I'm experimenting with explicit implentations of interfaces. This is to strip the intellisense with methods which are not valid in the current context.
Use /practical-applications-of-the-adaptive-interface-pattern-the-fluent-builder-context/ as reference. To prove that they would not be callable, I thought I could use the dynamic keyword, because then at least my code would compile. It does compile, but it does not work as expected. The dynamic variable has access to the class methods, but not the interface methods that are explicit implemented.
public interface IAmInterface
{
void Explicit();
void Implicit();
}
public class Implementation : IAmInterface
{
void IAmInterface.Explicit()
{
}
public void Implicit()
{
}
public static Implementation BeginBuild()
{
return new Implementation();
}
}
And here are the 3 tests to prove my point
[Test]
public void TestWorksAsExpected() //Pass
{
var o = Implementation.BeginBuild();
o.Implicit();
}
[Test]
public void TestDoesNotWorkWithExplicitImplementation() //Fails
{
dynamic o = Implementation.BeginBuild();
o.Explicit();
}
[Test]
public void ButWorksForImplicitImplementation() //Pass
{
dynamic o = Implementation.BeginBuild();
o.Implicit();
}
Would anyone be kind enough to explain the reason for this?
One example where I wanted this functionality was to prove that I couldnt add more than two players in a TennisGame.
dynamic o = TennisGame.BeginBuild().With("Player A").Versus("Player B");
o.Versus("Player C"); //Should fail. It does, but for another reason
The dynamic variable has access to the class methods, but not the interface methods that are explicit implemented.
Yes, that is correct. dynamic has access to the regular members that would be accessible (based on context etc, usually means "public"). However, the only way, even in regular C#, to invoke explicit interface implementations, is to cast the object to the interface. This remains the case with dynamic.
Implicit interfact implementations are also part of the regular class API, so they are externally available (against the type) to both regular c# and dynamic.
Basically: no, dynamic can not and will not access explicit interface implementations.
Either cast to the interface, or use reflection from the interface type (not the object type).
Related
My question is related to Is there a reasonable approach to "default" type parameters in C# Generics?, but using an inner generic class that approach doesn't work.
Given code like this:
using System;
public class FooEventArgs<T> : EventArgs
{
// ... T properties and a constructor
}
public class Foo<T>
{
public delegate void EventHandler<FooEventArgs>(object sender, FooEventArgs<T> e);
public event EventHandler<FooEventArgs<T>> Changed
}
And with it being used like this:
public class User
{
public Foo<int> foo1;
public Foo<object> foo2;
public User()
{
foo1 = new Foo<int>();
foo2 = new Foo<object>();
foo1.Changed += foo1_Changed;
foo2.Changed += foo2_Changed;
}
protected void foo1_Changed(object sender, FooEventArgs<int> e) { ... }
protected void foo2_Changed(object sender, FooEventArgs<object> e) { ... }
}
Well, I'd rather like it if I could have the generic optional, as there will be many cases where I don't know what type something will be coming in. (Data is coming from an external system which has its own variable types, which are then converted into .NET types, but I run into situations where, for example, one remote data type may turn into one of a couple of .NET types, or where it is of the "any" type—thus object would be the only real answer for that case.)
The solution which immediately occurred to me was subclassing (it was also the primary suggestion in the question linked to earlier):
public class Foo : Foo<object>
{
public Foo(...) : base(...) { }
}
public class FooEventArgs : FooEventArgs<object>
{
public Foo(...) : base(...) { }
}
I then want to use it like this:
public class User
{
public Foo foo3;
public User()
{
foo3 = new Foo();
foo3.Changed += foo3_Changed;
}
protected void foo3_Changed(object sender, FooEventArgs e) { ... }
}
The problem is that it naturally won't work with foo3_Changed accepting FooEventArgs; it needs FooEventArgs<object>, as that's what the Foo.Changed event will get pass to it (as the value will come from Foo<object>).
Foo.cs(3,1415926): error CS0123: No overload for 'foo3_Changed' matches delegate 'FooLibrary.Foo<object>.EventHandler<FooLibrary.FooEventArgs<object>>'
Is there anything I can do about this, short of duplicating much of the class?
