Reading the Version number from a AssemblyInfo.cs file - c#

I'm trying to extract the version number from a AssemblyInfo.cs file!
And I'm trying to use System.Reflection.Assembly.LoadFile(path); But while doing this I get a BadImageFormatException; "The module was expected to contain an assembly manifest. (Exception from HRESULT: 0x80131018)". So now I wounder, is that not a possible way to go about it? And should I use RegEx instead?
I have read many examples with GetExecutingAssembly() but I do want to get the version from an other project.
Clarification: I want to read the version info from the AssemblyInfo.cs file! And not from a compiled file. I'm trying to make a tool to update my version numbers before I make a new release.

You can get Assembly version without loading it as:
using System.Reflection;
using System.IO;
...
// Get assembly
AssemblyName currentAssembly = AssemblyName.GetAssemblyName(path);
Version assemblyVersion = currentAssembly.Version;
Edit:
If you want to read file then you can do it like this:
string path = #"d:\AssemblyInfo.cs";
if (File.Exists(path))
{
// Open the file to read from.
string[] readText = File.ReadAllLines(path);
var versionInfoLines = readText.Where(t => t.Contains("[assembly: AssemblyVersion"));
foreach (string item in versionInfoLines)
{
string version = item.Substring(item.IndexOf('(') + 2, item.LastIndexOf(')') - item.IndexOf('(') - 3);
//Console.WriteLine(Regex.Replace(version, #"\P{S}", string.Empty));
Console.WriteLine(version);
}
}
//Output
1.0.*
1.0.0.0
Hope this help...

You can specify the target assembly path in AssemblyName.GetAssemblyName
AssemblyName.GetAssemblyName("ProjectB.exe").Version

AssemblyInfo.cs file gets compiled to IL assembly.
If you load that assembly you can read the version with all the examples that you have already seen. Which is reading an embedded version information from a compiled assembly file, and it may be overwritten by compilation process to a value different from what is in AssemblyInfo.cs
However it sounds like what you want instead is to read a version number from AssemblyInfo.cs text file, without compiling it down.
If this is the case you really just have to use regex with a format appropriate for your project, or even come up with a convention that will keep it simple.
This could be as simple as
var versionMatch = Regex.Match(File.ReadAllText(filename), #"AssemblyVersion\s*\(\s*""([0-9\.\*]*?)""\s*\)");
if (versionMatch.Success)
{
Console.WriteLine(versionMatch.Groups[1].Value);
}
You would have to consider convention around what goes there, since 1.0.* is a valid version string that translates to timestamp values of form 1.0.nnn.mmm at compile time, and nnn and mmm part closely guessable but not precisely guessable.

It sounds like you're trying to load an assembly compiled for x86 in an x64 environment or vice-versa.
Ensure the assembly this code resides in is built for the same environment as the target and you can get it with the examples it sounds like you've read.

You can proceed with Assembly.GetName().Version where your assembly could be the type of your class
public class Test
{
public static void Main()
{
Console.WriteLine("Current assembly : " + typeof(Test).Assembly.GetName().Version);
}
}
For the test application I have working on, shows me below details using above code:

Related

Is it possible to get assembly info at compile time without reflection?

