Hysteresis Round to solve "flickering" values due to noise - c#

Background:
We have an embedded system that converts linear positions (0 mm - 40 mm) from a potentiometer voltage to its digital value using a 10-bit analog to digital converter.
------------------------
0mm | | 40 mm
------------------------
We show the user the linear position at 1 mm increments. Ex. 1mm, 2mm, 3mm, etc.
The problem:
Our system can be used in electromagnetically noisy environments which can cause the linear position to "flicker" due to noise entering the ADC. For example, we will see values like: 39,40,39,40,39,38,40 etc. when the potentiometer is at 39 mm.
Since we are rounding to every 1 mm, we will see flicker between 1 and 2 if the value toggles between 1.4 and 1.6 mm for example.
Proposed software solution:
Assuming we can not change the hardware, I would like to add some hysteresis to the rounding of values to avoid this flicker. Such that:
If the value is currently at 1mm, it can only go to 2mm iff the raw value is 1.8 or higher.
Likewise, if the current value is 1mm it can only go to 0mm iff the raw value is 0.2 or lower.
I wrote the following simple app to test my solution. Please let me know if I am on the right track, or if you have any advice.
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
namespace PDFSHysteresis
{
class Program
{
static void Main(string[] args)
{
double test = 0;
int curr = 0;
Random random = new Random();
for (double i = 0; i < 100; i++)
{
test = test + random.Next(-1, 2) + Math.Round((random.NextDouble()), 3);
curr = HystRound(test, curr, 0.2);
Console.WriteLine("{0:00.000} - {1}", test, curr);
}
Console.ReadLine();
}
static int HystRound(double test, int curr, double margin)
{
if (test > curr + 1 - margin && test < curr + 2 - margin)
{
return curr + 1;
}
else if (test < curr - 1 + margin && test > curr - 2 + margin)
{
return curr - 1;
}
else if (test >= curr - 1 + margin && test <= curr + 1 - margin)
{
return curr;
}
else
{
return HystRound(test, (int)Math.Floor(test), margin);
}
}
}
}
Sample output:
Raw HystRound
====== =========
00.847 1
00.406 1
01.865 2
01.521 2
02.802 3
02.909 3
02.720 3
04.505 4
06.373 6
06.672 6
08.444 8
09.129 9
10.870 11
10.539 11
12.125 12
13.622 13
13.598 13
14.141 14
16.023 16
16.613 16

How about using the average of readings for the last N seconds, where N could be fairly small / sub-second depending on your sample rate?
You can use a simple linear average, or something more complex, depending on your needs. Several moving average algorithms are detailed on Wikipedia:
http://en.wikipedia.org/wiki/Moving_average
Depending on your sensitivity / responsiveness needs, you could reset the average if a new reading exceeds the running average by X%.

I had to deal with something similar sometime ago where I had to read voltage output from a circuit and display a graph on a computer screen. The bottom line is, this really depends on your system requirements. If the requirement is "1mm" accuracy then there is nothing you could really do. Otherwise, as mentioned above, you could go with several methods that can help you out lessen the flickering. You can:
Calculate the average of these values over a certain period of time the user can configure.
Allow the user to set a "Sensitivity threshold". This threshold can be used to decide on weather to consider the new value as valid or not. In your example, the threshold can be set to 2mm in which case values such as 39, 40, 39, 38 would read as 39mm
Also, have you thought about putting an external stabilizer between your application and the hardware itself?

I think Gareth Rees gave an excellent answer to a very similar question:
how to prevent series of integers to have the same value to often

Related

Linear interpolation between two numbers with steps

I've a little trouble finding out how to linearly interpolate between two numbers with a defined number of intermediate steps.
Let's say I want to interpolate between 4 and 22 with 8 intermediate steps like so : Example
It's easy to figure out that it's x+2 here. But what if the starting value was 5 and the final value 532 with 12 intermediate steps? (In my special case I would need starting and ending value with 16 steps in between)
If you have two fence posts and you put k fence posts between them, you create k + 1 spaces. For instance:
| |
post1 post2
adding one posts creates two spaces
| | |
post1 post2
If you want those k + 1 spaces to be equal you can divide the total distance by k + 1 to get the distance between adjacent posts.
d = 22 - 4 = 18
k = 8
e = d / (k + 1) = 18 / 9 = 2
In your other case example, the answer is
d = 532 - 5 = 527
k = 12
e = d / (k + 1) = 527 / 13 ~ 40.5
I hesitate to produce two separate answers, but I feel this methodology is sufficiently unique from the other one. There's a useful function which may be exactly what you need which is appropriately called Mathf.Lerp().
var start = 5;
var end = 532;
var steps = 13;
for (int i = 0; i <= steps; i++) {
// The type conversion is necessary because both i and steps are integers
var value = Mathf.Lerp(start, end, i / (float)steps);
Debug.Log(value);
}
For actually doing the linear interpolation, use Mathf.MoveTowards().
For figuring out your maximum delta (i.e. the amount you want it to move each step), take the difference, and then divide it by the number of desired steps.
var start = 4;
var end = 22;
var distance = end - start;
var steps = 9; // Your example technically has 9 steps, not 8
var delta = distance / steps;
Note that this conveniently assumes your distance is a clean multiple of steps. If you don't know this is the case and it's important that you never exceed that number of steps, you may want to explicitly check for it. Here's a crude example for an integer. Floating point methods may be more complicated:
if (distance % delta > 0) { delta += 1; }

How to interpolate through 3 points/numbers with a defined number of samples? (in c#)

