C# caching with delegates - c#

I'm working on a simple cache class for my application.
using System;
namespace Program {
public class Cache {
public delegate int CacheMethodInt();
public static int Get(CacheMethodInt method) {
//todo: generate cachekey here
return method.Invoke();
}
}
public class Calculator {
public int Add(int x, int y) {
return x + y;
}
}
class Program {
static void Main(string[] args) {
Calculator c = new Calculator();
Console.WriteLine(Cache.Get(() => c.Add(1, 2)));
}
}
}
In Cache:Get I need to check whether the return value is already cached and if so return it without invoking the method. The problem is that I can't figure out how to generate a good cachekey. In this case I would like something like this:
Calculator:Add:1(int):2(int)
Is it possible to get this info in Cache:Get? I'm using .NET 2.0.

It's possible using reflection.
As alternative, on a project I used Postsharp for the same purposes. As benefit more generic and common approach
And do not forget about cache invalidation or expiration.
Related question shows how to get MethodInfo and method name:
Using MethodInfo.GetCurrentMethod() in anonymous methods
When you have MethodInfo than you can get all you need

Related

Log method information

I have been spending a lot of time trying to find a library that allows to log information about the methods that are being executed. Somehow I feel that all of them are too invasive. Is there any library or code that makes this so simple that I only need to add a decorator/attribute to the method?
Here what I would like to have:
internal class Calculator
{
[CustomInterceptor]
public static int Add(int a, int b)
{
return a + b;
}
}
internal class CustomInterceptor : Attribute
{
//here some implementation
}
static void Main(string[] args)
{
var result = Calculator.Add(10, 2);
Console.WriteLine($"Result : {result}");
}
Desired output
Before Add
Result 12
After Add
If this can be done with Reflection, please I would prefer that approach since that would imply no need for third party libraries.
Thanks in advance.

Call Method based on Type of Parameter

I have an object that can be of type AudioRequest or VideoRequest. Both classes inherit from Request. I have this class:
public static DoThings
{
public static void HandleRequest(AudioRequest r)
{
// Do things.
}
public static void HandleRequest(VideoRequest r)
{
// Do things.
}
}
I want to be able to call DoThings.HandleRequest(r) where r can be either a VideoRequest or AudioRequest and have it call the correct one. Is that possible? I have no control over the *Request classes, so I can't do anything to them. I do have control of the DoThings class and the code that calls HandleRequest. This is the code that calls it, it is WebAPI:
public Response Post(Request input)
{
return DoThings.HandleRequest(input);
}
The code above gives the error Argument 1: cannot convert from 'Request' to 'AudioRequest'.
The original code that I was cleaning up had this:
if (input.GetType() == typeof(AudioRequest))
{
var audioRequest = (AudioRequest)input;
DoThings.HandleRequest(audioRequest);
}
else if (input.GetType() == typeof(VideoRequest))
{
var videoRequest = (VideoRequest)input;
DoThings.HandleRequest(videoRequest);
}
But I figured there was a cleaner way to do this.
Based on the information you've provided so far, your question appears to be a duplicate of How to call a function dynamically based on an object type. I agree with the answer, that the fact that you want to do this suggests you should rethink the design. But, you can use dynamic to accomplish what you want.
Here's a simple console program that demonstrates the basic idea:
class Program
{
static void Main(string[] args)
{
A b = new B(), c = new C();
M(b);
M(c);
}
static void M(A a)
{
WriteLine("M(A)");
M((dynamic)a);
}
static void M(B b)
{
WriteLine("M(B)");
}
static void M(C c)
{
WriteLine("M(C)");
}
}
class A { }
class B : A { }
class C : A { }
The output is:
M(A)
M(B)
M(A)
M(C)
As you can see, in each case the M(A) method is called first, and then the appropriate M(B) or M(C) overload is called from M(A).
In your own example, this could look something like this:
public static DoThings
{
public static void HandleRequest(Request r)
{
// Dynamic dispatch to actual method:
HandleRequest((dynamic)r);
}
public static void HandleRequest(AudioRequest r)
{
// Do things.
}
public static void HandleRequest(VideoRequest r)
{
// Do things.
}
}
Note that dynamic does incur a run-time cost, particularly the first time a method is called with a given run-time type. But depending on the frequency and complexity of these "requests", using dynamic could be the cleanest way out of the current situation.
C# will call the appropriate function that matches the arguments and their types.
That being said, both of your functions accept AudioRequest, I believe one of those should accept a VideoRequest.
public static DoThings
{
public static void HandleRequest(AudioRequest r)
{
// Do things.
}
public static void HandleRequest(VideoRequest r)
{
// Do things.
}
}
If for some reason you must have two different functions that take only AudioRequest you can differentiate between two function with an extra parameter
public static class DoThings
{
public static void HandleRequest(AudioRequest r)
{
// Do things.
}
public static void HandleRequest(AudioRequest r, bool UseAlternativeMethod)
{
// Do other things.
}
}
Simply having a second parameter will call the second method regardless of it's value.
This isn't a best practices solution as you'd rather discriminate between them by accurately renaming the method name to be accurate but in practice you don't always have a choice.