It is trivial to get Assembly information at run-time using reflection:
System.Reflection.Assembly assembly = System.Reflection.Assembly.GetExecutingAssembly();
System.Diagnostics.FileVersionInfo fvi = System.Diagnostics.FileVersionInfo.GetVersionInfo(assembly.Location);
However, I cannot use reflection in my project due to restricted execution environment. In limited trust environment this code will not work.
I want to use some attributes from AssemblyInfo.cs at compile time to show product name, version etc. without invoking reflection mechanism.
Most primitive way would be just duplicating strings from AssemblyInfo.cs file as constant strings somewhere else. But maybe there exist some more elegant solutions?
Of course, some essential info on assembly can be properly resolved only at run-time through reflection. Say, assembly path, execution context etc. But info about name and version is written in project code and should be normally available at compile time.
Any comments and ideas are appreciated. Thank you.
Since nobody posted an answer so far, I will publish a variant, to which I came based on comments to the question. As #Julo advised, I took way exactly opposite to getting info from attributes and, instead, decided for constant definitions in a class:
public class Resource
{
public const string VERSION = "1.0.0.0";
public const string COMPANY = "Company";
public const string APPICATION = "App";
}
Then I pass these values to assembly attributes:
[assembly: AssemblyTitle(Resource.APPICATION)]
[assembly: AssemblyCompany(Resource.COMPANY)]
[assembly: AssemblyVersion(Resource.VERSION)]
[assembly: AssemblyFileVersion(Resource.VERSION)]
Of course, I can also access these in my code at compile time:
string tool = null, version = null;
//System.Reflection.Assembly assembly = System.Reflection.Assembly.GetExecutingAssembly();
//System.Diagnostics.FileVersionInfo fvi = System.Diagnostics.FileVersionInfo.GetVersionInfo(assembly.Location);
//if (string.IsNullOrEmpty(tool) && fvi != null) tool = fvi.ProductName;
//if (string.IsNullOrEmpty(version) && fvi != null) version = fvi.FileVersion;
tool = Resource.APPICATION;
version = Resource.VERSION;
Drawback here can be that automatic version increment tools in build environments will not be able to access these constants. Advantage can be that constants can be shared between many projects as a single file to enable cetralised version management for the whole solution.

"Injecting" MySQL Data into application [duplicate]

