Constructor injection overuse - c#

I am looking for best practices of avoiding constructor injection overuse. For example I have Meeting entity which has few sub entities like shown below:
Meeting
MeetingContacts
MeetingAttendees
MeetingType
Address
MeetingCompanies
MeetingNotes
MeetingService class looks like below:
public class MeetingService
{
private readonly IMeetingContactRepository _meetingContactRepository;
private readonly IMeetingAttendeeRepository _meetingAttendeeRepository;
private readonly IMeetingTypeRepository _meetingTypeRepository;
private readonly IAddressRepository _addressRepository;
private readonly IMeetingCompanyRepository _meetingCompanyRepository;
private readonly IMeetingNoteRepository _meetingNoteRepository;
private readonly IMeetingRepositoy _meetingReposity;
public MeetingService(IMeetingRepositoy meetingReposity, IMeetingContactRepository meetingContactRepository, IMeetingAttendeeRepository meetingAttendeeRepository,
IMeetingTypeRepository meetingTypeRepository, IAddressRepository addressRepository,
IMeetingCompanyRepository meetingCompanyRepository, IMeetingNoteRepository meetingNoteRepository)
{
_meetingReposity = meetingReposity;
_meetingContactRepository = meetingContactRepository;
_meetingAttendeeRepository = meetingAttendeeRepository;
_meetingTypeRepository = meetingTypeRepository;
_addressRepository = addressRepository;
_meetingCompanyRepository = meetingCompanyRepository;
_meetingNoteRepository = meetingNoteRepository;
}
public void SaveMeeting(Meeting meeting)
{
meetingReposity.Save();
if(Condition1())
_meetingContactRepository.Save();
if(Condition2())
_meetingAttendeeRepository.Save();
if(Condition3())
_meetingTypeRepository.Save();
if(Condition4())
_addressRepository.Save();
if(Condition5())
_meetingCompanyRepository.Save();
if(Condition6())
_meetingNoteRepository.Save();
}
//... other methods
}
Here are just seven dependencies but real code contains much more of them. I used different techniques described in the "Dependency Injection Constructor Madness" but I have not found how to deal with repository dependencies.
Is there any way how I can reduce the number of dependencies and keep the code testable?

Constructor overuse is just a symptom - it seems you are approximating a unit of work by having a "master" class that knows about the various elements of message persistence and plugs them into the overall save.
The downside is that each repository communicates its independence of the others by exposing a dedicated Save method; this is incorrect, though, as SaveMeeting explicitly states that the repositories are not independent.
I suggest identifying or creating a type that the repositories consume; this centralizes your changes and allows you to save them from a single place. Examples include DataContext (LINQ to SQL), ISession (NHibernate), and ObjectContext (Entity Framework).
You can find more information on how the repositories might work in a previous answer of mine:
Advantage of creating a generic repository vs. specific repository for each object?
Once you have the repositories, you would identify the context in which they would act. This generally maps to a single web request: create an instance of the common unit of work at the beginning of the request and hand it to all the repositories. At the end of the request, save the changes in the unit of work, leaving the repositories free to worry about what data to access.
This neatly captures and saves everything as a single unit. This is very similar to the working copy of your source control system: you pull the current state of the system into a local context, work with it, and save the changes when you're done. You don't save each file independently - you save them all at the same time as a discrete revision.

To expand a little bit on my comment above:
Since this question is directed towards how to manage repository dependencies, I have to assume that the MeetingService is managing some sort of persistent commit. In the past, when I have seen classes like MeetingService with that many dependencies, it is clear they are doing too much. So, you have to ask yourself, "what is my transaction boundary". In other words, what is the smallest commit that you can make that means that a meeting has been successfully saved.
If the answer is that a meeting is successfully saved after a call to meetingReposity.Save(); then that is all that MeetingService should be managing (for the commit).
Everything else is, essentially, a side effect of the fact that a meeting has been saved (notice that now we are speaking in the past tense). At this point, event subscription for each of the other repositories makes more sense.
This also has the nice effect of separating the logic in all of the conditions into subscriber classes that follow SRP to handle that logic. This becomes important when the logic of when the contact repository commits goes through a change, for example.
Hope this helps.

