Moving the mouse along a diagonal line - c#

What kind of math algorithm could I use to calculate the path to move a mouse? I simply want to have this type of function:
animateMouseDiag(int X, int Y){
//Move mouse 1 step towards goal, for loop most likely, from the current Mouse.Position
Thread.Sleep(1);
}
For example, if I give it animateMouseDiag(100,300), it would move the mouse 100 to the right and 300 down, but diagonally, not right-then-down in an 'L'. Similarly, if I gave it (-50,-200) it would move it to those relative coordinates (50 left and 200 up) along the diagonal path.
Thank you! (By the way, this is an alt account since I feel like an idiot asking about basic high school math on my main. I just can't translate it into programming.)
EDIT: I have come up with this:
public static void animateCursorTo(int toX, int toY)
{
double x0 = Cursor.Position.X;
double y0 = Cursor.Position.Y;
double dx = Math.Abs(toX-x0);
double dy = Math.Abs(toY-y0);
double sx, sy, err, e2;
if (x0 < toX) sx = 1;
else sx = -1;
if (y0 < toY) sy = 1;
else sy = -1;
err = dx-dy;
for(int i=0; i < toX; i++){
//setPixel(x0,y0)
e2 = 2*err;
if (e2 > -dy) {
err = err - dy;
x0 = x0 + sx;
}
if (e2 < dx) {
err = err + dx;
y0 = y0 + sy;
}
Cursor.Position = new Point(Convert.ToInt32(x0),Convert.ToInt32(y0));
}
}
This is Bresenham's line algorithm. Strangely though, the lines don't draw on a set angle. They seem to be gravitating towards the top left of the screen.

Store the position coordinates as floating point values, then you can represent the direction as a unit vector and multiply by a specific speed.
double mag = Math.Sqrt(directionX * directionX + directionY * directionY);
mouseX += (directionX / mag) * speed;
mouseY += (directionY / mag) * speed;

Related

How to decrease and increase values as a curve

I am trying to do a digging tool for my game, I have x and y coordinates of point A and B, what I want to do is create a curve between these points, nothing graphical I just need loop through the coordinates (float x, float y).
I am not good at explaining so here is a visual example;
The first image is what's happen if I just use a for loop to decrease the y value until middle and then increase it from the middle to end.
//Very specific code for my example
//I wrote it just for this example so I am not sure if it works
float y;
float x;
public void Example(float startX, float endX, float startY, float endY, float depth)
{
y = startY;
x = startX;
float changeAmountOfY = depth / (endX - startX);
for (int i = (int)startX; i < (startX + endX) / 2; i++)
{
x++;
y -= changeAmountOfY;
}
for (int i = (int)(startX + endX) / 2; i < endX; i++)
{
x++;
y += changeAmountOfY;
}
}
public void ChangeCoordinates()
{
Example(100f, 200f, 100f, 100f, 50f);
}
The second image is what I need.
I am developing the game on unity and I am using Vector2 for the coordinates but it is not important.
Pure C# or even C++ is welcome.
It is also fine if someone can just explain the math behind what I am trying to do.
Maybe this can help:
// Calculate radius
int radius = (B.X - A.X) / 2;
// Calculate middle
int middle_x = A.X + radius;
int middle_y = A.Y;
// or
int middle_y = (A.Y + B.Y) / 2;
// Coordinates for a semicircle
// 0 to 180 degree
for (int i = 0; i <= 180; i++)
{
double x_coordinate = middle_x + radius * Math.Cos(i * Math.PI / 180);
// Opened to bottom
double y_coordinate = middle_y + radius * Math.Sin(i * Math.PI / 180);
// or opened to top
double y_coordinate = middle_y - radius * Math.Sin(i * Math.PI / 180);
}
Take a look at unit circle.