Testing member assignment using mocks in c#

I am writing a testing framework for my system, which allows users to create mocked inputs to the system. The system manipulates that input, and updates some of its members for later post processing.
In order to allow users to mock the input, I need to be able to update a mocked input's members. Furthermore, the input may not be a mock, so I would prefer a solution oblivious to the type of element received.
Simply put, I have a function which receives an object and attempts to set one of its properties:
func(object a)
a.m = 5;
Which I want to test by mocking its input a, using the Moq library. Unfortunately, my test failed, since mocked objects' members need to be set using Mock.SetUpGet, instead of standard member assignment.
What would be a good way to test such a function, without changing it?
In order to be able to mock and test it, the property must be virtual, but if that's the case you can use the SetupSet method, rather than SetupGet:
public class A
{
public virtual int m { get; set; }
}
[TestFixture]
public class Tests
{
public static void SetProperty(A a)
{
a.m = 5;
}
[Test]
public void IsThePropertySet()
{
var x = new Mock<A>();
x.SetupSet<int>(a => a.m = 5).Verifiable();
SetProperty(x.Object);
x.Verify();
}
}
Your function should have getters and setters anyway.
And a good way of testing whether your functions work is to do a small-scale test. Initialize an object and send that in to your method, seeing whether it does what you want.
public class myClass
{
public int number;
public void setNumber(int nNum)
{
number = nNum;
}
public int getNumber()
{
return number;
}
}
class Program
{
static void myMethod(myClass obj, int nNumb)
{
//obj.setNumber(nNumb);
obj.number = nNumb;
}
static void Main(string[] args)
{
myClass myObj = new myClass();
myMethod(myObj, 3);
//Console.WriteLine(myObj.getNumber());
Console.WriteLine(myObj.number);
Console.ReadLine();
}
}
}
Output: 3