So for example we have 1, 5, and 10 and we want to interpolate between these with 12 points, we should get:
1.0000
1.7273
2.4545
3.1818
3.9091
4.6364
5.4545
6.3636
7.2727
8.1818
9.0909
10.0000
say we have 5, 10, and 4 and again 12 points, we should get:
5.0000
5.9091
6.8182
7.7273
8.6364
9.5455
9.4545
8.3636
7.2727
6.1818
5.0909
4.0000
This is a generalized solution that works by these principles:
Performs linear interpolation
It calculates a "floating point index" into the input array
This index is used to select 1 (if the fractional parts is very close to 0) or 2 numbers from the input array
The integer part of this index is the base input array index
The fractional part says how far towards the next array element we should move
This should work with whatever size input arrays and output collections you would need.
public IEnumerable<double> Interpolate(double[] inputs, int count)
{
double maxCountForIndexCalculation = count - 1;
for (int index = 0; index < count; index++)
{
double floatingIndex = (index / maxCountForIndexCalculation) * (inputs.Length - 1);
int baseIndex = (int)floatingIndex;
double fraction = floatingIndex - baseIndex;
if (Math.Abs(fraction) < 1e-5)
yield return inputs[baseIndex];
else
{
double delta = inputs[baseIndex + 1] - inputs[baseIndex];
yield return inputs[baseIndex] + fraction * delta;
}
}
}
It produces the two collections of outputs you showed in your question but beyond that, I have not tested it. Little error checking is performed so you should add the necessary bits.
The problem is an interpolation of two straight lines with different slopes given the end points and the intersection.
Interpolation is defined as following : In the mathematical field of numerical analysis, interpolation is a method of constructing new data points within the range of a discrete set of known data points.
I'm tired of people giving negative points for solutions to hard problems. This is not a simply problem, but a problem that require "thinking out of the box". lets looks at the solution for following input : 1 12 34
I picked these numbers because the results are all integers
The step size L (Lower) = distance of elements from 1 to 12 = 2
The step size H (Higher) = distance of elements from 12 to 34 = 4
So the answer is : 1 3 5 7 9 11 [12] 14 18 22 26 30 34
Notice the distance between the 6th point 11 and center is 1 (half of L)
Notice the distance between the center point 12 and the 7th point is 2 (half of H)
Finally notice the distance between the 6th and 7th points is 3.
My results are scaled exactly the same as the OPs first example.
It is hard to see the sequence with the fractional inputs the OP posted. If you look at the OP first example and calculate the step distance of the first 6 points you get 0.72. The last 6 points the distance is 0.91. Then calculate the distance from the 6th point to the center is .36 (half 0.72). Then center to 7th point 0.45 (half 0.91). Excuse me for rounding the numbers a little bit.
It is a sequence problem just like the in junior high school where you learned arithmetic and geometric sequences. Then as a bonus question you got the sequence 23, 28, 33, 42,51,59,68,77,86 which turns out to be the train stations on the NYC 3rd Ave subway system. Solving problems like this you need to think "Outside the Box" which comes from the tests IBM gives to Job Applicants. These are the people who can solve the Nine Point Problem : http://www.brainstorming.co.uk/puzzles/ninedotsnj.html
I did the results when the number of points is EVEN which in you case is 12. You will need to complete the code if the number of points is ODD.
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
namespace ConsoleApplication1
{
class Program
{
const int NUMBER_POINTS = 12;
static void Main(string[] args)
{
List<List<float>> tests = new List<List<float>>() {
new List<float>() { 1,5, 10},
new List<float>() { 5,10, 4}
};
foreach (List<float> test in tests)
{
List<float> output = new List<float>();
float midPoint = test[1];
if(NUMBER_POINTS % 2 == 0)
{
//even number of points
//add lower numbers
float lowerDelta = (test[1] - test[0])/((NUMBER_POINTS / 2) - .5F);
for (int i = 0; i < NUMBER_POINTS / 2; i++)
{
output.Add(test[0] + (i * lowerDelta));
}
float upperDelta = (test[2] - test[1]) / ((NUMBER_POINTS / 2) - .5F); ;
for (int i = 0; i < NUMBER_POINTS / 2; i++)
{
output.Add(test[1] + (i * upperDelta) + (upperDelta / 2F));
}
}
else
{
}
Console.WriteLine("Numbers = {0}", string.Join(" ", output.Select(x => x.ToString())));
}
Console.ReadLine();
}
}
}