I did try one other thing: an implicit operator to convert from FooEventArgs<object> to FooEventArgs.
public static implicit operator FooEventArgs(FooEventArgs<object> e)
{
return new FooEventArgs(...);
}
This, unfortunately, doesn't seem to work, though I'm not quite clear on why:
EditBuffer.cs(13,37): error CS0553: 'FooLibrary.FooEventArgs.implicit operator FooLibrary.FooEventArgs(FooLibrary.FooEventArgs<object>)': user-defined conversions to or from a base class are not allowed
So then, once again, is there anything I can do about this, or am I correct in thinking that it's Tough Luck and I'll just have to be content using FooEventArgs<object> (and then I guess I may as well just use Foo<object>)?
I don't think there's much you can do about it, to be honest. You could make Foo doubly generic:
public class Foo<TData, TArgs> where TArgs : FooEventArgs<TData>
{
public delegate void EventHandler<TArgs>(object sender, TArgs e);
public event EventHandler<TArgs> Changed;
}
Then you could write:
public class Foo : Foo<object, FooEventArgs>
... but it's really making things very complicated for very little benefit.
I would also say that even though it's a bit more verbose to include the type argument, it does make it very clear - whereas inheritance can muddy the waters in various ways. I'd steer clear of class inheritance when you're not really trying to model behaviour specialization.
The reason your implicit conversion doesn't work has nothing to do with generics, by the way - as the error message states, you can't declare a conversion (implicit or explicit) which goes up or down the inheritance hierarchy. From the C# spec section 6.4.1:
C# permits only certain user-defined conversions to be declared. In particular, it is not possible to redefine an already existing implicit or explicit conversion.
(See that section for more details.)
As a side note, I find it more common to use inheritance the other way round for generics, typically with interfaces:
public interface IFoo
{
// Members which don't depend on the type parameter
}
public interface IFoo<T> : IFoo
{
// Members which all use T
}
That way code can receive just an IFoo without worrying about the generics side of things if they don't need to know T.
Unfortunately, that doesn't help you in your specific case.
Another interesting thing I just found is that you can create generic classes with the same name but different signatures.
class Foo<T> {
}
class Foo<T,T> {
}
then you can call either one of them like follows:
new Foo<string>();
new Foo<int,double>();
new Foo<string,int>();
I just thought it was interesting that despite both classes having the same name they can co-exist because they have different signatures.
I guess this is how the Tuple class works
public class Tuple<T1, T2, T3... T8>
{
...
I'm trying to break down the problem to a more simple description.
I'm using an external class library, which exposes 4 base classes, all very similar, sometimes derived from each other.
During the execution I'm called back on several delegate functions, all carrying an "object Sender", which contains the initial object of one of the 4 base classes, called on an API function before.
Sample (more or less pseudo code):
classA oA = new classA();
oA.API(callbackA);
Later on the callback is called, carrying oA as "Sender".
void callbackA(object Sender) {
classA oA = (classA)Sender;
oA.API2(xxx);
....
}
The approach above works fine. Now I wanted to extend it to the remaining 3 classes. Because the handling in their callbacks is rather identical, I didn't want to replicate the code another 3 times, but would rather make callbackA ready to deal with Senders of type classB, classC and classD.
I cannot achieve this in any usefull solution. Is anybody able to help me?
UPDATE: Because I did get lot of answer pointing to "is" - "is" is not a solution. I need to have ONE variable, capable of having multiple types. Dynamic casting?
Something like:
void callbackA(object Sender)
{
if (sender is ClassA)
{
classA oA = (classA)Sender;
oA.API2(xxx);
}
else if (sender is ClassB)
{
classB oB = (classB)Sender;
oB.API2(xxx);
}
....
}
It becomes a lot more productive when you can use a common baseclass or interface of A and B.
I'm assuming you aren't using a common interface because the class library is 'external' and you can't access the source. I'm also assuming that all of the possible concrete types for sender expose the same set of properties and methods--as far as your callback method is concerned.