Is it possible to embed a pre-existing DLL into a compiled C# executable (so that you only have one file to distribute)? If it is possible, how would one go about doing it?
Normally, I'm cool with just leaving the DLLs outside and having the setup program handle everything, but there have been a couple of people at work who have asked me this and I honestly don't know.
I highly recommend to use Costura.Fody - by far the best and easiest way to embed resources in your assembly. It's available as NuGet package.
Install-Package Costura.Fody
After adding it to the project, it will automatically embed all references that are copied to the output directory into your main assembly. You might want to clean the embedded files by adding a target to your project:
Install-CleanReferencesTarget
You'll also be able to specify whether to include the pdb's, exclude certain assemblies, or extracting the assemblies on the fly. As far as I know, also unmanaged assemblies are supported.
Update
Currently, some people are trying to add support for DNX.
Update 2
For the lastest Fody version, you will need to have MSBuild 16 (so Visual Studio 2019). Fody version 4.2.1 will do MSBuild 15. (reference: Fody is only supported on MSBuild 16 and above. Current version: 15)
Just right-click your project in Visual Studio, choose Project Properties -> Resources -> Add Resource -> Add Existing File…
And include the code below to your App.xaml.cs or equivalent.
public App()
{
AppDomain.CurrentDomain.AssemblyResolve +=new ResolveEventHandler(CurrentDomain_AssemblyResolve);
}
System.Reflection.Assembly CurrentDomain_AssemblyResolve(object sender, ResolveEventArgs args)
{
string dllName = args.Name.Contains(',') ? args.Name.Substring(0, args.Name.IndexOf(',')) : args.Name.Replace(".dll","");
dllName = dllName.Replace(".", "_");
if (dllName.EndsWith("_resources")) return null;
System.Resources.ResourceManager rm = new System.Resources.ResourceManager(GetType().Namespace + ".Properties.Resources", System.Reflection.Assembly.GetExecutingAssembly());
byte[] bytes = (byte[])rm.GetObject(dllName);
return System.Reflection.Assembly.Load(bytes);
}
Here's my original blog post:
http://codeblog.larsholm.net/2011/06/embed-dlls-easily-in-a-net-assembly/
If they're actually managed assemblies, you can use ILMerge. For native DLLs, you'll have a bit more work to do.
See also: How can a C++ windows dll be merged into a C# application exe?
Yes, it is possible to merge .NET executables with libraries. There are multiple tools available to get the job done:
ILMerge is a utility that can be used to merge multiple .NET assemblies into a single assembly.
Mono mkbundle, packages an exe and all assemblies with libmono into a single binary package.
IL-Repack is a FLOSS alterantive to ILMerge, with some additional features.
In addition this can be combined with the Mono Linker, which does remove unused code and therefor makes the resulting assembly smaller.
Another possibility is to use .NETZ, which does not only allow compressing of an assembly, but also can pack the dlls straight into the exe. The difference to the above mentioned solutions is that .NETZ does not merge them, they stay separate assemblies but are packed into one package.
.NETZ is a open source tool that compresses and packs the Microsoft .NET Framework executable (EXE, DLL) files in order to make them smaller.
ILMerge can combine assemblies to one single assembly provided the assembly has only managed code. You can use the commandline app, or add reference to the exe and programmatically merge. For a GUI version there is Eazfuscator, and also .Netz both of which are free. Paid apps include BoxedApp and SmartAssembly.
If you have to merge assemblies with unmanaged code, I would suggest SmartAssembly. I never had hiccups with SmartAssembly but with all others. Here, it can embed the required dependencies as resources to your main exe.
You can do all this manually not needing to worry if assembly is managed or in mixed mode by embedding dll to your resources and then relying on AppDomain's Assembly ResolveHandler. This is a one stop solution by adopting the worst case, ie assemblies with unmanaged code.
static void Main()
{
AppDomain.CurrentDomain.AssemblyResolve += (sender, args) =>
{
string assemblyName = new AssemblyName(args.Name).Name;
if (assemblyName.EndsWith(".resources"))
return null;
string dllName = assemblyName + ".dll";
string dllFullPath = Path.Combine(GetMyApplicationSpecificPath(), dllName);