Lucas Lehmer optimization

I've been working to optimize the Lucas-Lehmer primality test using C# code (yes I'm doing something with Mersenne primes to calculate perfect numbers. I was wondering it is possible with the current code to make further improvements in speed. I use the System.Numerics.BigInteger class to hold the numbers, perhaps it is not the wisest, we'll see it then.
This code is actually based on the intelligence found on: http://en.wikipedia.org/wiki/Lucas%E2%80%93Lehmer_primality_test
This page (at the timestamp) section, some proof is given to optimize the division away.
The code for the LucasTest is:
public bool LucasLehmerTest(int num)
{
if (num % 2 == 0)
return num == 2;
else
{
BigInteger ss = new BigInteger(4);
for (int i = 3; i <= num; i++)
{
ss = KaratsubaSquare(ss) - 2;
ss = LucasLehmerMod(ss, num);
}
return ss == BigInteger.Zero;
}
}
Edit:
Which is faster than using ModPow from the BigInteger class as suggested by Mare Infinitus below. That implementation is:
public bool LucasLehmerTest(int num)
{
if (num % 2 == 0)
return num == 2;
else
{
BigInteger m = (BigInteger.One << num) - 1;
BigInteger ss = new BigInteger(4);
for (int i = 3; i <= num; i++)
ss = (BigInteger.ModPow(ss, 2, m) - 2) % m;
return ss == BigInteger.Zero;
}
}
The LucasLehmerMod method is implemented as follows:
public BigInteger LucasLehmerMod(BigInteger divident, int divisor)
{
BigInteger mask = (BigInteger.One << divisor) - 1; //Mask
BigInteger remainder = BigInteger.Zero;
BigInteger temporaryResult = divident;
do
{
remainder = temporaryResult & mask;
temporaryResult >>= divisor;
temporaryResult += remainder;
} while ( (temporaryResult >> divisor ) != 0 );
return (temporaryResult == mask ? BigInteger.Zero : temporaryResult);
}
What I am afraid of is that when using the BigInteger class from the .NET framework, I am bound to their calculations. Would it mean I have to create my own BigInteger class to improve it? Or can I sustain by using a KaratsubaSquare (derived from the Karatsuba algorithm) like this, what I found on Optimizing Karatsuba Implementation:
public BigInteger KaratsubaSquare(BigInteger x)
{
int n = BitLength(x);
if (n <= LOW_DIGITS) return BigInteger.Pow(x,2); //Standard square
BigInteger b = x >> n; //Higher half
BigInteger a = x - (b << n); //Lower half
BigInteger ac = KaratsubaSquare(a); // lower half * lower half
BigInteger bd = KaratsubaSquare(b); // higher half * higher half
BigInteger c = Karatsuba(a, b); // lower half * higher half
return ac + (c << (n + 1)) + (bd << (2 * n));
}
So basically, I want to look if it is possible to improve the Lucas-Lehmer test method by optimizing the for loop. However, I am a bit stuck there... Is it even possible?
Any thoughts are welcome of course.
Some extra thoughs:
I could use several threads to speed up the calculation on finding Perfect numbers. However, I have no experience (yet) with good partitioning.
I'll try to explain my thoughts (no code yet):
First I'll be generating a primetable with use of the sieve of Erathostenes. It takes about 25 ms to find primes within the range of 2 - 1 million single threaded.
What C# offers is quite astonishing. Using PLINQ with the Parallel.For method, I could run several calculations almost simultaneously, however, it chunks the primeTable array into parts which are not respected to the search.
I already figured out that the automatic load balancing of the threads is not sufficient for this task. Hence I need to try a different approach by dividing the loadbalance depending on the mersenne numbers to find and use to calculate a perfect number. Has anyone some experience with this? This page seems to be a bit helpful: http://www.drdobbs.com/windows/custom-parallel-partitioning-with-net-4/224600406
I'll be looking into it further.
As for now, my results are as following.
My current algorithm (using the standard BigInteger class from C#) can find the first 17 perfect numbers (see http://en.wikipedia.org/wiki/List_of_perfect_numbers) within 5 seconds on my laptop (an Intel I5 with 4 cores and 8GB of RAM). However, then it gets stuck and finds nothing within 10 minutes.
This is something I cannot match yet... My gut feeling (and common sense) tells me that I should look into the LucasLehmer test, since a for-loop calculating the 18th perfect number (using Mersenne Prime 3217) would run 3214 times. There is room for improvement I guess...
What Dinony posted below is a suggestion to rewrite it completely in C. I agree that would boost my performance, however I choose C# to find out it's limitations and benefits. Since it's widely used, and it's ability to rapidly develop applications, it seemed to me worthy of trying.
Could unsafe code provide benefits here as well?
One possible optimization is to use BigInteger ModPow
It really increases performance significantly.
Just a note for info...
In python, this
ss = KaratsubaSquare(ss) - 2
has worse performance than this:
ss = ss*ss - 2
What about adapting the code to C? I have no idea about the algorithm, but it is not that much code.. so the biggest run-time improvement could be adapting to C.

How to remove a number from another number using bitwise operators?

How do I remove for example 2 from 123 and returns 13, by using bitwise operators? I have no idea how to do this.. it's possible? Thanks in advance.
What you're suggesting is possible, but wouldn't really make sense to do. Below are the values representations in bits (only showing relevant bits, everything further left is a zero):
2: 000010 || 123: 1111011 || 13: 001101
There's no logical way to change 123 into 13 with bitwise operations. It would better to turn it into a string or character array, remove the two then cast it back to an int.
What other cases are there? It may be possible to generalize this at an integer level if there is some sort of pattern, otherwise you're really just looking at string replacement.
The 2 in 123 is actually 2E1 (10100), and the 2 in 1234 would be 2E2 (11001000) neither of which are related to 2 (10), at least in bitwise form. Also, the "number" on the right side of the removed number would need to be added to the number on the left side of the removed number / 10.
i.e, to go from 123 to 13:
Located "2".
Number on left (x): 100
Number on right (y): 3
y + (x / 10) = 13
and to go from 1324 to 134
Located "2"
Number on left (x): 1300
Number on right (y): 4
y + (x / 10) = 134
Unless there's some pattern (i.e you know what positions the numbers are in), you'll just have to .ToString() the number, then do a .Replace("2", ""), before doing an int.Parse() on the result.
EDIT: Someone upvoted this answer and I realised my previous implementation was unnecessarily complicated. It is relatively straightforward to 'iterate' over the digits in a base-10 number and shouldn't require recursion.
New solution below, performance is better but this is a huge micro-optimisation:
static int OmitDigit(int number, int digit) {
var output = 0;
var multiplier = 1;
while (number > 0) {
var n = number % 10;
number /= 10;
if (n != digit) {
output += (n * multiplier);
multiplier *= 10;
}
}
return output;
}
Result:
1554443
Since we're working with base 10 numbers, manipulation in base 2 is ugly to say the least. Using some math, removing the nth digit from k, and shifting over is
(k/pow(10,n))*pow(10, n-1) + k%pow(10, n-1)
In base 2, the << and >> operator acts like multiplying by a pow(2, n), and & with a mask does the work of %, but in base 10 the bits don't line up.
This is very awkward, but if you really do must have bitwise operations only, I suggest you convert the number to BCD. Once in BCD, you basically have an hexadecimal numbers with digits between 0 and 9, so removing a digit is very simple. Once you're done, convert back to binary.
I don't believe anybody would want to do that.

