Initialize Func<T1,T2> as an extension method - c#

Is it possible to make a Func delegate an extension method?
For example, just like you could create the function
bool isSet(this string x) {return x.Length > 0;}
I'd like to be able to write something like
Func<string, bool> isSet = (this x => x.Length > 0);
Of course, the above is not syntactically correct. Is there anything that is? If not, is that a limitation in syntax or compilation?

Short answer: no, thats not possible.
Extension methods are syntactic sugar and can only be defined under certain circumstances (static method inside a static class). There is no equivalent of this with lambda functions.

Is it possible to make a Func delegate an extension method?
No. Extension methods have to be declared as normal static methods in top-level (non-nested) non-generic static classes.
It looks like you would be trying to create an extension method only for the scope of the method - there's no concept like that in C#.

To answer the question in comments on why this is wanted you coudl define the isSet func normally and just use that as a method call which will have the same effect as your extension method but with different syntax.
The syntax difference in use is purely that you'll be passing the string in as a parameter rather than calling it as a method on that string.
A working example:
public void Method()
{
Func<string, bool> isSet = (x => x.Length > 0);
List<string> testlist = new List<string>() {"", "fasfas", "","asdalsdkjasdl", "asdasd"};
foreach (string val in testlist)
{
string text = String.Format("Value is {0}, Is Longer than 0 length: {1}", val, isSet(val));
Console.WriteLine(text);
}
}
This method defines isSet as you have above (but without the this syntax). It then defines a list of test values and iterates over them generating some output, part of which is just calling isSet(val). Funcs can be used like this quite happily and should do what you want I'd think.

Related

How can I use System.Func?

I have trouble using System.Func.
public Func<int> OnCreated=new Func<int>(int ASD){ Debug.Log (ASD); };
Is this the proper way to use it? I want to make a dynamic function that can be called. Also can the System.Func be serialized via XML?
Maybe you're looking for Action<> instead?
Action<int> myAction = myIntParam => Debug.Log(myIntParam);
myAction(myInteger);
If you want to take an input parameter, and return something, you should use Func<>
Func<int, int> myFunc = myIntParam => {
Debug.Log(myIntParam);
return 5;
};
int five = myFunc(myInteger);
Also, if you want to serialize/deserialize, you need to take it one step further. Namely, by def Func does not really have any meaningful information for it to be serialized, you should wrap it in Expression. You can get started by googling for "C# serialize expression", eg: https://expressiontree.codeplex.com
Just like any other thing in .NET Func is an Object. Func is an object of type Delegate.You can serialize/deserialize any serializable object. Func returns a value and can take up to 16 parameters.
The way you would use it is like this :
Func<int> w = new Func<int>(() => { return 1; });
You should first be familiar with the use of delegates. Check this : when & why to use delegates?
P.S Serializing delegates is a risky thing to do since they are pointers to functions that are inside your program.|
You can check how you can do the serialization over here : Could we save delegates in a file (C#)

Nested functions with recursion

I've looked at a ton of references and have seen that C# supports nested functions through lambda, but I'm completely new to C# (and .NET for that matter). I want to write a flood-fill implementation, with the parameters of a parent function accessible to the nested child.
Here's what it should look like, ideally:
private void StartFloodFill(color,otherstuff,pixel)
{
function Recursion(pixel,color)
{
do(otherstuff);
//etc...
Recursion(pixel,color);
}
}
The Recursion(pixel,color); call is where my confusion lies. I can't access a reference to the function from inside the function.
I know there should be a workaround for this, but I don't know what that is. How can I implement a recursive function like that demonstrated above in C#?
As suggested, you can use a recursive delegate. Normally, you'd declare a delegate like this:
Func<int,int, int> = (a, b) => a+b;
Where Func<int, int, int> is the type of a delegate that takes 2 ints, and returns another int.
But since you want to make it call itself, you have to declare the variable before assigning the delegate.
Func<Pixel, Color, SomeType> func = null;
func = (pixel, color) => {
//do stuff...
if(endCondition)
return someTypeValue;
else
return func(pixel, color);
};

Func vs. Action vs. Predicate [duplicate]