using (Stream s = Assembly.GetEntryAssembly().GetManifestResourceStream(typeof(Program).Namespace + ".Resources." + dllName))
{
byte[] data = new byte[stream.Length];
s.Read(data, 0, data.Length);
//or just byte[] data = new BinaryReader(s).ReadBytes((int)s.Length);
File.WriteAllBytes(dllFullPath, data);
}
return Assembly.LoadFrom(dllFullPath);
};
}
The key here is to write the bytes to a file and load from its location. To avoid chicken and egg problem, you have to ensure you declare the handler before accessing assembly and that you do not access the assembly members (or instantiate anything that has to deal with the assembly) inside the loading (assembly resolving) part. Also take care to ensure GetMyApplicationSpecificPath() is not any temp directory since temp files could be attempted to get erased by other programs or by yourself (not that it will get deleted while your program is accessing the dll, but at least its a nuisance. AppData is good location). Also note that you have to write the bytes each time, you cant load from location just 'cos the dll already resides there.
For managed dlls, you need not write bytes, but directly load from the location of the dll, or just read the bytes and load the assembly from memory. Like this or so:
using (Stream s = Assembly.GetEntryAssembly().GetManifestResourceStream(typeof(Program).Namespace + ".Resources." + dllName))
{
byte[] data = new byte[stream.Length];
s.Read(data, 0, data.Length);
return Assembly.Load(data);
}
//or just
return Assembly.LoadFrom(dllFullPath); //if location is known.
If the assembly is fully unmanaged, you can see this link or this as to how to load such dlls.
.NET Core 3.0 natively supports compiling to a single .exe
The feature is enabled by the usage of the following property in your project file (.csproj):
<PropertyGroup>
<PublishSingleFile>true</PublishSingleFile>
</PropertyGroup>
This is done without any external tool.
See my answer for this question for further details.
The excerpt by Jeffrey Richter is very good. In short, add the libraries as embedded resources and add a callback before anything else. Here is a version of the code (found in the comments of his page) that I put at the start of Main method for a console app (just make sure that any calls that use the libraries are in a different method to Main).
AppDomain.CurrentDomain.AssemblyResolve += (sender, bargs) =>
{
String dllName = new AssemblyName(bargs.Name).Name + ".dll";
var assem = Assembly.GetExecutingAssembly();
String resourceName = assem.GetManifestResourceNames().FirstOrDefault(rn => rn.EndsWith(dllName));
if (resourceName == null) return null; // Not found, maybe another handler will find it
using (var stream = assem.GetManifestResourceStream(resourceName))
{
Byte[] assemblyData = new Byte[stream.Length];
stream.Read(assemblyData, 0, assemblyData.Length);
return Assembly.Load(assemblyData);
}
};
To expand on #Bobby's asnwer above. You can edit your .csproj to use IL-Repack to automatically package all files into a single assembly when you build.
Install the nuget ILRepack.MSBuild.Task package with Install-Package ILRepack.MSBuild.Task
Edit the AfterBuild section of your .csproj
Here is a simple sample that merges ExampleAssemblyToMerge.dll into your project output.
<!-- ILRepack -->
<Target Name="AfterBuild" Condition="'$(Configuration)' == 'Release'">
<ItemGroup>
<InputAssemblies Include="$(OutputPath)\$(AssemblyName).exe" />
<InputAssemblies Include="$(OutputPath)\ExampleAssemblyToMerge.dll" />
</ItemGroup>
<ILRepack
Parallel="true"
Internalize="true"
InputAssemblies="#(InputAssemblies)"
TargetKind="Exe"
OutputFile="$(OutputPath)\$(AssemblyName).exe"
/>
</Target>
The following method DO NOT use external tools and AUTOMATICALLY include all needed DLL (no manual action required, everything done at compilation)
I read a lot of answer here saying to use ILMerge, ILRepack or Jeffrey Ritcher method but none of that worked with WPF applications nor was easy to use.
When you have a lot of DLL it can be hard to manually include the one you need in your exe. The best method i found was explained by Wegged here on StackOverflow
Copy pasted his answer here for clarity (all credit to Wegged)
1) Add this to your .csproj file:
<Target Name="AfterResolveReferences">
<ItemGroup>
<EmbeddedResource Include="#(ReferenceCopyLocalPaths)" Condition="'%(ReferenceCopyLocalPaths.Extension)' == '.dll'">
<LogicalName>%(ReferenceCopyLocalPaths.DestinationSubDirectory)%(ReferenceCopyLocalPaths.Filename)%(ReferenceCopyLocalPaths.Extension)</LogicalName>