C#: Creating an instance of an abstract class without defining new class

I know it can be done in Java, as I have used this technique quite extensively in the past. An example in Java would be shown below. (Additional question. What is this technique called? It's hard to find an example of this without a name.)
public abstract class Example {
public abstract void doStuff();
}
public class StartHere{
public static void main(string[] args){
Example x = new Example(){
public void doStuff(){
System.out.println("Did stuff");
}
};
x.doStuff();
}
}
Now, my main question would be, can this also be done in C#, and if so, how?
The Java technique is called "Anonymous inner class", and there is no equivalent in C#.
With lamba expressions and class initializers you can get the same behaviour with a bit of effort.
public class Example {
public Action DoStuff;
public Action<int> DoStuffWithParameter;
public Func<int> DoStuffWithReturnValue;
}
class Program {
static void Main(string[] args) {
var x = new Example() {
DoStuff = () => {
Console.WriteLine("Did Stuff");
},
DoStuffWithParameter = (p) => {
Console.WriteLine("Did Stuff with parameter " + p);
},
DoStuffWithReturnValue = () => { return 99; }
};
x.DoStuff();
x.DoStuffWithParameter(10);
int value = x.DoStuffWithReturnValue();
Console.WriteLine("Return value " + value);
Console.ReadLine();
}
}
One problem with this solution that I just realized is that if you were to create fields in the Example class, the lambda expressions would not be able to access those fields.
However, there is no reason that you could not pass the instance of Example to the lambda expressions which would give them access to any public state that example might hold. AFAIK that would be functionally equivalent to the Java Anonymous Inner Class.
P.S. If you are going to vote an answer down, do us all a favour and add a comment as to why you disagree :-)
Typically, problems that are solved with anonymous inner classes in Java are solved in a much cleaner fashion using delegates in .Net. Your example is a little too simplistic to determine your intent. If your intent by using the abstract class is to pass around a "behavior" think about just using an Action delegate instead.
public class StartHere{
public static void main(string[] args){
Action doStuff = () => Console.WriteLine("Did stuff");
executeSomething(doStuff);
}
public static void executeSomething(Action action)
{
action();
}
}
That can't be done in C#; you need to declare a new class type. The closest you can get in C# is probably a named nested class:
public class StartHere{
private class Foo : Example {
public override void doStuff()
{
Console.WriteLine("did stuff");
}
}
public static void Main(string[] args){
Example x = new Foo();
x.doStuff();
}
}
This is not supported in C#, and if it were up to me it shouldn't be so either.
The proliferation of inner classes in java is mainly due to the lack of delegates or lambdas, which C# has. So while this type of functionality currently is "your only hope" in java, you can usually use other mechanisms in C# to achieve the same ends. Java feels like playing the piano with one hand in this regard.
(Admittedly a lot of us have gotten quite good at this one-handed playing; and now it seems like we have to wait at least until java 8 for closures...)
Since your class represents only an action, you can use a delegate in your case, there is an existing delegate :
public delegate void Action();
This is the exact equivalent of your class.
And the déclaration of your anonymous class is even cleaner :
Action action = () => Console.WriteLine("Hello world");
action(); // invoke
you can even use closure :
public void Hello(string name)
{
Action action = () => Console.WriteLine("Hello " + name);
action(); // will call the above lambda !
}
While all good answers, most of the work arounds suggested rely on C# 3.0
So, for the sake of completeness, I'll add another solution that uses neither lambdas nor Func type (Granted that, as Matt Olenik mentioned in the comments, one could generalize the below delegates to work the same way.). For those, like me who may still be working with C# 2.0. Maybe not the best solution, but it works.
public class Example
{
public delegate void DoStuffDelecate();
public DoStuffDelecate DoStuff;
public delegate void DoStuffWithDelecate(int n);
public DoStuffWithDelecate DoStuffWithParameter;
public delegate int DoStuffWithReturnDelecate();
public DoStuffWithReturnDelecate DoStuffWithReturnValue;
}
class Program
{
static int MethodWithReturnValue()
{
return 99;
}
static void MethodForDelecate()
{
Console.WriteLine("Did Stuff");
}
static void MethodForDelecate(int n)
{
Console.WriteLine("Did Stuff with parameter " + n);
}
static void Main(string[] args)
{
var x = new Example();
x.DoStuff = MethodForDelecate;
x.DoStuffWithParameter = MethodForDelecate;
x.DoStuffWithReturnValue = MethodWithReturnValue;
x.DoStuff();
x.DoStuffWithParameter(10);
int value = x.DoStuffWithReturnValue();
Console.WriteLine("Return value " + value);
Console.ReadLine();
}
}
You are able to accomplish this with Mocking in .NET. However there is no in-language support for this feature, I think it will be available in C# 4.0. There are a number of libraries out there for Mocking, including:
Moq
RhinoMock
In short no, you have to define it as separate sub class. I think this feature is coming C# 4.0 though?
Edit: No it's not coming C# 4.0 I made that up.

Can I add extension methods to an existing static class?