This question already has answers here:
Delegates: Predicate vs. Action vs. Func
(10 answers)
Closed 8 years ago.
With real examples and their use, can someone please help me understand:
When do we need a Func<T, ..> delegate?
When do we need an Action<T> delegate?
When do we need a Predicate<T> delegate?
The difference between Func and Action is simply whether you want the delegate to return a value (use Func) or not (use Action).
Func is probably most commonly used in LINQ - for example in projections:
list.Select(x => x.SomeProperty)
or filtering:
list.Where(x => x.SomeValue == someOtherValue)
or key selection:
list.Join(otherList, x => x.FirstKey, y => y.SecondKey, ...)
Action is more commonly used for things like List<T>.ForEach: execute the given action for each item in the list. I use this less often than Func, although I do sometimes use the parameterless version for things like Control.BeginInvoke and Dispatcher.BeginInvoke.
Predicate is just a special cased Func<T, bool> really, introduced before all of the Func and most of the Action delegates came along. I suspect that if we'd already had Func and Action in their various guises, Predicate wouldn't have been introduced... although it does impart a certain meaning to the use of the delegate, whereas Func and Action are used for widely disparate purposes.
Predicate is mostly used in List<T> for methods like FindAll and RemoveAll.
Action is a delegate (pointer) to a method, that takes zero, one or more input parameters, but does not return anything.
Func is a delegate (pointer) to a method, that takes zero, one or more input parameters, and returns a value (or reference).
Predicate is a special kind of Func often used for comparisons (takes a generic parameter and returns bool).
Though widely used with Linq, Action and Func are concepts logically independent of Linq. C++ already contained the basic concept in form of typed function pointers.
Here is a small example for Action and Func without using Linq:
class Program
{
static void Main(string[] args)
{
Action<int> myAction = new Action<int>(DoSomething);
myAction(123); // Prints out "123"
// can be also called as myAction.Invoke(123);
Func<int, double> myFunc = new Func<int, double>(CalculateSomething);
Console.WriteLine(myFunc(5)); // Prints out "2.5"
}
static void DoSomething(int i)
{
Console.WriteLine(i);
}
static double CalculateSomething(int i)
{
return (double)i/2;
}
}
Func - When you want a delegate for a function that may or may not take parameters and returns a value. The most common example would be Select from LINQ:
var result = someCollection.Select( x => new { x.Name, x.Address });
Action - When you want a delegate for a function that may or may not take parameters and does not return a value. I use these often for anonymous event handlers:
button1.Click += (sender, e) => { /* Do Some Work */ }
Predicate - When you want a specialized version of a Func that evaluates a value against a set of criteria and returns a boolean result (true for a match, false otherwise). Again, these are used in LINQ quite frequently for things like Where:
var filteredResults =
someCollection.Where(x => x.someCriteriaHolder == someCriteria);
I just double checked and it turns out that LINQ doesn't use Predicates. Not sure why they made that decision...but theoretically it is still a situation where a Predicate would fit.

C# Generic Generics (A Serious Question)