Without a common base or interface you won't be able to avoid reflection or some conditional casting and repeated code. You can, however, encapsulate that code in a wrapper class. That would improve the readability of your callback method.
void callbackA(object sender)
{
var wrappedSender = new MyWrapper(sender);
wrappedSender.API2();
}
Again, assuming all sender classes are treated the same by your callback, you can use System.Reflection in your wrapper class to invoke the appropriate method (or access the appropriate properties). Using API2 as an example:
public class MyWrapper
{
object _wrappedClass;
public MyWrapper(object obj)
{
_wrappedClass = obj;
}
//...
public void API2()
{
MethodInfo api2 = _wrappedClass.GetType().GetMethod("API2");
api2.Invoke(_wrappedClass);
}
//...
}
This doesn't solve your problem exactly but it does separate the reflection 'plumbing' from your callback's intended behavior.
You could have a look at is operator C#
The is operator is used to check
whether the run-time type of an object
is compatible with a given type.
Also, if these classes shared a common interface that would help you greatly.
Using reflection for this is bad style, you should try to create a common interface for those classes and pass this to the delegate. If this is not possible then wrap the classes into wrappers which share an interface, i.e.:
interface IMyDelegate {
public void HandleCallback();
}
class WrapperA : IMyDelegate {
private ClassA classA;
public WrapperA(ClassA classA) {this.classA = classA;}
public void HandleCallback()
{
/* ... your callback code here ... */
}
}
Same for ClassB, ClassC and ClassD.
Then you pass it to the Callback and cast it to the interface:
void callback(object sender) {
IMyDelegate caller = (IMyDelegate)sender;
caller.HandleCallback();
}
In C++, you can do the following:
class base_class
{
public:
virtual void do_something() = 0;
};
class derived_class : public base_class
{
private:
virtual void do_something()
{
std::cout << "do_something() called";
}
};
The derived_class overrides the method do_something() and makes it private. The effect is, that the only way to call this method is like this:
base_class *object = new derived_class();
object->do_something();
If you declare the object as of type derived_class, you can't call the method because it's private:
derived_class *object = new derived_class();
object->do_something();
// --> error C2248: '::derived_class::do_something' : cannot access private member declared in class '::derived_class'
I think this is quite nice, because if you create an abstract class that is used as an interface, you can make sure that nobody accidentally declares a field as the concrete type, but always uses the interface class.
Since in C# / .NET in general, you aren't allowed to narrow the access from public to private when overriding a method, is there a way to achieve a similar effect here?
If you explicitly implement an interface, this will at least encourage people to use the interface type in the declaration.
interface IMyInterface
{
void MyMethod();
}
class MyImplementation : IMyInterface
{
void IMyInterface.MyMethod()
{
}
}
One will only see MyMethod after casting the instance to IMyInterface. If the declaration uses the interface type, there is no casting needed in subsequent uses.
MSDN page on explicit interface implementation (thanks Luke, saves me a few seconds^^)
IMyInterface instance = new MyImplementation();
instance.MyMethod();
MyImplementation instance2 = new MyImplementation();
instance2.MyMethod(); // Won't compile with an explicit implementation
((IMyInterface)instance2).MyMethod();
You can do this in the .Net world too, using explicit interface implementation
As an example, BindingList<T> implements IBindingList, but you have to cast it to IBindingList to see the method.
You are able to decrease a method's availability by marking it as new.
The example from MSDN's CA2222: Do not decrease inherited member visibility:
using System;
namespace UsageLibrary
{
public class ABaseType
{
public void BasePublicMethod(int argument1) {}
}
public class ADerivedType:ABaseType
{
// Violates rule: DoNotDecreaseInheritedMemberVisibility.
// The compiler returns an error if this is overridden instead of new.
private new void BasePublicMethod(int argument1){}
}
}
This is really more interesting as an academic exercise; if your code is truly dependent on not being able to call BasePublicMethod on ADerivedType, that's a warning sign of a dubious design.
The problem with this strategy, should it be implemented, is that the method is not truly private. If you were to upcast a reference to base_class, then the method is now public. Since it's a virtual method, user code will execute derived_class::do_something() eventhough it's marked as private.
This question already has answers here:
C# Interfaces. Implicit implementation versus Explicit implementation
(13 answers)
Closed 7 years ago.
What's the difference between Explicitly implement the interface and Implement the interface.
When you derive a class from an interface, intellisense suggest you to do both.