Find an index for a given Point coordinate from an array of Points

Given an Point array and an arbitrary x,y coordinate, find the index for _points that is closest to the given coordinate.
PointD[] _points
//create a list of x,y coordinates:
for (int i = 0; i < _numberOfArcSegments + 1; i++)
{
double x1 = _orbitEllipseSemiMaj * Math.Sin(angle) - _focalDistance; //we add the focal distance so the focal point is "center"
double y1 = _orbitEllipseSemiMinor * Math.Cos(angle);
//rotates the points to allow for the LongditudeOfPeriapsis.
double x2 = (x1 * Math.Cos(_orbitAngleRadians)) - (y1 * Math.Sin(_orbitAngleRadians));
double y2 = (x1 * Math.Sin(_orbitAngleRadians)) + (y1 * Math.Cos(_orbitAngleRadians));
angle += _segmentArcSweepRadians;
_points[i] = new PointD() { x = x2, y = y2 };
}
I'm drawing an ellipse which represents an orbit. I'm first creating the point array above, then when I draw it, I (attempt) to find the point closest to where the orbiting body is.
To do this I've been attempting to calculate the angle from the center of the ellipse to the body:
public void Update()
{
//adjust so moons get the right positions (body position - focal point position)
Vector4 pos = _bodyPositionDB.AbsolutePosition - _positionDB.AbsolutePosition;
//adjust for focal point
pos.X += _focalDistance;
//rotate to the LonditudeOfPeriapsis.
double x2 = (pos.X * Math.Cos(-_orbitAngleRadians)) - (pos.Y * Math.Sin(-_orbitAngleRadians));
double y2 = (pos.X * Math.Sin(-_orbitAngleRadians)) + (pos.Y * Math.Cos(-_orbitAngleRadians));
_ellipseStartArcAngleRadians = (float)(Math.Atan2(y2, x2)); //Atan2 returns a value between -180 and 180;
}
then:
double unAdjustedIndex = (_ellipseStartArcAngleRadians / _segmentArcSweepRadians);
while (unAdjustedIndex < 0)
{
unAdjustedIndex += (2 * Math.PI);
}
int index = (int)unAdjustedIndex;
The ellipse draws fine, (the point array is correct and all is good once adjusted for viewscreen and camera offsets and zoom)
But does not start at the correct point (I'm decreasing the alpha in the color so the resulting ellipse fades away the further it gets from the body)
I've spend days trying to figure out what I'm doing wrong here and tried a dozen different things trying to figure out where my math is wrong, but I'm not seeing it.
I assume that _points should be an array of PointD;
This is the shortest way to get the closest point to your array (calcdistance should be a simple function that calculate the euclidean distance):
PointD p = _points.OrderBy(p => CalcDistance(p, gievnPoint)).First();

C# - generating points along a fraction of a circles circumference

I have the below algorithm which generates a number of points along the circumference of a circle for collision events in my program. (This works perfectly as far as I can tell).
bool Collision_True = false;
for (int Angle = 0; Angle <= 359; Angle += 5)
{
int X = (CentreX + (Radius * Math.Cos(Angle));
int Y = (CentreY + (Radius * Math.Sin(Angle));
Point point = new Point(X, Y);
if (Collision_True == false)
{
Collision_True = Player_Collisions(point);
}
}
return Collision_True;
However I want to change this so it only generates points on the bottom third of the circle, I tried changing the values in the for loop as follows:
for (int Angle = 120; Angle <= 240; Angle += 5)
{
...
}
But the points generated are still around the complete circumference of the circle instead of just the bottom third.
Any ideas? Thanks.
You need to convert to radians
for (int angleDegrees = 120; angleDegrees <= 240; angleDegrees += 5)
{
double angleRadians = angleDegrees / 180 * Math.PI;
int X = (CentreX + (Radius * Math.Cos(angleRadians));
int Y = (CentreY + (Radius * Math.Sin(angleRadians));
...

