use a different calculator, e.g. this one (though I'm afraid it doesn't support HEX input).
One thing to keep in mind is that CRC-16 is usually calculated over the data that is supposed to be checksummed plus two zero-bytes, e.g. you are probably looking for a CRC16 function where CRC16(BD001325E032091B94C40000) == 12AC. With checksums calculated in this way, the CRC of the data with checksum appended will work out to 0, which makes checking easier, e.g. CRC16(BD001325E032091B94C412AC) == 0000

Number of unset bit left of most significant set bit?

Assuming the 64bit integer 0x000000000000FFFF which would be represented as
00000000 00000000 00000000 00000000
00000000 00000000 >11111111 11111111
How do I find the amount of unset bits to the left of the most significant set bit (the one marked with >) ?
In straight C (long long are 64 bit on my setup), taken from similar Java implementations: (updated after a little more reading on Hamming weight)
A little more explanation: The top part just sets all bit to the right of the most significant 1, and then negates it. (i.e. all the 0's to the 'left' of the most significant 1 are now 1's and everything else is 0).
Then I used a Hamming Weight implementation to count the bits.
unsigned long long i = 0x0000000000000000LLU;
i |= i >> 1;
i |= i >> 2;
i |= i >> 4;
i |= i >> 8;
i |= i >> 16;
i |= i >> 32;
// Highest bit in input and all lower bits are now set. Invert to set the bits to count.
i=~i;
i -= (i >> 1) & 0x5555555555555555LLU; // each 2 bits now contains a count
i = (i & 0x3333333333333333LLU) + ((i >> 2) & 0x3333333333333333LLU); // each 4 bits now contains a count
i = (i + (i >> 4)) & 0x0f0f0f0f0f0f0f0fLLU; // each 8 bits now contains a count
i *= 0x0101010101010101LLU; // add each byte to all the bytes above it
i >>= 56; // the number of bits
printf("Leading 0's = %lld\n", i);
I'd be curious to see how this was efficiency wise. Tested it with several values though and it seems to work.
Based on: http://www.hackersdelight.org/HDcode/nlz.c.txt
template<typename T> int clz(T v) {int n=sizeof(T)*8;int c=n;while (n){n>>=1;if (v>>n) c-=n,v>>=n;}return c-v;}
If you'd like a version that allows you to keep your lunch down, here you go:
int clz(uint64_t v) {
int n=64,c=64;
while (n) {
n>>=1;
if (v>>n) c-=n,v>>=n;
}
return c-v;
}
As you'll see, you can save cycles on this by careful analysis of the assembler, but the strategy here is not a terrible one. The while loop will operate Lg[64]=6 times; each time it will convert the problem into one of counting the number of leading bits on an integer of half the size.
The if statement inside the while loop asks the question: "can i represent this integer in half as many bits", or analogously, "if i cut this in half, have i lost it?". After the if() payload completes, our number will always be in the lowest n bits.
At the final stage, v is either 0 or 1, and this completes the calculation correctly.
If you are dealing with unsigned integers, you could do this:
#include <math.h>
int numunset(uint64_t number)
{
int nbits = sizeof(uint64_t)*8;
if(number == 0)
return nbits;
int first_set = floor(log2(number));
return nbits - first_set - 1;
}
I don't know how it will compare in performance to the loop and count methods that have already been offered because log2() could be expensive.
Edit:
This could cause some problems with high-valued integers since the log2() function is casting to double and some numerical issues may arise. You could use the log2l() function that works with long double. A better solution would be to use an integer log2() function as in this question.
// clear all bits except the lowest set bit
x &= -x;
// if x==0, add 0, otherwise add x - 1.
// This sets all bits below the one set above to 1.
x+= (-(x==0))&(x - 1);
return 64 - count_bits_set(x);
Where count_bits_set is the fastest version of counting bits you can find. See https://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel for various bit counting techniques.
I'm not sure I understood the problem correctly. I think you have a 64bit value and want to find the number of leading zeros in it.
One way would be to find the most significant bit and simply subtract its position from 63 (assuming lowest bit is bit 0). You can find out the most significant bit by testing whether a bit is set from within a loop over all 64 bits.
Another way might be to use the (non-standard) __builtin_clz in gcc.
I agree with the binary search idea. However two points are important here:
The range of valid answers to your question is from 0 to 64 inclusive. In other words - there may be 65 different answers to the question. I think (almost sure) all who posted the "binary search" solution missed this point, hence they'll get wrong answer for either zero or a number with the MSB bit on.
If speed is critical - you may want to avoid the loop. There's an elegant way to achieve this using templates.
The following template stuff finds the MSB correctly of any unsigned type variable.
// helper
template <int bits, typename T>
bool IsBitReached(T x)
{
const T cmp = T(1) << (bits ? (bits-1) : 0);
return (x >= cmp);
}
template <int bits, typename T>
int FindMsbInternal(T x)
{
if (!bits)
return 0;
int ret;
if (IsBitReached<bits>(x))
{
ret = bits;
x >>= bits;
} else
ret = 0;
return ret + FindMsbInternal<bits/2, T>(x);
}
// Main routine
template <typename T>
int FindMsb(T x)
{
const int bits = sizeof(T) * 8;
if (IsBitReached<bits>(x))
return bits;
return FindMsbInternal<bits/2>(x);
}
Here you go, pretty trivial to update as you need for other sizes...
int bits_left(unsigned long long value)
{
static unsigned long long mask = 0x8000000000000000;
int c = 64;
// doh
if (value == 0)
return c;
// check byte by byte to see what has been set
if (value & 0xFF00000000000000)
c = 0;
else if (value & 0x00FF000000000000)
c = 8;
else if (value & 0x0000FF0000000000)
c = 16;
else if (value & 0x000000FF00000000)
c = 24;
else if (value & 0x00000000FF000000)
c = 32;
else if (value & 0x0000000000FF0000)
c = 40;
else if (value & 0x000000000000FF00)
c = 48;
else if (value & 0x00000000000000FF)
c = 56;
// skip
value <<= c;
while(!(value & mask))
{
value <<= 1;
c++;
}
return c;
}
Same idea as user470379's, but counting down ...
Assume all 64 bits are unset. While value is larger than 0 keep shifting the value right and decrementing number of unset bits:
/* untested */
int countunsetbits(uint64_t val) {
int x = 64;
while (val) { x--; val >>= 1; }
return x;
}
Try
int countBits(int value)
{
int result = sizeof(value) * CHAR_BITS; // should be 64
while(value != 0)
{
--result;
value = value >> 1; // Remove bottom bits until all 1 are gone.
}
return result;
}
Use log base 2 to get you the most significant digit which is 1.
log(2) = 1, meaning 0b10 -> 1
log(4) = 2, 5-7 => 2.xx, or 0b100 -> 2
log(8) = 3, 9-15 => 3.xx, 0b1000 -> 3
log(16) = 4 you get the idea
and so on...
The numbers in between become fractions of the log result. So typecasting the value to an int gives you the most significant digit.
Once you get this number, say b, the simple 64 - n will be the answer.
function get_pos_msd(int n){
return int(log2(n))
}
last_zero = 64 - get_pos_msd(n)