But, what's the difference?
Another aspect of this:
If you implicitly implemented, it means that the interface members are accessible to users of your class without them having to cast it.
If it's explicitly implemented, clients will have to cast your class to the interface before being able to access the members.
Here's an example of an explicit implementation:
interface Animal
{
void EatRoots();
void EatLeaves();
}
interface Animal2
{
void Sleep();
}
class Wombat : Animal, Animal2
{
// Implicit implementation of Animal2
public void Sleep()
{
}
// Explicit implementation of Animal
void Animal.EatRoots()
{
}
void Animal.EatLeaves()
{
}
}
Your client code
Wombat w = new Wombat();
w.Sleep();
w.EatRoots(); // This will cause a compiler error because it's explicitly implemented
((Animal)w).EatRoots(); // This will compile
The IDE gives you the option to do either - it would be unusual to do both. With explicit implementation, the members are not on the (primary) public API; this is handy if the interface isn't directly tied to the intent of the object. For example, the ICustomTypeDescriptor members aren't all that helpful to regular callers - only to some very specific code, so there is no purpose having them on the public API causing mess.
This is also useful if:
there is a conflict between an interface's Foo method and your own type's Foo method, and they mean different things
there is a signature conflict between other interfaces
The typical example of the last point is IEnumerable<T>, which has a GetEnumerator() method at two levels in the interface hierarchy - it is common to implement the typed (IEnumerator<T>) version using implicit implementation, and the untyped (IEnumerator) version using explicit implementation.
Here's the difference in plain English:
Suppose you have an interface Machine, which has a function Run(), and another interface Animal which also has a function called Run(). Of course, when a machine runs, we're talking about it starting up, but when an animal runs, we're talking about it moving around. So what happens when you have an object, lets call it Aibo that is both a Machine and an Animal? (Aibo is a mechanical dog, by the way.) When Aibo runs, does he start up, or does move around? Explicitly implementing an interface lets you make that distinction:
interface Animal
{
void Run();
}
interface Machine
{
void Run();
}
class Aibo : Animal, Machine
{
void Animal.Run()
{
System.Console.WriteLine("Aibo goes for a run.");
}
void Machine.Run()
{
System.Console.WriteLine("Aibo starting up.");
}
}
class Program
{
static void Main(string[] args)
{
Aibo a = new Aibo();
((Machine)a).Run();
((Animal)a).Run();
}
}
The catch here is that I can't simply call a.Run() because both of my implementations of the function are explicitly attached to an interface. That makes sense, because otherwise how would the complier know which one to call? Instead, if I want to call the Run() function on my Aibo directly, I'll have to also implement that function without an explicit interface.
Explicit will put IInterfaceName. at the front of all of the interface implementations. It's useful if you need to implement two interfaces that contain names/signatures that clash.
More info here.
Explicitly implement puts the fully qualified name on the function name consider this code
public interface IamSam
{
int foo();
void bar();
}
public class SamExplicit : IamSam
{
#region IamSam Members
int IamSam.foo()
{
return 0;
}
void IamSam.bar()
{
}
string foo()
{
return "";
}
#endregion
}
public class Sam : IamSam
{
#region IamSam Members
public int foo()
{
return 0;
}
public void bar()
{
}
#endregion
}
IamSam var1;
var1.foo() returns an int.
SamExplicit var2;
var2.foo() returns a string.
(var2 as IamSam).foo() returns an int.
Here you go, directly from MSDN
The difference is that you can inherit a class from several interfaces. These interfaces may have identical Method signatures. An explicit implementation allows you to change your implementation according to which Interface was used to call it.
Explicit interface implementation, where the implementation is hidden unless you explicitly cast, is most useful when the interface is orthogonal to the class functionality. That is to say, behaviorally unrelated .
For example, if your class is Person and the interface is ISerializable, it doesn't make much sense for someone dealing with Person attributes to see something weird called 'GetObjectData' via Intellisense. You might therefore want to explicitly implement the interface.
On the other hand, if your person class happens to implement IAddress, it makes perfect sense to see members like AddressLine1, ZipCode etc on the Person instances directly (implicit implementation).
In Jesse Liberty's Programming C# (p.142) he provides an example where he casts an object to an interface.
interface IStorable
{
...