Each of the first three answers give important suggestions and ideas for dealing with the problem in the abstract. However, I may be reading too much into your example above, but this looks like a problem of too many aggregate roots, not too many dependencies per se. This has to do with either a lack in the persistence mechanism underlying your repository injection infrastructure, or a misconfiguration of the same.
Simply, the Contacts, Attendees, Notes, &c. should be composite properties of the Meeting itself (if only as links to separately managed Contact, &c. objects/data); therefore, your persistence mechanism should be saving them automatically.
Heeding Bryan Watts' adage that "constructor overuse is just a symptom," a couple of other possibilities:
Your persistence mechanism should be handling persistence of the Meeting graph automatically, and is either misconfigured or lacks the capability to do this (all three that Bryan suggests do this, and I would add DbContext (EF 4.1+)). In this case, there should really only be one dependency--IMeetingRepositoy--and it can handle atomic saves of the meeting and its composites itself.
SaveMeeting() is saving not just links to other objects (Contacts, Attendees, &c.) but is also saving those objects as well, in which case I would have to agree with dtryon that MeetingService and SaveMeeting() are doing far more than the names imply, and his mechanism could alleviate it.

Do you really need the repository functionality to be split into that many interfaces? Do you need to mock them separately? If not, you could have fewer interfaces, with more methods.
But let's assume your class really needs that many dependencies. In that case you could:
Create a configuration object (MeetingServiceBindings) that provides all the dependencies. You could have a single configuration object per whole module, not just single service. I don't think there's anything wrong with this solution.
Use a Dependency injection tool, like NInject. It's quite simple, you can configure your dependencies in code in one place and don't need any crazy XML files.

Related

Implementing a domain service with DDD in C#

I'm working on a domain model writing my software all DDD and stuff doing a great job, when I suddenly bump into the same problem I have been facing over and over again and now it's time to share some insights. The root of the problem lies in the uniqueness of data.
For example, let's say we're writing this awesome domain model for a user. Obviously the username is unique and just to be as flexible as possible we want the user to be able to change his name, so I implemented the following method:
public void SetUsername(string value)
{
if (string.IsNullOrWhiteSpace(value))
{
throw new UserException(UserErrorCode.UsernameNullOrEmpty,
"The username cannot be null or empty");
}
if (!Regex.IsMatch(value, RegularExpressions.Username))
{
throw new UserException(UserErrorCode.InvalidUsername,
"The username {value} does not meet the required ");
}
if (!Equals(Username, value))
{
Username = value;
SetState(TrackingState.Modified);
}
}
Again, this is all fine and fancy, but this function lacks the ability to check if the username is unique or not. So writing all these nice articles about DDD, this would be a nice use-case for a Domain Service. Ideally, I would inject that service using dependency injection but this ruins the constructor of my domain model. Alternatively, I can demand an instance of a domain service as a function argument like so: public void SetUsername(string value, IUsersDomainService service) and to be honest I don't see any solid alternatives.
Who has faced this problem and maybe came up with a nice rock-solid solution?
I agree with #TomTom. But as most times with software decisions, it depends, there is almost always a tradeoff. As a rule of thumb, you gain more by not injecting a domain service into an entity. This is a common question when one is starting with DDD and CQRS+ES. And has been thoroughly discussed in the CQRS mailing list here
However, there are some cases where the approach you suggested (known as method injection) might be beneficial it depends on the scenario. I’ll try and drive some analysis points next.
Consider the case where you want to make some validation before creating an entity. Let's think of a hypothetical and way oversimplified international banking context, with the following entity:
public class BankNote
{
private BankNote() {}
public static FromCurrency(
Currency currency,
ISupportedCurrencyService currencyService)
{
currencyService.IsAvailable(currency);
}
}
I am using the factory method pattern FromCurrency inside your entity to abstract the entity creation process and add some validation so that the entity is always created in the correct state.
Since the supported currencies might change overtime, and the logic of which currencies are supported is a different responsibility than the bank note issuing logic, injecting the ISupportedCurrencyService in the factory method gives us the following benefits:
By the way, the method dependency injection for domain services is suggested in the book: Hands-On Domain-Driven Design with .NET Core
By Alexey Zimarev. Chapter 5 "Implementing the Model" page 120
Pros
The BankNote is always created with a supported Currency, even if the currencies supported change overtime.
Since we are depending on an interface instead of a concrete implementation, we can easily swap and change the implementation without changing the entity.
The service is never stored as an instance variable of the class, so no risk of depending on it more than we need.
Cons
If we keep going this way we might add a lot of dependencies injected into the entity and it will become hard to maintain overtime.
We still are adding a loosely coupled dependency to the entity and hence the entity now needs to know about that interface. We are violating the Single Responsibility Principle, and now you would need to mock the ISupportedCurrencyService to test the factory method.
We can’t instantiate the entity without depending on a service implemented externally from the domain. This can cause serious memory leak and performance issues depending on the scenario.
Another approach
You can avoid all the cons if you call the service before trying to instantiate the entity. Say having a different class for the factory instead of a factory method, and make that separate factory use the ISupportedCurrencyService and only then call the entity constructor.
public class BankNoteFactory
{
private readonly ISupportedCurrencyService _currencyService;
private BankNoteFactory(
ISupportedCurrencyService currencyService)
=> _currencyService = currencyService;
public BankNote FromCurrency(
Currency currency)
{
if(_currencyService.IsAvailable(currency))
return new BanckNote(currency);
// To call the constructor here you would also need
// to change the constructor visibility to internal.
}
}
Using this approach you would end with one extra class and an entity that could be instantiated with unsupported currencies, but with better SRP compliance.