Project Euler #16 - C# 2.0

I've been wrestling with Project Euler Problem #16 in C# 2.0. The crux of the question is that you have to calculate and then iterate through each digit in a number that is 604 digits long (or there-abouts). You then add up these digits to produce the answer.
This presents a problem: C# 2.0 doesn't have a built-in datatype that can handle this sort of calculation precision. I could use a 3rd party library, but that would defeat the purpose of attempting to solve it programmatically without external libraries. I can solve it in Perl; but I'm trying to solve it in C# 2.0 (I'll attempt to use C# 3.0 in my next run-through of the Project Euler questions).
Question
What suggestions (not answers!) do you have for solving project Euler #16 in C# 2.0? What methods would work?
NB: If you decide to post an answer, please prefix your attempt with a blockquote that has ###Spoiler written before it.
A number of a series of digits. A 32 bit unsigned int is 32 binary digits. The string "12345" is a series of 5 digits. Digits can be stored in many ways: as bits, characters, array elements and so on. The largest "native" datatype in C# with complete precision is probably the decimal type (128 bits, 28-29 digits). Just choose your own method of storing digits that allows you to store much bigger numbers.
As for the rest, this will give you a clue:
21 = 2
22 = 21 + 21
23 = 22 + 22
Example:
The sum of digits of 2^100000 is 135178
Ran in 4875 ms
The sum of digits of 2^10000 is 13561
Ran in 51 ms
The sum of digits of 2^1000 is 1366
Ran in 2 ms
SPOILER ALERT: Algorithm and solution in C# follows.
Basically, as alluded to a number is nothing more than an array of digits. This can be represented easily in two ways:
As a string;
As an array of characters or digits.
As others have mentioned, storing the digits in reverse order is actually advisable. It makes the calculations much easier. I tried both of the above methods. I found strings and the character arithmetic irritating (it's easier in C/C++; the syntax is just plain annoying in C#).
The first thing to note is that you can do this with one array. You don't need to allocate more storage at each iteration. As mentioned you can find a power of 2 by doubling the previous power of 2. So you can find 21000 by doubling 1 one thousand times. The doubling can be done in place with the general algorithm:
carry = 0
foreach digit in array
sum = digit + digit + carry
if sum > 10 then
carry = 1
sum -= 10
else
carry = 0
end if
digit = sum
end foreach
This algorithm is basically the same for using a string or an array. At the end you just add up the digits. A naive implementation might add the results into a new array or string with each iteration. Bad idea. Really slows it down. As mentioned, it can be done in place.
But how large should the array be? Well that's easy too. Mathematically you can convert 2^a to 10^f(a) where f(a) is a simple logarithmic conversion and the number of digits you need is the next higher integer from that power of 10. For simplicity, you can just use:
digits required = ceil(power of 2 / 3)
which is a close approximation and sufficient.
Where you can really optimise this is by using larger digits. A 32 bit signed int can store a number between +/- 2 billion (approximately. Well 9 digits equals a billion so you can use a 32 bit int (signed or unsigned) as basically a base one billion "digit". You can work out how many ints you need, create that array and that's all the storage you need to run the entire algorithm (being 130ish bytes) with everything being done in place.
Solution follows (in fairly rough C#):
static void problem16a()
{
const int limit = 1000;
int ints = limit / 29;
int[] number = new int[ints + 1];
number[0] = 2;
for (int i = 2; i <= limit; i++)
{
doubleNumber(number);
}
String text = NumberToString(number);
Console.WriteLine(text);
Console.WriteLine("The sum of digits of 2^" + limit + " is " + sumDigits(text));
}
static void doubleNumber(int[] n)
{
int carry = 0;
for (int i = 0; i < n.Length; i++)
{
n[i] <<= 1;
n[i] += carry;
if (n[i] >= 1000000000)
{
carry = 1;
n[i] -= 1000000000;
}
else
{
carry = 0;
}
}
}
static String NumberToString(int[] n)
{
int i = n.Length;
while (i > 0 && n[--i] == 0)
;
String ret = "" + n[i--];
while (i >= 0)
{
ret += String.Format("{0:000000000}", n[i--]);
}
return ret;
}
I solved this one using C# also, much to my dismay when I discovered that Python can do this in one simple operation.
Your goal is to create an adding machine using arrays of int values.
Spoiler follows
I ended up using an array of int
values to simulate an adding machine,
but I represented the number backwards
- which you can do because the problem only asks for the sum of the digits,
this means order is irrelevant.
What you're essentially doing is
doubling the value 1000 times, so you
can double the value 1 stored in the
1st element of the array, and then
continue looping until your value is
over 10. This is where you will have
to keep track of a carry value. The
first power of 2 that is over 10 is
16, so the elements in the array after
the 5th iteration are 6 and 1.
Now when you loop through the array
starting at the 1st value (6), it
becomes 12 (so you keep the last
digit, and set a carry bit on the next
index of the array) - which when
that value is doubled you get 2 ... plus the 1 for the carry bit which
equals 3. Now you have 2 and 3 in your
array which represents 32.
Continues this process 1000 times and
you'll have an array with roughly 600