}
public class Document : IStorable
{
...
}
...
IStorable isDoc = (IStorable) doc;
...
What is the point of this, particularly if the object's class implements the inteface anyway?
EDIT1: To clarify, I'm interested in the reason for the cast (if any), not the reason for implementing interfaces. Also, the book is his 2001 First Edition (based on C#1 so the example may not be germane for later versions of C#).
EDIT2: I added some context to the code
Because you want to restrict yourself to only methods provided by the interface. If you use the class, you run the risk of calling a method (inadvertently) that's not part of the interface.
There is only one reason when you actually need a cast: When doc is of a base type of an actual object that implements IStorable. Let me explain:
public class DocBase
{
public virtual void DoSomething()
{
}
}
public class Document : DocBase, IStorable
{
public override void DoSomething()
{
// Some implementation
base.DoSomething();
}
#region IStorable Members
public void Store()
{
// Implement this one aswell..
throw new NotImplementedException();
}
#endregion
}
public class Program
{
static void Main()
{
DocBase doc = new Document();
// Now you will need a cast to reach IStorable members
IStorable storable = (IStorable)doc;
}
}
public interface IStorable
{
void Store();
}
If the object implements the interface explicitly (public void IStorable.StoreThis(...)) that casting is the easiest way to actually reach the interface members.
I am not sure under what context the example was given in the book. But, you generally can type cast an object to interface to achieve multiple inheritance. I have given the example below.
public interface IFoo
{
void Display();
}
public interface IBar
{
void Display();
}
public class MyClass : IFoo, IBar
{
void IBar.Display()
{
Console.WriteLine("IBar implementation");
}
void IFoo.Display()
{
Console.WriteLine("IFoo implementation");
}
}
public static void Main()
{
MyClass c = new MyClass();
IBar b = c as IBar;
IFoo f = c as IFoo;
b.Display();
f.Display();
Console.ReadLine();
}
This would display
IBar implementation
IFoo implementation
It's pretty hard to tell without more of the context. If the variable doc is declared to be a type which implements the interface, then the cast is redundant.
Which version of the book are you reading? If it's "Programming C# 3.0" I'll have a look tonight when I'm at home.
EDIT: As we've seen in the answers so far, there are three potential questions here:
Why cast in the statement shown in the question? (Answer: you don't have to if doc is of an appropriate compile-time type)
Why is it ever appropriate to explicitly cast to an implemented interface or base class? (Answer: explicit interface implementation as shown in another answer, and also for the sake of picking a less specific overload when passing the cast value as an argument.)
Why use the interface at all? (Answer: working with the interface type means you're less susceptible to changes in the concrete type later on.)
The doc object might be of a type that implements members of IStorable explicitly, not adding them to the classes primary interface (i.e., they can only be called via the interface).
Actually "casting" (using the (T) syntax) does not make any sense since C# handles upcasts (cast to parent type) automatically (unlike F# for instance).
There are a lot of good answers here, but I don't really think they answer WHY you actually WANT to use the most restrictive interface possible.
The reasons do not involve your initial coding, they involve the next time you visit or refactor the code--or when someone else does it.
Let's say you want a button and are placing it on your screen. You are getting the button either passed in or from another function, like this:
Button x=otherObject.getVisibleThingy();
frame.add(x);
You happen to know that VisibleThingy is a button, it returns a button, so everything is cool here (no cast required).
Now, lets say that you refactor VisibleThingy to return a toggle button instead. You now have to refactor your method because you knew too much about the implementation.
Since you only NEED the methods in Component (a parent of both button and Toggle, which could have been an interface--same thing pretty much for our purposes), if you had written that first line like this:
Component x=(Component)otherObject.getVisibleThingy();
You wouldn't have had to refactor anything--it would have just worked.
This is a very simple case, but it can be much more complex.
So I guess the summary would be that an interface is a specific way to "View" your object--like looking at it through a filter...you can only see some parts. If you can restrict your view enough, the object can "Morph" behind your particular view and not effect anything in your current world--a very powerful trick of abstraction.
The best reason why you would cast to interfaces would be if you are writing code against objects and you don't know what concrete type they are and you don't want to.