In C# I am trying to write code where I would be creating a Func delegate which is in itself generic. For example the following (non-Generic) delegate is returning an arbitrary string:
Func<string> getString = () => "Hello!";
I on the other hand want to create a generic which acts similarly to generic methods. For example if I want a generic Func to return default(T) for a type T. I would imagine that I write code as follows:
Func<T><T> getDefaultObject = <T>() => default(T);
Then I would use it as
getDefaultObject<string>() which would return null and if I were to write getDefaultObject<int>() would return 0.
This question is not merely an academic excercise. I have found numerous places where I could have used this but I cannot get the syntax right. Is this possible? Are there any libraries which provide this sort of functionality?
Well you can't overload anything based only on the return value, so this includes variables.
You can however get rid of that lambda expression and write a real function:
T getDefaultObject<T>() { return default(T); }
and then you call it exactly like you want:
int i=getDefaultObject<int>(); // i=0
string s=getDefaultObject<string>(); // s=null
Though one might find practical workarounds like Stephen Cleary's
Func<T> CreateGetDefaultObject<T>() { return () => default(T); }
where you can specify the generics directly, this is a quite interesting problem from a theoretical point that cannot be solved by C#'s current type system.
A type which, as you call it, is in itself generic, is referred to as a higher-rank type.
Consider the following example (pseudo-C#):
Tuple<int[], string[]> Test(Func<?> f) {
return (f(1), f("Hello"));
}
In your proposed system, a call could look like that:
Test(x => new[] { x }); // Returns ({ 1 }, { "Hello" })
But the question is: How do we type the function Test and it's argument f?
Apparently, f maps every type T to an array T[] of this type. So maybe?
Tuple<int[], string[]> Test<T>(Func<T, T[]> f) {
return (f(1), f("Hello"));
}
But this doesn't work. We can't parameterize Test with any particular T, since f should can be applied to all types T. At this point, C#'s type system can't go further.
What we needed was a notation like
Tuple<int[], string[]> Test(forall T : Func<T, T[]> f) {
return (f(1), f("Hello"));
}
In your case, you could type
forall T : Func<T> getDefaultValue = ...
The only language I know that supports this kind of generics is Haskell:
test :: (forall t . t -> [t]) -> ([Int], [String])
test f = (f 1, f "hello")
See this Haskellwiki entry on polymorphism about this forall notation.
This isn't possible, since a delegate instance in C# cannot have generic parameters. The closest you can get is to pass the type object as a regular parameter and use reflection. :(
In many cases, casting to dynamic helps remove the pain of reflection, but dynamic doesn't help when creating new instances, such as your example.
You can't do this, because generic type parameters have to be known at runtime. You have to use the activator class:
Object o = Activator.CreateInstance(typeof(StringBuilder));
which will do exactly what you want to. You can write it as the following:
public T Default<T>()
{
return (T)Activator.CreateInstance(typeof(T));
}
Edit
Blindy's solution is better.

What is the difference between lambdas and delegates in the .NET Framework?