elements that you can easily add up.
I have solved this one before, and now I re-solved it using C# 3.0. :)
I just wrote a Multiply extension method that takes an IEnumerable<int> and a multiplier and returns an IEnumerable<int>. (Each int represents a digit, and the first one it the least significant digit.) Then I just created a list with the item { 1 } and multiplied it by 2 a 1000 times. Adding the items in the list is simple with the Sum extension method.
19 lines of code, which runs in 13 ms. on my laptop. :)
Pretend you are very young, with square paper. To me, that is like a list of numbers. Then to double it you double each number, then handle any "carries", by subtracting the 10s and adding 1 to the next index. So if the answer is 1366... something like (completely unoptimized, rot13):
hfvat Flfgrz;
hfvat Flfgrz.Pbyyrpgvbaf.Trarevp;
pynff Cebtenz {
fgngvp ibvq Pneel(Yvfg<vag> yvfg, vag vaqrk) {
juvyr (yvfg[vaqrk] > 9) {
yvfg[vaqrk] -= 10;
vs (vaqrk == yvfg.Pbhag - 1) yvfg.Nqq(1);
ryfr yvfg[vaqrk + 1]++;
}
}
fgngvp ibvq Znva() {
ine qvtvgf = arj Yvfg<vag> { 1 }; // 2^0
sbe (vag cbjre = 1; cbjre <= 1000; cbjre++) {
sbe (vag qvtvg = 0; qvtvg < qvtvgf.Pbhag; qvtvg++) {
qvtvgf[qvtvg] *= 2;
}
sbe (vag qvtvg = 0; qvtvg < qvtvgf.Pbhag; qvtvg++) {
Pneel(qvtvgf, qvtvg);
}
}
qvtvgf.Erirefr();
sbernpu (vag v va qvtvgf) {
Pbafbyr.Jevgr(v);
}
Pbafbyr.JevgrYvar();
vag fhz = 0;
sbernpu (vag v va qvtvgf) fhz += v;
Pbafbyr.Jevgr("fhz: ");
Pbafbyr.JevgrYvar(fhz);
}
}
If you wish to do the primary calculation in C#, you will need some sort of big integer implementation (Much like gmp for C/C++). Programming is about using the right tool for the right job. If you cannot find a good big integer library for C#, it's not against the rules to calculate the number in a language like Python which already has the ability to calculate large numbers. You could then put this number into your C# program via your method of choice, and iterate over each character in the number (you will have to store it as a string). For each character, convert it to an integer and add it to your total until you reach the end of the number. If you would like the big integer, I calculated it with python below. The answer is further down.
Partial Spoiler
10715086071862673209484250490600018105614048117055336074437503883703510511249361
22493198378815695858127594672917553146825187145285692314043598457757469857480393
45677748242309854210746050623711418779541821530464749835819412673987675591655439
46077062914571196477686542167660429831652624386837205668069376
Spoiler Below!
>>> val = str(2**1000)
>>> total = 0
>>> for i in range(0,len(val)): total += int(val[i])
>>> print total
1366
If you've got ruby, you can easily calculate "2**1000" and get it as a string. Should be an easy cut/paste into a string in C#.
Spoiler
In Ruby: (2**1000).to_s.split(//).inject(0){|x,y| x+y.to_i}
spoiler
If you want to see a solution check
out my other answer. This is in Java but it's very easy to port to C#
Here's a clue:
Represent each number with a list. That way you can do basic sums like:
[1,2,3,4,5,6]
+ [4,5]
_____________
[1,2,3,5,0,1]
One alternative to representing the digits as a sequence of integers is to represent the number base 2^32 as a list of 32 bit integers, which is what many big integer libraries do. You then have to convert the number to base 10 for output. This doesn't gain you very much for this particular problem - you can write 2^1000 straight away, then have to divide by 10 many times instead of multiplying 2 by itself 1000 times ( or, as 1000 is 0b1111101000. calculating the product of 2^8,32,64,128,256,512 using repeated squaring 2^8 = (((2^2)^2)^2))) which requires more space and a multiplication method, but is far fewer operations ) - is closer to normal big integer use, so you may find it more useful in later problems ( if you try to calculate the last ten digits of 28433×2^(7830457)+1 using the digit-per int method and repeated addition, it may take some time (though in that case you could use modulo arthimetic, rather than adding strings of millions of digits) ).
Working solution that I have posted it here as well: http://www.mycoding.net/2012/01/solution-to-project-euler-problem-16/
The code:
import java.math.BigInteger;
public class Euler16 {
public static void main(String[] args) {
int power = 1;
BigInteger expo = new BigInteger("2");
BigInteger num = new BigInteger("2");
while(power < 1000){
expo = expo.multiply(num);
power++;
}
System.out.println(expo); //Printing the value of 2^1000
int sum = 0;
char[] expoarr = expo.toString().toCharArray();
int max_count = expoarr.length;
int count = 0;
while(count<max_count){ //While loop to calculate the sum of digits
sum = sum + (expoarr[count]-48);
count++;
}
System.out.println(sum);
}
}
Euler problem #16 has been discussed many times here, but I could not find an answer that gives a good overview of possible solution approaches, the lay of the land as it were. Here's my attempt at rectifying that.
This overview is intended for people who have already found a solution and want to get a more complete picture. It is basically language-agnostic even though the sample code is C#. There are some usages of features that are not available in C# 2.0 but they are not essential - their purpose is only to get boring stuff out of the way with a minimum of fuss.
Apart from using a ready-made BigInteger library (which doesn't count), straightforward solutions for Euler #16 fall into two fundamental categories: performing calculations natively - i.e. in a base that is a power of two - and converting to decimal in order to get at the digits, or performing the computations directly in a decimal base so that the digits are available without any conversion.