Unit of Work through tiers

I'm refactoring an existing MVC.Net application to include the unit of work pattern to make data management a bit more obvious and straight forward.
The application is currently split into
Presentation/UI (MVC Controllers delivering views OR JsonResults for AngularJS)
Business Logic (Containing well... business logic)
DAL (Repositories and EF)
I'm having a hard time trying to figure out how I need to be structuring dependency injection and UoW passing to keep things sensible and testable.
I'm anticipating something like the following to be an example:
public class SomeMVCController : Controller
{
private readonly IStoreFrontLogic _storeFrontLogic;
public SomeMVCController(IStoreFrontLogic storeFrontLogic)
{
_storeFrontLogic = storeFrontLogic;
var uow = new UnitOfWork(User);
_storeFrontLogic.UnitOfWork = uow;
}
public ActionResult SomeRequest()
{
var myViewModel = _storeFrontLogic.OffersForUser();
return View(myViewModel);
}
}
public class StoreFrontLogic : IStoreFrontLogic
{
public UnitOfWork unitOfWork;
public OffersModel OffersForUser()
{
//some logic taking into account the current user in the uow
var prevOrders = unitOfWork.OrdersRepo.GetUsersOrders();
// special offers logic
return specialOffers;
}
}
Does this seem sensible?
I'm not too keen on the requirement to manually push the uow into my logic classes whenever they're required. Is there a more sensible way?
As I said above, this is hard to answer without a specific question or specific domain model but I'll give it a shot.
My understanding of such things is focused pretty heavily through a Domain Driven Design lens.
First of, you should read this series of papers on effective aggregate design. The fact that you need units of work and to do queries from inside your domain classes implies that your model needs work.
Some other thoughts on UOW - having uow produce your repositories is good, but I think you will likely start hitting lots of difficulties with implementation. UoW is super useful in small targeted areas but is very difficult to implement across an entire application. What for example happens when you save? Can you never use EF directly? Is everything thread safe? You might want to simplify what you are trying to achieve.
In your example uow can be scoped to the HttpRequest. Many IoC containers (eg Structuremap) provide a simple way to configure this. You can then have a post-action filter (or even better an OWIN module) to attempt the commit (what happens if there are errors is yet another implementation difficulty to deal with). This will eliminate a lot of the property-assignment nonsense
I'm not sure what type of object is your StoreFrontLogic. It doesn't seem like a domain entity but it contains significant business logic. It could be something similar to a transaction script, but in that case the uow should be fully internal to it.
Is it a stateless service? In that case everything that method uses - orders for user included - should be passed in via a parameter.
If, on the other hand it's an entity then it shouldn't access the database at all, it should already have all orders for the user. Purposeful database denormalization can help quite a bit here.
At the very least pass uow as a parameter to OffersForUser rather than expecting for a property to be set.