I get asked this question a lot and I thought I'd solicit some input on how to best describe the difference.
They are actually two very different things. "Delegate" is actually the name for a variable that holds a reference to a method or a lambda, and a lambda is a method without a permanent name.
Lambdas are very much like other methods, except for a couple subtle differences.
A normal method is defined in a "statement" and tied to a permanent name, whereas a lambda is defined "on the fly" in an "expression" and has no permanent name.
Some lambdas can be used with .NET expression trees, whereas methods cannot.
A delegate is defined like this:
delegate Int32 BinaryIntOp(Int32 x, Int32 y);
A variable of type BinaryIntOp can have either a method or a labmda assigned to it, as long as the signature is the same: two Int32 arguments, and an Int32 return.
A lambda might be defined like this:
BinaryIntOp sumOfSquares = (a, b) => a*a + b*b;
Another thing to note is that although the generic Func and Action types are often considered "lambda types", they are just like any other delegates. The nice thing about them is that they essentially define a name for any type of delegate you might need (up to 4 parameters, though you can certainly add more of your own). So if you are using a wide variety of delegate types, but none more than once, you can avoid cluttering your code with delegate declarations by using Func and Action.
Here is an illustration of how Func and Action are "not just for lambdas":
Int32 DiffOfSquares(Int32 x, Int32 y)
{
return x*x - y*y;
}
Func<Int32, Int32, Int32> funcPtr = DiffOfSquares;
Another useful thing to know is that delegate types (not methods themselves) with the same signature but different names will not be implicitly casted to each other. This includes the Func and Action delegates. However if the signature is identical, you can explicitly cast between them.
Going the extra mile.... In C# functions are flexible, with the use of lambdas and delegates. But C# does not have "first-class functions". You can use a function's name assigned to a delegate variable to essentially create an object representing that function. But it's really a compiler trick. If you start a statement by writing the function name followed by a dot (i.e. try to do member access on the function itself) you'll find there are no members there to reference. Not even the ones from Object. This prevents the programmer from doing useful (and potentially dangerous of course) things such as adding extension methods that can be called on any function. The best you can do is extend the Delegate class itself, which is surely also useful, but not quite as much.
Update: Also see Karg's answer illustrating the difference between anonymous delegates vs. methods & lambdas.
Update 2: James Hart makes an important, though very technical, note that lambdas and delegates are not .NET entities (i.e. the CLR has no concept of a delegate or lambda), but rather they are framework and language constructs.
The question is a little ambiguous, which explains the wide disparity in answers you're getting.
You actually asked what the difference is between lambdas and delegates in the .NET framework; that might be one of a number of things. Are you asking:
What is the difference between lambda expressions and anonymous delegates in the C# (or VB.NET) language?
What is the difference between System.Linq.Expressions.LambdaExpression objects and System.Delegate objects in .NET 3.5?
Or something somewhere between or around those extremes?
Some people seem to be trying to give you the answer to the question 'what is the difference between C# Lambda expressions and .NET System.Delegate?', which doesn't make a whole lot of sense.
The .NET framework does not in itself understand the concepts of anonymous delegates, lambda expressions, or closures - those are all things defined by language specifications. Think about how the C# compiler translates the definition of an anonymous method into a method on a generated class with member variables to hold closure state; to .NET, there's nothing anonymous about the delegate; it's just anonymous to the C# programmer writing it. That's equally true of a lambda expression assigned to a delegate type.
What .NET DOES understand is the idea of a delegate - a type that describes a method signature, instances of which represent either bound calls to specific methods on specific objects, or unbound calls to a particular method on a particular type that can be invoked against any object of that type, where said method adheres to the said signature. Such types all inherit from System.Delegate.
.NET 3.5 also introduces the System.Linq.Expressions namespace, which contains classes for describing code expressions - and which can also therefore represent bound or unbound calls to methods on particular types or objects. LambdaExpression instances can then be compiled into actual delegates (whereby a dynamic method based on the structure of the expression is codegenned, and a delegate pointer to it is returned).
In C# you can produce instances of System.Expressions.Expression types by assigning a lambda expression to a variable of said type, which will produce the appropriate code to construct the expression at runtime.
Of course, if you were asking what the difference is between lambda expressions and anonymous methods in C#, after all, then all this is pretty much irelevant, and in that case the primary difference is brevity, which leans towards anonymous delegates when you don't care about parameters and don't plan on returning a value, and towards lambdas when you want type inferenced parameters and return types.