For the latter there are two reasonably simple options:
repeated doubling
powering by repeated squaring
Native Computation + Radix Conversion
This approach is the simplest and its performance exceeds that of naive solutions using .Net's builtin BigInteger type.
The actual computation is trivially achieved: just perform the moral equivalent of 1 << 1000, by storing 1000 binary zeroes and appending a single lone binary 1.
The conversion is also quite simple and can be done by coding the pencil-and-paper division method, with a suitably large choice of 'digit' for efficiency. Variables for intermediate results need to be able to hold two 'digits'; dividing the number of decimal digits that fit in a long by 2 gives 9 decimal digits for the maximum meta-digit (or 'limb', as it is usually called in bignum lore).
class E16_RadixConversion
{
const int BITS_PER_WORD = sizeof(uint) * 8;
const uint RADIX = 1000000000; // == 10^9
public static int digit_sum_for_power_of_2 (int exponent)
{
var dec = new List<int>();
var bin = new uint[(exponent + BITS_PER_WORD) / BITS_PER_WORD];
int top = bin.Length - 1;
bin[top] = 1u << (exponent % BITS_PER_WORD);
while (top >= 0)
{
ulong rest = 0;
for (int i = top; i >= 0; --i)
{
ulong temp = (rest << BITS_PER_WORD) | bin[i];
ulong quot = temp / RADIX; // x64 uses MUL (sometimes), x86 calls a helper function
rest = temp - quot * RADIX;
bin[i] = (uint)quot;
}
dec.Add((int)rest);
if (bin[top] == 0)
--top;
}
return E16_Common.digit_sum(dec);
}
}
I wrote (rest << BITS_PER_WORD) | big[i] instead of using operator + because that is precisely what is needed here; no 64-bit addition with carry propagation needs to take place. This means that the two operands could be written directly to their separate registers in a register pair, or to fields in an equivalent struct like LARGE_INTEGER.
On 32-bit systems the 64-bit division cannot be inlined as a few CPU instructions, because the compiler cannot know that the algorithm guarantees quotient and remainder to fit into 32-bit registers. Hence the compiler calls a helper function that can handle all eventualities.
These systems may profit from using a smaller limb, i.e. RADIX = 10000 and uint instead of ulong for holding intermediate (double-limb) results. An alternative for languages like C/C++ would be to call a suitable compiler intrinsic that wraps the raw 32-bit by 32-bit to 64-bit multiply (assuming that division by the constant radix is to be implemented by multiplication with the inverse). Conversely, on 64-bit systems the limb size can be increased to 19 digits if the compiler offers a suitable 64-by-64-to-128 bit multiply primitive or allows inline assembler.
Decimal Doubling
Repeated doubling seems to be everyone's favourite, so let's do that next. Variables for intermediate results need to hold one 'digit' plus one carry bit, which gives 18 digits per limb for long. Going to ulong cannot improve things (there's 0.04 bit missing to 19 digits plus carry), and so we might as well stick with long.
On a binary computer, decimal limbs do not coincide with computer word boundaries. That makes it necessary to perform a modulo operation on the limbs during each step of the calculation. Here, this modulo op can be reduced to a subtraction of the modulus in the event of carry, which is faster than performing a division. The branching in the inner loop can be eliminated by bit twiddling but that would be needlessly obscure for a demonstration of the basic algorithm.
class E16_DecimalDoubling
{
const int DIGITS_PER_LIMB = 18; // == floor(log10(2) * (63 - 1)), b/o carry
const long LIMB_MODULUS = 1000000000000000000L; // == 10^18
public static int digit_sum_for_power_of_2 (int power_of_2)
{
Trace.Assert(power_of_2 > 0);
int total_digits = (int)Math.Ceiling(Math.Log10(2) * power_of_2);
int total_limbs = (total_digits + DIGITS_PER_LIMB - 1) / DIGITS_PER_LIMB;
var a = new long[total_limbs];
int limbs = 1;
a[0] = 2;
for (int i = 1; i < power_of_2; ++i)
{
int carry = 0;
for (int j = 0; j < limbs; ++j)
{
long new_limb = (a[j] << 1) | carry;
carry = 0;
if (new_limb >= LIMB_MODULUS)
{
new_limb -= LIMB_MODULUS;
carry = 1;
}
a[j] = new_limb;
}
if (carry != 0)
{
a[limbs++] = carry;
}
}
return E16_Common.digit_sum(a);
}
}
This is just as simple as radix conversion, but except for very small exponents it does not perform anywhere near as well (despite its huge meta-digits of 18 decimal places). The reason is that the code must perform (exponent - 1) doublings, and the work done in each pass corresponds to about half the total number of digits (limbs).
Repeated Squaring
The idea behind powering by repeated squaring is to replace a large number of doublings with a small number of multiplications.
1000 = 2^3 + 2^5 + 2^6 + 2^7 + 2^8 + 2^9
x^1000 = x^(2^3 + 2^5 + 2^6 + 2^7 + 2^8 + 2^9)
x^1000 = x^2^3 * x^2^5 * x^2^6 * x^2^7 * x^2*8 * x^2^9
x^2^3 can be obtained by squaring x three times, x^2^5 by squaring five times, and so on. On a binary computer the decomposition of the exponent into powers of two is readily available because it is the bit pattern representing that number. However, even non-binary computers should be able to test whether a number is odd or even, or to divide a number by two.