Drawing triangles given user input

So I'm trying to make a Program that will draw a triangle given some user input. The variables that the user provides are angleA, angleB, andleC, and the corresponding sides. The code I have set up to find the three points of the angle is as follows.
double angle_A = double.Parse(angleA.Text);
double angle_B = double.Parse(angleB.Text);
double angle_C = double.Parse(angleC.Text);
double side_A = double.Parse(sideA.Text);
double side_B = double.Parse(sideB.Text);
double side_C = double.Parse(sideC.Text);
double triangleHeight = Area * 2 / (double.Parse(sideB.Text));
double height = canvas.Height;
double width = canvas.Width;
int aX, aY, bX, bY, cX, cY;
aY = Convert.ToInt32(canvas.Height - triangleHeight / 2);
if (angle_A <= 90 && angle_C <= 90)
{
aX = Convert.ToInt32((width - side_B) / 2);
}
else if (angle_A > 90)
{
double extraLength = Math.Sqrt(Math.Pow(side_C, 2) - Math.Pow(triangleHeight, 2));
aX = Convert.ToInt32(width - ((width - (side_B + extraLength)) / 2) + side_B);
}
else if (angle_C > 90)
{
double extraLength = Math.Sqrt(Math.Pow(side_A, 2) - Math.Pow(triangleHeight, 2));
aX = Convert.ToInt32((width - side_B + extraLength) / 2);
}
else
{
aX = 0;
MessageBox.Show("ERROR: No such triangle exists", "ERROR:");
}
cX = aX + Convert.ToInt32(side_B);
cY = aY;
bX = Convert.ToInt32(side_A * Math.Cos(Math.PI * angle_C / 180) + cX);
bY = Convert.ToInt32(side_A * Math.Sin(Math.PI * angle_C / 180) - cY);
Point pointA = new Point(aX, aY);
Point pointB = new Point(bX, bY);
Point pointC = new Point(cX, cY);
Point[] points = new Point[3] { pointA, pointB, pointC };
return points;
This returns the three points that the paint method should use to draw the triangle. However, when I insert the values, the triangle it draws looks nothing like the triangle I have described with the user input. Any thoughts on why this is? Thanks in advance.
P.S. The error is not in my code, as it gives me no errors and does not crash. It is strictly a math error that I have not been able to locate.
I imagine the triangle ABC with corners A and C along the base line with A to the left and C to the right, and B somewhere above them. Side A is the side opposite corner A, and so on.
As Damien_the_Unbeliever says, you should only allow input of, say, side B, side C and angle of corner A. Validate that A is not over 180 degrees. Start off with A at the origin, so we know straight away that xA = 0, yA = 0, xC = length of side B, yC=0, xB = side C * cos A, and yB = side C * sin A. I believe this works even if A is over 90 degrees, you do get a negative value for xB but don't worry, continue anyway!
Now all you have to do is centre the triangle on the canvas. I don't understand where you are getting Area from. It makes no sense to calculate the triangle's height from its area. The triangle height is yB, you can calculate the offset you need to centre it vertically as you know, so long as yB <= height. Add the same y offset to all the points.
The horizontal offset is a bit more complicated! If xB is negative, I would add an offset to all the x values to bring xB to 0, this positions your triangle at the left side of the canvas, and its width is given by the new xC. If xB is non-negative, the width is the maximum of xC or xB. Then you can calculate the x offset from the width as you know.
I have had time to do some of the code, for example values; this will draw a triangle but not yet centre it:
int sideB = 100;
int sideC = 143;
int angleA = 28;
double angleARadians = Math.PI * angleA / 180.0;
int[] xs = new int[3];
int[] ys = new int[3];
//1st corner is at the origin
xs[0] = 0; ys[0] = 0;
//Then the third corner is along the x axis from there to the length of side B
xs[2] = sideB; ys[2] = 0;
// The second corner is up a bit above the x axis. x could be negative.
// Note, when you draw it, the y axis extends downwards, so a positive y value will be drawn below the x axis.
xs[1] = (int)Math.Round(sideC * Math.Cos(angleARadians));
ys[1] = (int)Math.Round(sideC * Math.Sin(angleARadians));
//If Bx is negative, move all the points over until it's 0
if (xs[1] < 0)
{
int zeroX = xs[1] * -1;
for (int i = 0; i < 3; i++)
{
xs[i] += zeroX;
}
}
// Now centre the triangle on the canvas.
// Firstly find the width of the triangle. Point B could be to the left of A, or between A and C, or to the right of C.
// So the left most point of the triangle is the minimum of A or B, and the right most point is the maximum of B or C.
int minX = Math.Min(xs[0],xs[1]);
int maxX = Math.Max(xs[2], xs[1]);
//The height of the triangle is yB.
int offsetX = (panCanvas.Width - (maxX - minX)) / 2;
int offsetY = (panCanvas.Height - ys[1]) / 2;
//offset all the points by the same amount, to centre the triangle.
for (int i = 0; i < 3; i++)
{
xs[i] += offsetX;
ys[i] += offsetY;
}
Given the three sides of a triangle a, b, and c the coordinates of the vertices are
P=[0,0]
Q=[a,0]
R=[(a^2+c^2-b^2)/(2*a), sqrt(c^2*(2*(a^2+b^2)-c^2)-(a+b)^2*(a-b)^2)/(4*a^2))]
Example, a=6, b=4 and c=8
P=[0,0]
Q=[6,0]
R=[7,√15]