Proxy objects to simulate a soon-to-be-created database

I have a database that contains "widgets", let's say. Widgets have properties like Length and Width, for example. The original lower-level API for creating wdigets is a mess, so I'm writing a higher-level set of functions to make things easier for callers. The database is strange, and I don't have good control over the timing of the creation of a widget object. Specifically, it can't be created until the later stages of processing, after certain other things have happened first. But I'd like my callers to think that a widget object has been created at an earlier stage, so that they can get/set its properties from the outset.
So, I implemented a "ProxyWidget" object that my callers can play with. It has private fields like private_Length and private_Width that can store the desired values. Then, it also has public properties Length and Width, that my callers can access. If the caller tells me to set the value of the Width property, the logic is:
If the corresponding widget object already exists in the database, then set
its Width property
If not, store the given width value in the private_Width field for later use.
At some later stage, when I'm sure that the widget object has been created in the database, I copy all the values: copy from private_Width to the database Width field, and so on (one field/property at a time, unfortunately).
This works OK for one type of widget. But I have about 50 types, each with about 20 different fields/properties, and this leads to an unmaintainable mess. I'm wondering if there is a smarter approach. Perhaps I could use reflection to create the "proxy" objects and copy field/property data in a generic way, rather than writing reams of repetitive code? Factor out common code somehow? Can I learn anything from "data binding" patterns? I'm a mathematician, not a programmer, and I have an uneasy feeling that my current approach is just plain dumb. My code is in C#.
First, in my experience, manually coding a data access layer can feel like a lot of repetitive work (putting an ORM in place, such as NHibernate or Entity Framework, might somewhat alleviate this issue), and updating a legacy data access layer is awful work, especially when it consists of many parts.
Some things are unclear in your question, but I suppose it is still possible to give a high-level answer. These are meant to give you some ideas:
You can build ProxyWidget either as an alternative implementation for Widget (or whatever the widget class from the existing low-level API is called), or you can implement it "on top of", or as a "wrapper around", Widget. This is the Adapter design pattern.
public sealed class ExistingTerribleWidget { … }
public sealed class ShinyWidget // this is the wrapper that sits on top of the above
{
public ShinyWidget(ExistingTerribleWidget underlying) { … }
private ExistingTerribleWidget underlying;
… // perform all real work by delegating to `underlying` as appropriate
}
I would recommend that (at least while there is still code using the existing low-level API) you use this pattern instead of creating a completely separate Widget implementation, because if ever there is a database schema change, you will have to update two different APIs. If you build your new EasyWidget class as a wrapper on top of the existing API, it could remain unchanged and only the underlying implementation would have to be updated.
You describe ProxyWidget having two functions (1) Allow modifications to an already persisted widget; and (2) Buffer for a new widget, which will be added to the database later.
You could perhaps simplify your design if you have one common base type and two sub-classes: One for new widgets that haven't been persisted yet, and one for already persisted widgets. The latter subtype possibly has an additional database ID property so that the existing widget can be identified, loaded, modified, and updated in the database:
interface IWidget { /* define all the properties required for a widget */ }
interface IWidgetTemplate : IWidget
{
IPersistedWidget Create();
bool TryLoadFrom(IWidgetRepository repository, out IPersistedWidget matching);
}
interface IPersistedWidget : IWidget
{
Guid Id { get; }
void SaveChanges();
}
This is one example for the Builder design pattern.
If you need to write similar code for many classes (for example, your 50+ database object types) you could consider using T4 text templates. This just makes writing code less repetitive; but you will still have to define your 50+ objects somewhere.