The multiplication can be done by coding the pencil-and-paper method; here I'm using a helper function that computes one row of a product and adds it into the result at a suitably shifted position, so that the rows of partial products do not need to be stored for a separate addition step later. Intermediate values during computation can be up to two 'digits' in size, so that the limbs can be only half as wide as for repeated doubling (where only one extra bit had to fit in addition to a 'digit').
Note: the radix of the computations is not a power of 2, and so the squarings of 2 cannot be computed by simple shifting here. On the positive side, the code can be used for computing powers of bases other than 2.
class E16_DecimalSquaring
{
const int DIGITS_PER_LIMB = 9; // language limit 18, half needed for holding the carry
const int LIMB_MODULUS = 1000000000;
public static int digit_sum_for_power_of_2 (int e)
{
Trace.Assert(e > 0);
int total_digits = (int)Math.Ceiling(Math.Log10(2) * e);
int total_limbs = (total_digits + DIGITS_PER_LIMB - 1) / DIGITS_PER_LIMB;
var squared_power = new List<int>(total_limbs) { 2 };
var result = new List<int>(total_limbs);
result.Add((e & 1) == 0 ? 1 : 2);
while ((e >>= 1) != 0)
{
squared_power = multiply(squared_power, squared_power);
if ((e & 1) == 1)
result = multiply(result, squared_power);
}
return E16_Common.digit_sum(result);
}
static List<int> multiply (List<int> lhs, List<int> rhs)
{
var result = new List<int>(lhs.Count + rhs.Count);
resize_to_capacity(result);
for (int i = 0; i < rhs.Count; ++i)
addmul_1(result, i, lhs, rhs[i]);
trim_leading_zero_limbs(result);
return result;
}
static void addmul_1 (List<int> result, int offset, List<int> multiplicand, int multiplier)
{
// it is assumed that the caller has sized `result` appropriately before calling this primitive
Trace.Assert(result.Count >= offset + multiplicand.Count + 1);
long carry = 0;
foreach (long limb in multiplicand)
{
long temp = result[offset] + limb * multiplier + carry;
carry = temp / LIMB_MODULUS;
result[offset++] = (int)(temp - carry * LIMB_MODULUS);
}
while (carry != 0)
{
long final_temp = result[offset] + carry;
carry = final_temp / LIMB_MODULUS;
result[offset++] = (int)(final_temp - carry * LIMB_MODULUS);
}
}
static void resize_to_capacity (List<int> operand)
{
operand.AddRange(Enumerable.Repeat(0, operand.Capacity - operand.Count));
}
static void trim_leading_zero_limbs (List<int> operand)
{
int i = operand.Count;
while (i > 1 && operand[i - 1] == 0)
--i;
operand.RemoveRange(i, operand.Count - i);
}
}
The efficiency of this approach is roughly on par with radix conversion but there are specific improvements that apply here. Efficiency of the squaring can be doubled by writing a special squaring routine that utilises the fact that ai*bj == aj*bi if a == b, which cuts the number of multiplications in half.
Also, there are methods for computing addition chains that involve fewer operations overall than using the exponent bits for determining the squaring/multiplication schedule.
Helper Code and Benchmarks
The helper code for summing decimal digits in the meta-digits (decimal limbs) produced by the sample code is trivial, but I'm posting it here anyway for your convenience:
internal class E16_Common
{
internal static int digit_sum (int limb)
{
int sum = 0;
for ( ; limb > 0; limb /= 10)
sum += limb % 10;
return sum;
}
internal static int digit_sum (long limb)
{
const int M1E9 = 1000000000;
return digit_sum((int)(limb / M1E9)) + digit_sum((int)(limb % M1E9));
}
internal static int digit_sum (IEnumerable<int> limbs)
{
return limbs.Aggregate(0, (sum, limb) => sum + digit_sum(limb));
}
internal static int digit_sum (IEnumerable<long> limbs)
{
return limbs.Select((limb) => digit_sum(limb)).Sum();
}
}
This can be made more efficient in various ways but overall it is not critical.
All three solutions take O(n^2) time where n is the exponent. In other words, they will take a hundred times as long when the exponent grows by a factor of ten. Radix conversion and repeated squaring can both be improved to roughly O(n log n) by employing divide-and-conquer strategies; I doubt whether the doubling scheme can be improved in a similar fastion but then it was never competitive to begin with.
All three solutions presented here can be used to print the actual results, by stringifying the meta-digits with suitable padding and concatenating them. I've coded the functions as returning the digit sum instead of the arrays/lists with decimal limbs only in order to keep the sample code simple and to ensure that all functions have the same signature, for benchmarking.
In these benchmarks, the .Net BigInteger type was wrapped like this:
static int digit_sum_via_BigInteger (int power_of_2)
{
return System.Numerics.BigInteger.Pow(2, power_of_2)
.ToString()
.ToCharArray()
.Select((c) => (int)c - '0')
.Sum();
}
Finally, the benchmarks for the C# code:
# testing decimal doubling ...
1000: 1366 in 0,052 ms
10000: 13561 in 3,485 ms
100000: 135178 in 339,530 ms
1000000: 1351546 in 33.505,348 ms
# testing decimal squaring ...
1000: 1366 in 0,023 ms
10000: 13561 in 0,299 ms
100000: 135178 in 24,610 ms
1000000: 1351546 in 2.612,480 ms
# testing radix conversion ...
1000: 1366 in 0,018 ms
10000: 13561 in 0,619 ms
100000: 135178 in 60,618 ms
1000000: 1351546 in 5.944,242 ms
# testing BigInteger + LINQ ...
1000: 1366 in 0,021 ms
10000: 13561 in 0,737 ms
100000: 135178 in 69,331 ms
1000000: 1351546 in 6.723,880 ms
As you can see, the radix conversion is almost as slow as the solution using the builtin BigInteger class. The reason is that the runtime is of the newer type that does performs certain standard optimisations only for signed integer types but not for unsigned ones (here: implementing division by a constant as multiplication with the inverse).