If you know that you might come across an object that implements a specific interface you could then get the values out of the object without having to know the concrete class that this object is. Also, if you know that an object implements a given interface, that interface might define methods that you can execute to take certain actions on the object.
Here's a simple example:
public interface IText
{
string Text { get; }
}
public interface ISuperDooper
{
string WhyAmISuperDooper { get; }
}
public class Control
{
public int ID { get; set; }
}
public class TextControl : Control, IText
{
public string Text { get; set; }
}
public class AnotherTextControl : Control, IText
{
public string Text { get; set; }
}
public class SuperDooperControl : Control, ISuperDooper
{
public string WhyAmISuperDooper { get; set; }
}
public class TestProgram
{
static void Main(string[] args)
{
List<Control> controls = new List<Control>
{
new TextControl
{
ID = 1,
Text = "I'm a text control"
},
new AnotherTextControl
{
ID = 2,
Text = "I'm another text control"
},
new SuperDooperControl
{
ID = 3,
WhyAmISuperDooper = "Just Because"
}
};
DoSomething(controls);
}
static void DoSomething(List<Control> controls)
{
foreach(Control control in controls)
{
// write out the ID of the control
Console.WriteLine("ID: {0}", control.ID);
// if this control is a Text control, get the text value from it.
if (control is IText)
Console.WriteLine("Text: {0}", ((IText)control).Text);
// if this control is a SuperDooperControl control, get why
if (control is ISuperDooper)
Console.WriteLine("Text: {0}",
((ISuperDooper)control).WhyAmISuperDooper);
}
}
}
running this little program would give you the following output:
ID: 1
Text: I'm a text control
ID: 2
Text: I'm another text control
ID: 3
Text: Just Because
Notice that I didn't have to write any code in the DoSomething method that required me to know anything about all the objects I was working on being concrete object types. The only thing that I know is that I'm working on objects that are at least an instance of the Control class. I can then use the interface to find out what else they might have.
There's a million different reasons that you would take this approach with interfaces on your objects but it gives you a loose way to access your objects without having to know exactly what it is.
Think of all the credit cards in the world, every company makes their own, the interface is the same though, so every card reader can have a card swiped through it that follows the standard. Similar to the usage of interfaces.
As has been noted, the casting is superfluous and not necessary. However, it is a more explicit form of coding which would be useful to beginners in aiding their understanding.
In an introductory textbook, it is best to explicitly act, rather than let the compliler do things implicitly, which would be more confusing for beginners.
The "doc" is not of type "IStorable" so it would be confusing for beginners to see that it is being assigned to a isDoc. By explicitly casting, the author (of the book and of the code) is saying that a document can be casted to an IStorable object, but it is NOT THE SAME as an IStorable object.
The point is, the object (where did you get it?) may not implement the interface, in which case an exception is thrown which can be caught and dealt with. Of course you can use the "is" operator to check, and the "as" operator to cast instead of the C-style cast.
To allow for the most decoupling between pieces of code...
See the following article for more:
Interfaces
The main reason you would explicitly cast to an interface is if the members of the interface are implemented explicitly (i.e. with fully-qualified names in the form of InterfaceName.InterfaceMemberName). This is because when you fully-qualify them with the interface name, those members are not actually part of the implementing class's API. You can only get to them via casting to the interface.
Here's an example you can run as-is:
using System;
public interface ISomethingDoer {
void DoSomething();
}
public class ThingA : ISomethingDoer {
public void DoSomething(){
Console.WriteLine("ThingA did it!");
}
}
public class ThingB : ISomethingDoer {
// This is implemented explicitly by fully-qualifying it with the interface name
// Note no 'scope' here (e.g. public, etc.)
void ISomethingDoer.DoSomething(){
Console.WriteLine("ThingB did it!");
}
}
public static class Runner {
public static void Main(){
var a = new ThingA();
a.DoSomething(); // Prints 'ThingA did it!'
var b = new ThingB();
b.DoSomething(); // NOTE: THIS WILL NOT COMPILE!!!
var bSomethingDoer = (ISomethingDoer)b;
bSomethingDoer.DoSomething(); // Prints 'ThingB did it!'
}
}
HTH!