</EmbeddedResource>
</ItemGroup>
</Target>
2) Make your Main Program.cs look like this:
[STAThreadAttribute]
public static void Main()
{
AppDomain.CurrentDomain.AssemblyResolve += OnResolveAssembly;
App.Main();
}
3) Add the OnResolveAssembly method:
private static Assembly OnResolveAssembly(object sender, ResolveEventArgs args)
{
Assembly executingAssembly = Assembly.GetExecutingAssembly();
AssemblyName assemblyName = new AssemblyName(args.Name);
var path = assemblyName.Name + ".dll";
if (assemblyName.CultureInfo.Equals(CultureInfo.InvariantCulture) == false) path = String.Format(#"{0}\{1}", assemblyName.CultureInfo, path);
using (Stream stream = executingAssembly.GetManifestResourceStream(path))
{
if (stream == null) return null;
var assemblyRawBytes = new byte[stream.Length];
stream.Read(assemblyRawBytes, 0, assemblyRawBytes.Length);
return Assembly.Load(assemblyRawBytes);
}
}
You could add the DLLs as embedded resources, and then have your program unpack them into the application directory on startup (after checking to see if they're there already).
Setup files are so easy to make, though, that I don't think this would be worth it.
EDIT: This technique would be easy with .NET assemblies. With non-.NET DLLs it would be a lot more work (you'd have to figure out where to unpack the files and register them and so on).
Another product that can handle this elegantly is SmartAssembly, at SmartAssembly.com. This product will, in addition to merging all dependencies into a single DLL, (optionally) obfuscate your code, remove extra meta-data to reduce the resulting file size, and can also actually optimize the IL to increase runtime performance.
There is also some kind of global exception handling/reporting feature it adds to your software (if desired) that could be useful. I believe it also has a command-line API so you can make it part of your build process.
Neither the ILMerge approach nor Lars Holm Jensen's handling the AssemblyResolve event will work for a plugin host. Say executable H loads assembly P dynamically and accesses it via interface IP defined in an separate assembly. To embed IP into H one shall need a little modification to Lars's code:
Dictionary<string, Assembly> loaded = new Dictionary<string,Assembly>();
AppDomain.CurrentDomain.AssemblyResolve += (sender, args) =>
{ Assembly resAssembly;
string dllName = args.Name.Contains(",") ? args.Name.Substring(0, args.Name.IndexOf(',')) : args.Name.Replace(".dll","");
dllName = dllName.Replace(".", "_");
if ( !loaded.ContainsKey( dllName ) )
{ if (dllName.EndsWith("_resources")) return null;
System.Resources.ResourceManager rm = new System.Resources.ResourceManager(GetType().Namespace + ".Properties.Resources", System.Reflection.Assembly.GetExecutingAssembly());
byte[] bytes = (byte[])rm.GetObject(dllName);
resAssembly = System.Reflection.Assembly.Load(bytes);
loaded.Add(dllName, resAssembly);
}
else
{ resAssembly = loaded[dllName]; }
return resAssembly;
};
The trick to handle repeated attempts to resolve the same assembly and return the existing one instead of creating a new instance.
EDIT:
Lest it spoil .NET's serialization, make sure to return null for all assemblies not embedded in yours, thereby defaulting to the standard behaviour. You can get a list of these libraries by:
static HashSet<string> IncludedAssemblies = new HashSet<string>();
string[] resources = System.Reflection.Assembly.GetExecutingAssembly().GetManifestResourceNames();
for(int i = 0; i < resources.Length; i++)
{ IncludedAssemblies.Add(resources[i]); }
and just return null if the passed assembly does not belong to IncludedAssemblies .
It may sound simplistic, but WinRar gives the option to compress a bunch of files to a self-extracting executable.
It has lots of configurable options: final icon, extract files to given path, file to execute after extraction, custom logo/texts for popup shown during extraction, no popup window at all, license agreement text, etc.
May be useful in some cases.
I use the csc.exe compiler called from a .vbs script.
In your xyz.cs script, add the following lines after the directives (my example is for the Renci SSH):
using System;
using Renci;//FOR THE SSH
using System.Net;//FOR THE ADDRESS TRANSLATION
using System.Reflection;//FOR THE Assembly
//+ref>"C:\Program Files (x86)\Microsoft\ILMerge\Renci.SshNet.dll"
//+res>"C:\Program Files (x86)\Microsoft\ILMerge\Renci.SshNet.dll"
//+ico>"C:\Program Files (x86)\Microsoft CAPICOM 2.1.0.2 SDK\Samples\c_sharp\xmldsig\resources\Traffic.ico"