I haven't found an easy means of inspecting the native code for existing .Net assemblies, so I decided on a different path of investigation: I coded a variant of E16_RadixConversion for comparison where ulong and uint were replaced by long and int respectively, and BITS_PER_WORD decreased by 1 accordingly. Here are the timings:
# testing radix conv Int63 ...
1000: 1366 in 0,004 ms
10000: 13561 in 0,202 ms
100000: 135178 in 18,414 ms
1000000: 1351546 in 1.834,305 ms
More than three times as fast as the version that uses unsigned types! Clear evidence of numbskullery in the compiler...
In order to showcase the effect of different limb sizes I templated the solutions in C++ on the unsigned integer types used as limbs. The timings are prefixed with the byte size of a limb and the number of decimal digits in a limb, separated by a colon. There is no timing for the often-seen case of manipulating digit characters in strings, but it is safe to say that such code will take at least twice as long as the code that uses double digits in byte-sized limbs.
# E16_DecimalDoubling
[1:02] e = 1000 -> 1366 0.308 ms
[2:04] e = 1000 -> 1366 0.152 ms
[4:09] e = 1000 -> 1366 0.070 ms
[8:18] e = 1000 -> 1366 0.071 ms
[1:02] e = 10000 -> 13561 30.533 ms
[2:04] e = 10000 -> 13561 13.791 ms
[4:09] e = 10000 -> 13561 6.436 ms
[8:18] e = 10000 -> 13561 2.996 ms
[1:02] e = 100000 -> 135178 2719.600 ms
[2:04] e = 100000 -> 135178 1340.050 ms
[4:09] e = 100000 -> 135178 588.878 ms
[8:18] e = 100000 -> 135178 290.721 ms
[8:18] e = 1000000 -> 1351546 28823.330 ms
For the exponent of 10^6 there is only the timing with 64-bit limbs, since I didn't have the patience to wait many minutes for full results. The picture is similar for radix conversion, except that there is no row for 64-bit limbs because my compiler does not have a native 128-bit integral type.
# E16_RadixConversion
[1:02] e = 1000 -> 1366 0.080 ms
[2:04] e = 1000 -> 1366 0.026 ms
[4:09] e = 1000 -> 1366 0.048 ms
[1:02] e = 10000 -> 13561 4.537 ms
[2:04] e = 10000 -> 13561 0.746 ms
[4:09] e = 10000 -> 13561 0.243 ms
[1:02] e = 100000 -> 135178 445.092 ms
[2:04] e = 100000 -> 135178 68.600 ms
[4:09] e = 100000 -> 135178 19.344 ms
[4:09] e = 1000000 -> 1351546 1925.564 ms
The interesting thing is that simply compiling the code as C++ doesn't make it any faster - i.e., the optimiser couldn't find any low-hanging fruit that the C# jitter missed, apart from not toeing the line with regard to penalising unsigned integers. That's the reason why I like prototyping in C# - performance in the same ballpark as (unoptimised) C++ and none of the hassle.
Here's the meat of the C++ version (sans reams of boring stuff like helper templates and so on) so that you can see that I didn't cheat to make C# look better:
template<typename W>
struct E16_RadixConversion
{
typedef W limb_t;
typedef typename detail::E16_traits<W>::long_t long_t;
static unsigned const BITS_PER_WORD = sizeof(limb_t) * CHAR_BIT;
static unsigned const RADIX_DIGITS = std::numeric_limits<limb_t>::digits10;
static limb_t const RADIX = detail::pow10_t<limb_t, RADIX_DIGITS>::RESULT;
static unsigned digit_sum_for_power_of_2 (unsigned e)
{
std::vector<limb_t> digits;
compute_digits_for_power_of_2(e, digits);
return digit_sum(digits);
}
static void compute_digits_for_power_of_2 (unsigned e, std::vector<limb_t> &result)
{
assert(e > 0);
unsigned total_digits = unsigned(std::ceil(std::log10(2) * e));
unsigned total_limbs = (total_digits + RADIX_DIGITS - 1) / RADIX_DIGITS;
result.resize(0);
result.reserve(total_limbs);
std::vector<limb_t> bin((e + BITS_PER_WORD) / BITS_PER_WORD);
bin.back() = limb_t(limb_t(1) << (e % BITS_PER_WORD));
while (!bin.empty())
{
long_t rest = 0;
for (std::size_t i = bin.size(); i-- > 0; )
{
long_t temp = (rest << BITS_PER_WORD) | bin[i];
long_t quot = temp / RADIX;
rest = temp - quot * RADIX;
bin[i] = limb_t(quot);
}
result.push_back(limb_t(rest));
if (bin.back() == 0)
bin.pop_back();
}
}
};
Conclusion
These benchmarks also show that this Euler task - like many others - seems designed to be solved on a ZX81 or an Apple ][, not on our modern toys that are a million times as powerful. There's no challenge involved here unless the limits are increased drastically (an exponent of 10^5 or 10^6 would be much more adequate).
A good overview of the practical state of the art can be got from GMP's overview of algorithms. Another excellent overview of the algorithms is chapter 1 of "Modern Computer Arithmetic" by Richard Brent and Paul Zimmermann. It contains exactly what one needs to know for coding challenges and competitions, but unfortunately the depth is not equal to that of Donald Knuth's treatment in "The Art of Computer Programming".
The radix conversion solution adds a useful technique to one's code challenge toolchest, since the given code can be trivially extended for converting any old big integer instead of only the bit pattern 1 << exponent. The repeated squaring solutiono can be similarly useful since changing the sample code to power something other than 2 is again trivial.
The approach of performing computations directly in powers of 10 can be useful for challenges where decimal results are required, because performance is in the same ballpark as native computation but there is no need for a separate conversion step (which can require similar amounts of time as the actual computation).

Categories

Resources