And lambda expressions support expression generation.
One difference is that an anonymous delegate can omit parameters while a lambda must match the exact signature. Given:
public delegate string TestDelegate(int i);
public void Test(TestDelegate d)
{}
you can call it in the following four ways (note that the second line has an anonymous delegate that does not have any parameters):
Test(delegate(int i) { return String.Empty; });
Test(delegate { return String.Empty; });
Test(i => String.Empty);
Test(D);
private string D(int i)
{
return String.Empty;
}
You cannot pass in a lambda expression that has no parameters or a method that has no parameters. These are not allowed:
Test(() => String.Empty); //Not allowed, lambda must match signature
Test(D2); //Not allowed, method must match signature
private string D2()
{
return String.Empty;
}
Delegates are equivalent to function pointers/method pointers/callbacks (take your pick), and lambdas are pretty much simplified anonymous functions. At least that's what I tell people.
A delegate is a function signature; something like
delegate string MyDelegate(int param1);
The delegate does not implement a body.
The lambda is a function call that matches the signature of the delegate. For the above delegate, you might use any of;
(int i) => i.ToString();
(int i) => "ignored i";
(int i) => "Step " + i.ToString() + " of 10";
The Delegate type is badly named, though; creating an object of type Delegate actually creates a variable which can hold functions -- be they lambdas, static methods, or class methods.
I don't have a ton of experience with this, but the way I would describe it is that a delegate is a wrapper around any function, whereas a lambda expression is itself an anonymous function.
A delegate is always just basically a function pointer. A lambda can turn into a delegate, but it can also turn into a LINQ expression tree. For instance,
Func<int, int> f = x => x + 1;
Expression<Func<int, int>> exprTree = x => x + 1;
The first line produces a delegate, while the second produces an expression tree.
Short version:
A delegate is a type that represents references to methods. C# lambda expression is a syntax to create delegates or expression trees.
Kinda long version:
Delegate is not "the name for a variable" as it's said in the accepted answer.
A delegate is a type (literally a type, if you inspect IL, it's a class) that represents references to methods (learn.microsoft.com).
This type could be initiated to associate its instance with any method with a compatible signature and return type.
namespace System
{
// define a type
public delegate TResult Func<in T, out TResult>(T arg);
}
// method with the compatible signature
public static bool IsPositive(int int32)
{
return int32 > 0;
}
// initiated and associate
Func<int, bool> isPositive = new Func<int, bool>(IsPositive);
C# 2.0 introduced a syntactic sugar, anonymous method, enabling methods to be defined inline.
Func<int, bool> isPositive = delegate(int int32)
{
return int32 > 0;
};
In C# 3.0+, the above anonymous method’s inline definition can be further simplified with lambda expression
Func<int, bool> isPositive = (int int32) =>
{
return int32 > 0;
};
C# lambda expression is a syntax to create delegates or expression trees. I believe expression trees are not the topic of this question (Jamie King about expression trees).
More could be found here.
lambdas are simply syntactic sugar on a delegate. The compiler ends up converting lambdas into delegates.
These are the same, I believe:
Delegate delegate = x => "hi!";
Delegate delegate = delegate(object x) { return "hi";};
A delegate is a reference to a method with a particular parameter list and return type. It may or may not include an object.
A lambda-expression is a form of anonymous function.
A delegate is a Queue of function pointers, invoking a delegate may invoke multiple methods. A lambda is essentially an anonymous method declaration which may be interpreted by the compiler differently, depending on what context it is used as.
You can get a delegate that points to the lambda expression as a method by casting it into a delegate, or if passing it in as a parameter to a method that expects a specific delegate type the compiler will cast it for you. Using it inside of a LINQ statement, the lambda will be translated by the compiler into an expression tree instead of simply a delegate.
The difference really is that a lambda is a terse way to define a method inside of another expression, while a delegate is an actual object type.
It is pretty clear the question was meant to be "what's the difference between lambdas and anonymous delegates?" Out of all the answers here only one person got it right - the main difference is that lambdas can be used to create expression trees as well as delegates.
You can read more on MSDN: http://msdn.microsoft.com/en-us/library/bb397687.aspx
Delegates are really just structural typing for functions. You could do the same thing with nominal typing and implementing an anonymous class that implements an interface or abstract class, but that ends up being a lot of code when only one function is needed.
Lambda comes from the idea of lambda calculus of Alonzo Church in the 1930s. It is an anonymous way of creating functions. They become especially useful for composing functions
So while some might say lambda is syntactic sugar for delegates, I would says delegates are a bridge for easing people into lambdas in c#.
Some basic here.
"Delegate" is actually the name for a variable that holds a reference to a method or a lambda