Trying to simplify our repository pattern

Currently we have implemented a repository pattern at work. All our repositories sit behind their own interfaces and are mapped via Ninject. Our project is quite large and there are a couple quirks with this pattern I'm trying to solve.
First, there are some controllers where we need upwards of 10 to 15 repositories all in the same controller. The constructor gets rather ugly when asking for so many repositories. The second quirk reveals itself after you call methods on multiple repositories. After doing work with multiple repositories we need to call the SaveChanges method, but which repository should we call it on? Every repository has one. All repositories have the same instance of the Entity Framework data context injected so picking any random repository to call save on will work. It just seems so messy.
I looked up the "Unit Of Work" pattern and came up with a solution that I think solves both problems, but I'm not 100% confident in this solution. I created a class called DataBucket.
// Slimmed down for readability
public class DataBucket
{
private DataContext _dataContext;
public IReportsRepository ReportRepository { get; set; }
public IEmployeeRepository EmployeeRepository { get; set; }
public IDashboardRepository DashboardRepository { get; set; }
public DataBucket(DataContext dataContext,
IReportsRepository reportsRepository,
IEmployeeRepository employeeRepository,
IDashboardRepository dashboardRepository)
{
_dataContext = dataContext;
this.ReportRepository = reportsRepository;
this.EmployeeRepository = employeeRepository;
this.DashboardRepository = dashboardRepository;
}
public void SaveChanges()
{
_dataContext.SaveChanges();
}
}
This appears to solve both issues. There is now only one SaveChanges method on the data bucket itself and you only inject one object, the data bucket. You then access all the repositories as properties. The data bucket would be a little messy looking since it would be accepting ALL (easily 50 or more) of our repositories in its constructor.
The process of adding a new repository would now include: creating the interface, creating the repository, mapping the interface and repository in Ninject, and adding a property to the data bucket and populating it.
I did think of an alternative to this that would eliminate a step from above.
public class DataBucket
{
private DataContext _dataContext;
public IReportsRepository ReportRepository { get; set; }
public IEmployeeRepository EmployeeRepository { get; set; }
public IDashboardRepository DashboardRepository { get; set; }
public DataBucket(DataContext dataContext)
{
_dataContext = dataContext;
this.ReportRepository = new ReportsRepository(dataContext);
this.EmployeeRepository = new EmployeeRepository(dataContext);
this.DashboardRepository = new DashboardRepository(dataContext);
}
public void SaveChanges()
{
_dataContext.SaveChanges();
}
}
This one pretty much eliminates all the repository mappings in Ninject because they are all instantiated in the data bucket. So now the steps to adding a new repository include: Create interface, create repository, add property to data bucket and instantiate.
Can you see any flaws with this model? On the surface it seems much more convenient to consume our repositories in this way. Is this a problem that has been addressed before? If so, what is the most common and/or most efficient approach to this issue?
First, there are some controllers where we need upwards of 10 to 15 repositories all in the same controller.
Say hello to Abstract factory pattern. Instead of registering all repositories in Ninject and injecting them to controllers register just single implementation of the factory which will be able to provide any repository you need - you can even create them lazily only if the controller really needs them. Than inject the factory to controller.
Yes it also has some disadvantages - you are giving controller permission to get any repository. Is it problem for you? You can always create multiple factories for some sub systems if you need or simply expose multiple factory interfaces on single implementation. It still doesn't cover all cases but it is better than passing 15 parameters to constructor. Btw. are you sure those controllers should not be split?
Note: This is not Service provider anti-pattern.
After doing work with multiple repositories we need to call the SaveChanges method, but which repository should we call it on?
Say hello to Unit of Work pattern. Unit of Work is logical transaction in your application. It persists all changes from logical transaction together. Repository should not be responsible for persisting changes - the unit of work should be. Somebody mentioned that DbContext is implementation of Repository pattern. It is not. It is implementation of Unit of Work pattern and DbSet is implementation of Repository pattern.
What you need is central class holding the instance of the context. The context will be also passed to repositories because they need it to retrieve data but only the central class (unit of work) will offer saving changes. It can also handle database transaction if you for example need to change isolation level.
Where should be unit of work handled? That depends where your logical operation is orchestrated. If the operation is orchestrated directly in controller's actions you need to have unit of work in the action as well and call SaveChanges once all modifications are done.
If you don't care about separation of concerns too much you can even combine unit of work and factory into single class. That brings us to your DataBucket.
I think you are absolutely right to use the Unit of Work pattern in this case. Not only does this prevent you from needing a SaveChanges method on every repository, it provides you a nice way to handle transactions from within code rather than in your database itself. I included a Rollback method with my UOW so that if there was an exception I could undo any of the changes the operation had already made on my DataContext.
One thing you could do to prevent weird dependency issues would be to group related repositories on their own Unit of Work, rather than having one big DataBucket that holds every Repository you have (if that was your intent). Each UOW would only need to be accessible at the same level as the repositories it contained, and other repositories should probably not depend on other UOWs themselves (your repositories shouldn't need to use other repositories).
If wanted to be an even bigger purist of the pattern, you could also structure your UOWs to represent just that, a single Unit of Work. You define them to represent a specific operation in your domain, and provide it with the repositories required to complete that operation. Individual repositories could exist on more than one UOW, if it made sense to be used by more than one operation in your domain.
For example, a PlaceCustomerOrderUnitOfWork may need a CustomerRepository, OrderRepository, BillingRepository, and a ShippingRepository
An CreateCustomerUnitOfWork may need just a CustomerRepository. Either way, you can easily pass that dependency around to its consumers, more fine grained interfaces for your UOW can help target your testing and reduce the effort to create a mock.
The notion of every repository having a SaveChanges is flawed because calling it saves everything. It is not possible to modify part of a DataContext, you always save everything. So a central DataContext holder class is a good idea.
Alternatively, you could have a repository with generic methods that can operate on any entity type (GetTable<T>, Query<T>, ...). That would get rid of all those classes and merge them into one (basically, only DataBucket remains).
It might even be the case that you don't need repositories at all: You can inject the DataContext itself! The DataContext by itself is a repository and a full fledged data access layer. It doesn't lend itself to mocking though.
If you can do this depends on what you need the "repository" do provide.
The only issue with having that DataBucket class would be that this class needs to know about all entities and all repositories. So it sits very high in the software stack (at the top). At the same time it is being used by basically everything so it sits at the bottom, too. Wait! That is a dependency cycle over the whole codebase.
This means that everything using it and everything being used by it must sit in the same assembly.
What I have done in the past was to create child injection containers (I was using Unity) and register a data context with a ContainerControlledLifetime. So that when the repositories are instantiated, they always have the same data context injected into them. I then hang on to that data context and when my "Unit of Work" is complete, I call DataContext.SaveChanges() flushing all the changes out to the database.
This has some other advantages such as (with EF) some local caching, such that if more than one repository needs to get the same entity, only the first repository actually causes a database round trip.
It's also a nice way to "batch up" the changes and make sure they execute as a single atomic transaction.