Shorten a line by a number of pixels

I'm drawing a custom diagram of business objects using .NET GDI+. Among other things, the diagram consists of several lines that are connecting the objects.
In a particular scenario, I need to shorten a line by a specific number of pixels, let's say 10 pixels, i.e. find the point on the line that lies 10 pixels before the end point of the line.
Imagine a circle with radius r = 10 pixels, and a line with start point (x1, y1) and end point (x2, y2). The circle is centered at the end point of the line, as in the following illustration.
How do I calculate the point marked with a red circle, i.e. the intersection between circle and line? This would give me the new end point of the line, shortening it by 10 pixels.
Solution
Thank you for your answers from which I was able to put together the following procedure. I named it LengthenLine, since I find it more natural to pass a negative number of pixels if I want the line shortened.
Specifically, I was trying to put together a function that could draw a line with rounded corners, which can be found here.
public void LengthenLine(PointF startPoint, ref PointF endPoint, float pixelCount)
{
if (startPoint.Equals(endPoint))
return; // not a line
double dx = endPoint.X - startPoint.X;
double dy = endPoint.Y - startPoint.Y;
if (dx == 0)
{
// vertical line:
if (endPoint.Y < startPoint.Y)
endPoint.Y -= pixelCount;
else
endPoint.Y += pixelCount;
}
else if (dy == 0)
{
// horizontal line:
if (endPoint.X < startPoint.X)
endPoint.X -= pixelCount;
else
endPoint.X += pixelCount;
}
else
{
// non-horizontal, non-vertical line:
double length = Math.Sqrt(dx * dx + dy * dy);
double scale = (length + pixelCount) / length;
dx *= scale;
dy *= scale;
endPoint.X = startPoint.X + Convert.ToSingle(dx);
endPoint.Y = startPoint.Y + Convert.ToSingle(dy);
}
}
Find the direction vector, i.e. let the position vectors be (using floats) B = (x2, y2) and A = (x1, y1), then AB = B - A. Normalize that vector by dividing by its length ( Math.Sqrt(xx + yy) ). Then multiply the direction vector AB by the original length minus the circle's radius, and add back to the lines starting position:
double dx = x2 - x1;
double dy = y2 - y1;
double length = Math.Sqrt(dx * dx + dy * dy);
if (length > 0)
{
dx /= length;
dy /= length;
}
dx *= length - radius;
dy *= length - radius;
int x3 = (int)(x1 + dx);
int y3 = (int)(y1 + dy);
Edit: Fixed the code, aaand fixed the initial explanation (thought you wanted the line to go out from the circle's center to its perimeter :P)
I'm not sure why you even had to introduce the circle. For a line stretching from (x2,y2) to (x1,y1), you can calculate any point on that line as:
(x2+p*(x1-x2),y2+p*(y1-y2))
where p is the percentage along the line you wish to go.
To calculate the percentage, you just need:
p = r/L
So in your case, (x3,y3) can be calculated as:
(x2+(10/L)*(x1-x2),y2+(10/L)*(y1-y2))
For example, if you have the two points (x2=1,y2=5) and (x1=-6,y1=22), they have a length of sqrt(72 + 172 or 18.38477631 and 10 divided by that is 0.543928293. Putting all those figures into the equation above:
(x2 + (10/l) * (x1-x2) , y2 + (10/l) * (y1-y2))
= (1 + 0.543928293 * (-6- 1) , 5 + 0.543928293 * (22- 5))
= (1 + 0.543928293 * -7 , 5 + 0.543928293 * 17 )
= (x3=-2.807498053,y3=14.24678098)
The distance between (x3,y3) and (x1,y1) is sqrt(3.1925019472 + 7.7532190152) or 8.384776311, a difference of 10 to within one part in a thousand million, and that's only because of rounding errors on my calculator.
You can use similar triangles. For the main triangle, d is the hypotenuses and the extension of r is the vertical line that meets the right angle. Inside the circle you will have a smaller triangle with a hypotenuses of length r.
r/d = (x2-a0)/(x2-x1) = (y2-b0)/(y2-y1)
a0 = x2 + (x2-x1)r/d
b0 = y2 + (y2-y1)r/d

Categories

Resources