I'm a fan of extension methods in C#, but haven't had any success adding an extension method to a static class, such as Console.
For example, if I want to add an extension to Console, called 'WriteBlueLine', so that I can go:
Console.WriteBlueLine("This text is blue");
I tried this by adding a local, public static method, with Console as a 'this' parameter... but no dice!
public static class Helpers {
public static void WriteBlueLine(this Console c, string text)
{
Console.ForegroundColor = ConsoleColor.Blue;
Console.WriteLine(text);
Console.ResetColor();
}
}
This didn't add a 'WriteBlueLine' method to Console... am I doing it wrong? Or asking for the impossible?
No. Extension methods require an instance variable (value) for an object. You can however, write a static wrapper around the ConfigurationManager interface. If you implement the wrapper, you don't need an extension method since you can just add the method directly.
public static class ConfigurationManagerWrapper
{
public static ConfigurationSection GetSection( string name )
{
return ConfigurationManager.GetSection( name );
}
.....
public static ConfigurationSection GetWidgetSection()
{
return GetSection( "widgets" );
}
}
Can you add static extensions to classes in C#? No but you can do this:
public static class Extensions
{
public static T Create<T>(this T #this)
where T : class, new()
{
return Utility<T>.Create();
}
}
public static class Utility<T>
where T : class, new()
{
static Utility()
{
Create = Expression.Lambda<Func<T>>(Expression.New(typeof(T).GetConstructor(Type.EmptyTypes))).Compile();
}
public static Func<T> Create { get; private set; }
}
Here's how it works. While you can't technically write static extension methods, instead this code exploits a loophole in extension methods. That loophole being that you can call extension methods on null objects without getting the null exception (unless you access anything via #this).
So here's how you would use this:
var ds1 = (null as DataSet).Create(); // as oppose to DataSet.Create()
// or
DataSet ds2 = null;
ds2 = ds2.Create();
// using some of the techniques above you could have this:
(null as Console).WriteBlueLine(...); // as oppose to Console.WriteBlueLine(...)
Now WHY did I pick calling the default constructor as an example, and AND why don't I just return new T() in the first code snippet without doing all of that Expression garbage?
Well todays your lucky day because you get a 2fer. As any advanced .NET developer knows, new T() is slow because it generates a call to System.Activator which uses reflection to get the default constructor before calling it. Damn you Microsoft!
However my code calls the default constructor of the object directly.
Static extensions would be better than this but desperate times call for desperate measures.
It's not possible.
And yes, I think MS made a mistake here.
Their decision does not make sense and forces programmers to write (as described above) a pointless wrapper class.
Here is a good example: Trying to extend static MS Unit testing class Assert: I want 1 more Assert method AreEqual(x1,x2).
The only way to do this is to point to different classes or write a wrapper around 100s of different Assert methods. Why!?
If the decision was being made to allow extensions of instances, I see no logical reason to not allow static extensions. The arguments about sectioning libraries does not stand up once instances can be extended.
I stumbled upon this thread while trying to find an answer to the same question the OP had. I didn't find the answer I wanted, but I ended up doing this.
public static class Helpers
{
public static void WriteLine(this ConsoleColor color, string text)
{
Console.ForegroundColor = color;
Console.WriteLine(text);
Console.ResetColor();
}
}
And I use it like this:
ConsoleColor.Cyan.WriteLine("voilĂ ");
As of C#7 this isn't supported. There are however discussions about integrating something like that in C#8 and proposals worth supporting.
Maybe you could add a static class with your custom namespace and the same class name:
using CLRConsole = System.Console;
namespace ExtensionMethodsDemo
{
public static class Console
{
public static void WriteLine(string value)
{
CLRConsole.WriteLine(value);
}
public static void WriteBlueLine(string value)
{
System.ConsoleColor currentColor = CLRConsole.ForegroundColor;