What is best practise for repository pattern - repo per table?

The repository pattern seems to work well when working with an initial project with several large main tables.
However as the project grows it seems a little inflexible. Say you have lots of child tables that hang off the main table, do you need a repository for each table?
E.g.
CustomerAddress Record has following child tables:
-> County
-> Country
-> CustomerType
On the UI, 3 dropdown lists need to be displayed, but it gets a bit tedious writing a repository for each of the above tables which selects the data for the dropdowns.
Is there a best practice/more efficient way of doing this?
As an example say you have a main CustomerAddress repository which I guess is the 'aggregate root' which inherits the main CRUD operations from the base repo interface.
Previously I have short-cutted the aggregate root and gone straight to the context for these kinds of tables.
e.g.
public Customer GetCustomerById(int id)
{
return Get(id);
}
public IEnumerable<Country> GetCountries()
{
return _ctx.DataContext.Countries.ToList();
}
etc...
But sometimes it doesn't feel right, as countries aren't part of the customer, but I feel like I need to tack it onto something without having to create zillions of repos for each table. A repo per table definately doesn't seem right to me either.
First the code you posted is not the repository pattern. Where is the collection like interface? If it is an aggregate it should only be returning the aggregate type.
Repository pattern doesn't offer up much flexibility when it comes being able to select different types. Repository pattern follows a collection interface (insert/add/update/delete/get/etc), mirroring an in memory thing, and it generally only retrieves on type. So if you were to use the repository pattern you would need to select all CustomerAddresses and then* filter the countries out. I would suggest you move to a different pattern, that allows for more flexibility aka DAO.
If these things are always going to be maintained through CustomerAddress, then switch patterns and create a DAO class that offers some other getters for the other types of things you need.
On a more generic note, build for need.
Never just blindly create repository classes, its a maintenance nightmare. The only time I would argue for a repo per table is when you are doing CMS like things, and need to be able create everything.
Example:
So you have a CustomerAddress which ties together a Customer and a Country, but you have some other process that needs to be able to CRUD the Country. As a result you need* the repository to manipulate Country and if you are following DRY you dont want to have duplicate logic to manipulate Countries. What you would have is a Customer Respotitory that uses the Country repository.
I'm answering my own question here because while the suggestions are certainly useful, I feel I have a better solution.
While I don't have to phsyically create the underlying repository for each and every table as I have a generic repository base class with interface (Get, Add, Remove), I still have to:
1) write the interface to access any specialised methods (generally these are queries)
2) write those implementations
I don't necessarily want to do this when all I want to retrieve is a list of countries or some simple type for populating a dropdown. Think of effort required if you have 10 reference type tables.
What I decided to do was create a new class called SimpleRepo with ISimpleRepo interface which exposes 1-2 methods. While I don't normally like to expose the IQueryable interface out of the repo i/f class, I don't mind here as I want the provided flexibility. I can simply expose a 'Query()' method which provides the flexibility hook. I might need this for specialising the ordering, or filtering.
Whenever a service needs to make use of some simple data, the ISimple< T > interface is passed in, where T is the table/class.
I now avoid the need to create an interface/class for these simple pieces of data.
Thoughts anyone?
Responding to the questioner's own answer: This doesn't make sense to me; though it's possible you still had a good use case, I'm not following. Points 1 and 2 ... if you need specialized methods, then looks like they belong in their own repo. Point 2: yes, that needs an implementation.
Sharing between repos, with the smaller repo being the question (is that one needed), I do appreciate that question / problem, but guys' on this thread steered me to being okay with 1 repo per table, including the possibility of having a 'service layer', though they didn't give any examples of that, and I haven't tried this out yet (currently my practice, for good or ill, has been to have the bigger repo share or instantiate the smaller one it needs):
One repository per table or one per functional section?

Categories

Resources