CRC-4 implementation in C#

I've been searching the net for a C# implementation of the 4-bit cyclic redundancy check (CRC-4-ITU) but so far I've been unsuccessful.
Is there anyone who's able to give me a reference implementation of CRC-4-ITU? Preferrably with the standard polynomial if there is a standard polynomial (I've read the spec pointed to by wikipedia as the CRC4 spec without finding a definition of the polynomial).
I'd also really appreciate some sort of test suite or test data to verify a CRC4 implementation.
Thanks!
The Cyclic Redundancy Check article at Wikipedia says the polynomial is x^4 + x + 1. There is also a pretty good description of how the checksum is computed.
Here is an algorithm for CRC16. I know it's not what you asked for, but it should be relatively straightforward to adapt it for 4 bits.
public ushort calculate(byte[] bytes)
{
int crc = 0xFFFF; // initial value
// loop, calculating CRC for each byte of the string
for (int byteIndex = 0; byteIndex < bytes.Length; byteIndex++)
{
ushort bit = 0x80; // initialize bit currently being tested
for (int bitIndex = 0; bitIndex < 8; bitIndex++)
{
bool xorFlag = ((crc & 0x8000) == 0x8000);
crc <<= 1;
if (((bytes[byteIndex] & bit) ^ (ushort)0xff) != (ushort)0xff)
{
crc = crc + 1;
}
if (xorFlag)
{
crc = crc ^ 0x1021;
}
bit >>= 1;
}
}
return (ushort)crc;
}
http://www.experts-exchange.com/Programming/Languages/C_Sharp/Q_24775723.html
Also, there is this guide to computing checksums:
http://www.ross.net/crc/download/crc_v3.txt
"Everything you wanted to know about CRC algorithms, but were afraid
to ask for fear that errors in your understanding might be detected."

Categories

Resources