CLRConsole.ForegroundColor = System.ConsoleColor.Blue;
CLRConsole.WriteLine(value);
CLRConsole.ForegroundColor = currentColor;
}
public static System.ConsoleKeyInfo ReadKey(bool intercept)
{
return CLRConsole.ReadKey(intercept);
}
}
class Program
{
static void Main(string[] args)
{
try
{
Console.WriteBlueLine("This text is blue");
}
catch (System.Exception ex)
{
Console.WriteLine(ex.Message);
Console.WriteLine(ex.StackTrace);
}
Console.WriteLine("Press any key to continue...");
Console.ReadKey(true);
}
}
}
Nope. Extension method definitions require an instance of the type you're extending. It's unfortunate; I'm not sure why it's required...
You can't add static methods to a type. You can only add (pseudo-)instance methods to an instance of a type.
The point of the this modifier is to tell the C# compiler to pass the instance on the left-side of the . as the first parameter of the static/extension method.
In the case of adding static methods to a type, there is no instance to pass for the first parameter.
As for extension methods, extension methods themselves are static; but they are invoked as if they are instance methods. Since a static class is not instantiable, you would never have an instance of the class to invoke an extension method from. For this reason the compiler does not allow extension methods to be defined for static classes.
Mr. Obnoxious wrote: "As any advanced .NET developer knows, new T() is slow because it generates a call to System.Activator which uses reflection to get the default constructor before calling it".
New() is compiled to the IL "newobj" instruction if the type is known at compile time. Newobj takes a constructor for direct invocation. Calls to System.Activator.CreateInstance() compile to the IL "call" instruction to invoke System.Activator.CreateInstance(). New() when used against generic types will result in a call to System.Activator.CreateInstance(). The post by Mr. Obnoxious was unclear on this point... and well, obnoxious.
This code:
System.Collections.ArrayList _al = new System.Collections.ArrayList();
System.Collections.ArrayList _al2 = (System.Collections.ArrayList)System.Activator.CreateInstance(typeof(System.Collections.ArrayList));
produces this IL:
.locals init ([0] class [mscorlib]System.Collections.ArrayList _al,
[1] class [mscorlib]System.Collections.ArrayList _al2)
IL_0001: newobj instance void [mscorlib]System.Collections.ArrayList::.ctor()
IL_0006: stloc.0
IL_0007: ldtoken [mscorlib]System.Collections.ArrayList
IL_000c: call class [mscorlib]System.Type [mscorlib]System.Type::GetTypeFromHandle(valuetype [mscorlib]System.RuntimeTypeHandle)
IL_0011: call object [mscorlib]System.Activator::CreateInstance(class [mscorlib]System.Type)
IL_0016: castclass [mscorlib]System.Collections.ArrayList
IL_001b: stloc.1
I tried to do this with System.Environment back when I was learning extension methods and was not successful. The reason is, as others mention, because extension methods require an instance of the class.
It is not possible to write an extension method, however it is possible to mimic the behaviour you are asking for.
using FooConsole = System.Console;
public static class Console
{
public static void WriteBlueLine(string text)
{
FooConsole.ForegroundColor = ConsoleColor.Blue;
FooConsole.WriteLine(text);
FooConsole.ResetColor();
}
}
This will allow you to call Console.WriteBlueLine(fooText) in other classes. If the other classes want access to the other static functions of Console, they will have to be explicitly referenced through their namespace.
You can always add all of the methods in to the replacement class if you want to have all of them in one place.
So you would have something like
using FooConsole = System.Console;
public static class Console
{
public static void WriteBlueLine(string text)
{
FooConsole.ForegroundColor = ConsoleColor.Blue;
FooConsole.WriteLine(text);
FooConsole.ResetColor();
}
public static void WriteLine(string text)
{
FooConsole.WriteLine(text);
}
...etc.
}
This would provide the kind of behaviour you are looking for.
*Note Console will have to be added through the namespace that you put it in.
The following was rejected as an edit to tvanfosson's answer. I was asked to contribute it as my own answer. I used his suggestion and finished the implementation of a ConfigurationManager wrapper. In principle I simply filled out the ... in tvanfosson's answer.