This is a anonymous method -
(string testString) => { Console.WriteLine(testString); };
As anonymous method do not have any name we need a delegate in which we can assign both of these method or expression. For Ex.
delegate void PrintTestString(string testString); // declare a delegate
PrintTestString print = (string testString) => { Console.WriteLine(testString); };
print();
Same with the lambda expression. Usually we need delegate to use them
s => s.Age > someValue && s.Age < someValue // will return true/false
We can use a func delegate to use this expression.
Func< Student,bool> checkStudentAge = s => s.Age > someValue && s.Age < someValue ;
bool result = checkStudentAge ( Student Object);
Lambdas are simplified versions of delegates. They have some of the the properties of a closure like anonymous delegates, but also allow you to use implied typing. A lambda like this:
something.Sort((x, y) => return x.CompareTo(y));
is a lot more concise than what you can do with a delegate:
something.Sort(sortMethod);
...
private int sortMethod(SomeType one, SomeType two)
{
one.CompareTo(two)
}
Heres an example I put up awhile on my lame blog. Say you wanted to update a label from a worker thread. I've got 4 examples of how to update that label from 1 to 50 using delegates, anon delegates and 2 types of lambdas.
private void button2_Click(object sender, EventArgs e)
{
BackgroundWorker worker = new BackgroundWorker();
worker.DoWork += new DoWorkEventHandler(worker_DoWork);
worker.RunWorkerAsync();
}
private delegate void UpdateProgDelegate(int count);
private void UpdateText(int count)
{
if (this.lblTest.InvokeRequired)
{
UpdateProgDelegate updateCallBack = new UpdateProgDelegate(UpdateText);
this.Invoke(updateCallBack, new object[] { count });
}
else
{
lblTest.Text = count.ToString();
}
}
void worker_DoWork(object sender, DoWorkEventArgs e)
{
/* Old Skool delegate usage. See above for delegate and method definitions */
for (int i = 0; i < 50; i++)
{
UpdateText(i);
Thread.Sleep(50);
}
// Anonymous Method
for (int i = 0; i < 50; i++)
{
lblTest.Invoke((MethodInvoker)(delegate()
{
lblTest.Text = i.ToString();
}));
Thread.Sleep(50);
}
/* Lambda using the new Func delegate. This lets us take in an int and
* return a string. The last parameter is the return type. so
* So Func<int, string, double> would take in an int and a string
* and return a double. count is our int parameter.*/
Func<int, string> UpdateProgress = (count) => lblTest.Text = count.ToString();
for (int i = 0; i < 50; i++)
{
lblTest.Invoke(UpdateProgress, i);
Thread.Sleep(50);
}
/* Finally we have a totally inline Lambda using the Action delegate
* Action is more or less the same as Func but it returns void. We could
* use it with parameters if we wanted to like this:
* Action<string> UpdateProgress = (count) => lblT…*/
for (int i = 0; i < 50; i++)
{
lblTest.Invoke((Action)(() => lblTest.Text = i.ToString()));
Thread.Sleep(50);
}
}
I assume that your question concerns c# and not .NET, because of the ambiguity of your question, as .NET does not get alone - that is, without c# - comprehension of delegates and lambda expressions.
A (normal, in opposition to so called generic delegates, cf later) delegate should be seen as a kind of c++ typedef of a function pointer type, for instance in c++ :
R (*thefunctionpointer) ( T ) ;
typedef's the type thefunctionpointer which is the type of pointers to a function taking an object of type T and returning an object of type R. You would use it like this :
thefunctionpointer = &thefunction ;
R r = (*thefunctionpointer) ( t ) ; // where t is of type T
where thefunction would be a function taking a T and returning an R.
In c# you would go for
delegate R thedelegate( T t ) ; // and yes, here the identifier t is needed
and you would use it like this :
thedelegate thedel = thefunction ;
R r = thedel ( t ) ; // where t is of type T
where thefunction would be a function taking a T and returning an R. This is for delegates, so called normal delegates.
Now, you also have generic delegates in c#, which are delegates that are generic, i.e. that are "templated" so to speak, using thereby a c++ expression. They are defined like this :
public delegate TResult Func<in T, out TResult>(T arg);
And you can used them like this :
Func<double, double> thefunctor = thefunction2; // call it a functor because it is
// really as a functor that you should
// "see" it
double y = thefunctor(2.0);
where thefunction2 is a function taking as argument and returning a double.
Now imagine that instead of thefunction2 I would like to use a "function" that is nowhere defined for now, by a statement, and that I will never use later. Then c# allows us to use the expression of this function. By expression I mean the "mathematical" (or functional, to stick to programs) expression of it, for instance : to a double x I will associate the double x*x. In maths you write this using the "\mapsto" latex symbol. In c# the functional notation has been borrowed : =>. For instance :
Func<double, double> thefunctor = ( (double x) => x * x ); // outer brackets are not
// mandatory
(double x) => x * x is an expression. It is not a type, whereas delegates (generic or not) are.
Morality ? At end, what is a delegate (resp. generic delegate), if not a function pointer type (resp. wrapped+smart+generic function pointer type), huh ? Something else ! See this and that.
Well, the really oversimplified version is that a lambda is just shorthand for an anonymous function. A delegate can do a lot more than just anonymous functions: things like events, asynchronous calls, and multiple method chains.

Categories

Resources