No. Extension methods require an instance of an object. You can
however, write a static wrapper around the ConfigurationManager
interface. If you implement the wrapper, you don't need an extension
method since you can just add the method directly.
public static class ConfigurationManagerWrapper
{
public static NameValueCollection AppSettings
{
get { return ConfigurationManager.AppSettings; }
}
public static ConnectionStringSettingsCollection ConnectionStrings
{
get { return ConfigurationManager.ConnectionStrings; }
}
public static object GetSection(string sectionName)
{
return ConfigurationManager.GetSection(sectionName);
}
public static Configuration OpenExeConfiguration(string exePath)
{
return ConfigurationManager.OpenExeConfiguration(exePath);
}
public static Configuration OpenMachineConfiguration()
{
return ConfigurationManager.OpenMachineConfiguration();
}
public static Configuration OpenMappedExeConfiguration(ExeConfigurationFileMap fileMap, ConfigurationUserLevel userLevel)
{
return ConfigurationManager.OpenMappedExeConfiguration(fileMap, userLevel);
}
public static Configuration OpenMappedMachineConfiguration(ConfigurationFileMap fileMap)
{
return ConfigurationManager.OpenMappedMachineConfiguration(fileMap);
}
public static void RefreshSection(string sectionName)
{
ConfigurationManager.RefreshSection(sectionName);
}
}
yes, in a limited sense.
public class DataSet : System.Data.DataSet
{
public static void SpecialMethod() { }
}
This works but Console doesn't because it's static.
public static class Console
{
public static void WriteLine(String x)
{ System.Console.WriteLine(x); }
public static void WriteBlueLine(String x)
{
System.Console.ForegroundColor = ConsoleColor.Blue;
System.Console.Write(.x);
}
}
This works because as long as it's not on the same namespace. The problem is that you have to write a proxy static method for every method that System.Console have. It's not necessarily a bad thing as you can add something like this:
public static void WriteLine(String x)
{ System.Console.WriteLine(x.Replace("Fck","****")); }
or
public static void WriteLine(String x)
{
System.Console.ForegroundColor = ConsoleColor.Blue;
System.Console.WriteLine(x);
}
The way it works is that you hook something into the standard WriteLine. It could be a line count or bad word filter or whatever. Whenever you just specify Console in your namespace say WebProject1 and import the namespace System, WebProject1.Console will be chosen over System.Console as default for those classes in namespace WebProject1. So this code will turn all the Console.WriteLine calls into blue insofar as you never specified System.Console.WriteLine.
You can use a cast on null to make it work.
public static class YoutTypeExtensionExample
{
public static void Example()
{
((YourType)null).ExtensionMethod();
}
}
The extension:
public static class YourTypeExtension
{
public static void ExtensionMethod(this YourType x) { }
}
YourType:
public class YourType { }
Although the methods of Console are static, its static methods Write() and WriteLine() merely redirect the call to Console.Out.Write() and Console.Out.WriteLine() respectively. Out is an instance whose type derives from the abstract class TextWriter. This makes it possible to define extension methods for TextWriter:
public static class ConsoleTextWriterExtensions
{
public static void WriteBlueLine(this TextWriter writer, string text)
{
Console.ForegroundColor = ConsoleColor.Blue;
writer.WriteLine(text);
Console.ResetColor();
}
public static void WriteUppercase(this TextWriter writer, string text)
{
writer.Write(text.ToUpper());
}
}
The method can then be invoked like this:
Console.Out.WriteBlueLine();
And the best part is that the type of the standard error stream instance Console.Error also derives from TextWriter which makes the same extension method also usable for Console.Error:
Console.Error.WriteBlueLine();
This can be quite useful if you have defined an extension method like WriteTable()(for writing a table out to the console) because you can also use it for the error stream or any other object of TextWriter.
Newer versions of C# allow this to be even shorter with a using static statement for Console to get red of the Console. prefix:
using static System.Console;
Out.WriteBlueLine("A blue line");
Error.WriteBlueLine("A blue line");
unfotunately NO, you CANNOT extend static classes
https://onecompiler.com/csharp/3xvbe7axg
using System;
namespace HelloWorld
{
public static class console_extensions {
public static void EXTENSION(this object item) {
System.Console.WriteLine("HELLO THERE!");
}
}
public class Program
{
public static void Main(string[] args)
{
Console.WriteLine("Hello, World!");
Console.EXTENSION();
((Console)null).EXTENSION();
Console l = new Console();
l.EXTENSION();
}
}
}
output
Compilation failed: 4 error(s), 0 warnings
HelloWorld.cs(16,12): error CS0117: `System.Console' does not contain a definition for `EXTENSION'
/usr/lib/mono/4.5/mscorlib.dll (Location of the symbol related to previous error)
HelloWorld.cs(17,5): error CS0716: Cannot convert to static type `System.Console'
HelloWorld.cs(18,4): error CS0723: `l': cannot declare variables of static types
/usr/lib/mono/4.5/mscorlib.dll (Location of the symbol related to previous error)
HelloWorld.cs(18,16): error CS0712: Cannot create an instance of the static class `System.Console'
/usr/lib/mono/4.5/mscorlib.dll (Location of the symbol related to previous error)
however you CAN pass null to the extension method
using System;
namespace HelloWorld
{
public static class static_extensions {
public static void print(this object item, int data = 0) {
Console.WriteLine("EXT: I AM A STATIC EXTENSION!");
Console.WriteLine("EXT: MY ITEM IS: " + item);
Console.WriteLine("EXT: MY DATA IS: " + data);
string i;
if (item == null) {
i = "null";
} else {
i = item.GetType().Name;
}
Console.WriteLine("EXT: MY TYPE IS: " + i + "\n");
}
}
public class Program
{
public static void Main(string[] args)
{
// an extension method can be
// called directly
// (null is an instance)
static_extensions.print(null);
// an extension method can also be
// called directly with arguments
// (null is an instance)
static_extensions.print(null, 1);
// an extension method can also be
// called as part of an instance
int x = 0; // initialize int
x.print();
// an extension method can also be
// called as part of an instance
// and with data
int x2 = 0; // initialize int
x2.print(2);
// an extension method can also be
// called directly from null
// since `null` is an instance
((string)null).print();
// an extension method can also be
// called directly from null
// and with data
// since `null` is an instance
((string)null).print(4);
}
}
}
live example: https://onecompiler.com/csharp/3xvbc8s6w
output:
EXT: I AM A STATIC EXTENSION!
EXT: MY ITEM IS:
EXT: MY DATA IS: 0
EXT: MY TYPE IS: null
EXT: I AM A STATIC EXTENSION!
EXT: MY ITEM IS:
EXT: MY DATA IS: 1
EXT: MY TYPE IS: null
EXT: I AM A STATIC EXTENSION!
EXT: MY ITEM IS: 0
EXT: MY DATA IS: 0
EXT: MY TYPE IS: Int32
EXT: I AM A STATIC EXTENSION!
EXT: MY ITEM IS: 0
EXT: MY DATA IS: 2
EXT: MY TYPE IS: Int32
EXT: I AM A STATIC EXTENSION!
EXT: MY ITEM IS:
EXT: MY DATA IS: 0
EXT: MY TYPE IS: null
EXT: I AM A STATIC EXTENSION!
EXT: MY ITEM IS:
EXT: MY DATA IS: 4
EXT: MY TYPE IS: null
I don't really get what people think they'd gain from being able to extend static classes...
What exactly would you be sacrificing by simply doing something like this?
public static class MyConsole
{
public static void WriteBlueLine(string text)
{
Console.ForegroundColor = ConsoleColor.Blue;
Console.WriteLine(text);
Console.ResetColor();
}
}
//...
MyConsole.WriteBlueLine("I'm so blue...");
Console.WriteLine("...and I'm not.");
It's minimal extra typing effort and as a bonus, it keeps things transparent...
After all, even a regular extension method is just a shorthand for a helper method. It doesn't allow you to do anything to/with a class (instance) that you wouldn't be able to do from a regular method.
You CAN do this if you are willing to "frig" it a little by making a variable of the static class and assigning it to null. However, this method would not be available to static calls on the class, so not sure how much use it would be:
Console myConsole = null;
myConsole.WriteBlueLine("my blue line");
public static class Helpers {
public static void WriteBlueLine(this Console c, string text)
{
Console.ForegroundColor = ConsoleColor.Blue;
Console.WriteLine(text);
Console.ResetColor();
}
}

Categories

Resources