The ref, res and ico tags will be picked up by the .vbs script below to form the csc command.
Then add the assembly resolver caller in the Main:
public static void Main(string[] args)
{
AppDomain.CurrentDomain.AssemblyResolve += new ResolveEventHandler(CurrentDomain_AssemblyResolve);
.
...and add the resolver itself somewhere in the class:
static Assembly CurrentDomain_AssemblyResolve(object sender, ResolveEventArgs args)
{
String resourceName = new AssemblyName(args.Name).Name + ".dll";
using (var stream = Assembly.GetExecutingAssembly().GetManifestResourceStream(resourceName))
{
Byte[] assemblyData = new Byte[stream.Length];
stream.Read(assemblyData, 0, assemblyData.Length);
return Assembly.Load(assemblyData);
}
}
I name the vbs script to match the .cs filename (e.g. ssh.vbs looks for ssh.cs); this makes running the script numerous times a lot easier, but if you aren't an idiot like me then a generic script could pick up the target .cs file from a drag-and-drop:
Dim name_,oShell,fso
Set oShell = CreateObject("Shell.Application")
Set fso = CreateObject("Scripting.fileSystemObject")
'TAKE THE VBS SCRIPT NAME AS THE TARGET FILE NAME
'################################################
name_ = Split(wscript.ScriptName, ".")(0)
'GET THE EXTERNAL DLL's AND ICON NAMES FROM THE .CS FILE
'#######################################################
Const OPEN_FILE_FOR_READING = 1
Set objInputFile = fso.OpenTextFile(name_ & ".cs", 1)
'READ EVERYTHING INTO AN ARRAY
'#############################
inputData = Split(objInputFile.ReadAll, vbNewline)
For each strData In inputData
if left(strData,7)="//+ref>" then
csc_references = csc_references & " /reference:" & trim(replace(strData,"//+ref>","")) & " "
end if
if left(strData,7)="//+res>" then
csc_resources = csc_resources & " /resource:" & trim(replace(strData,"//+res>","")) & " "
end if
if left(strData,7)="//+ico>" then
csc_icon = " /win32icon:" & trim(replace(strData,"//+ico>","")) & " "
end if
Next
objInputFile.Close
'COMPILE THE FILE
'################
oShell.ShellExecute "c:\windows\microsoft.net\framework\v3.5\csc.exe", "/warn:1 /target:exe " & csc_references & csc_resources & csc_icon & " " & name_ & ".cs", "", "runas", 2
WScript.Quit(0)
If you are using .NET Core 3.0
You can do this with the dotnet publish command with PublishSingleFile property:
dotnet publish -r win-x64 -c Release /p:PublishSingleFile=true
The only downside is you end up with a single EXE file with a huge size.
It's possible but not all that easy, to create a hybrid native/managed assembly in C#. Were you using C++ instead it'd be a lot easier, as the Visual C++ compiler can create hybrid assemblies as easily as anything else.
Unless you have a strict requirement to produce a hybrid assembly, I'd agree with MusiGenesis that this isn't really worth the trouble to do with C#. If you need to do it, perhaps look at moving to C++/CLI instead.
Generally you would need some form of post build tool to perform an assembly merge like you are describing. There is a free tool called Eazfuscator (eazfuscator.blogspot.com/) which is designed for bytecode mangling that also handles assembly merging. You can add this into a post build command line with Visual Studio to merge your assemblies, but your mileage will vary due to issues that will arise in any non trival assembly merging scenarios.
You could also check to see if the build make untility NANT has the ability to merge assemblies after building, but I am not familiar enough with NANT myself to say whether the functionality is built in or not.
There are also many many Visual Studio plugins that will perform assembly merging as part of building the application.
Alternatively if you don't need this to be done automatically, there are a number of tools like ILMerge that will merge .net assemblies into a single file.
The biggest issue I've had with merging assemblies is if they use any similar namespaces. Or worse, reference different versions of the same dll (my problems were generally with the NUnit dll files).
Try this:
https://github.com/ytk2128/dll-merger
here you can merge all 32 bit dlls/exe - even its not ".net" dlls - so for me better then ilmerge for example ...

ResourceManager.GetString fails in unit tests

I've created an assembly MyResources with two resx:
MyResources.resx
MyResources.en.resx
Inside the assembly I've added a handler-class containing a GetString-wrapper inside a ResHandler-class:
public string GetResString(string key)
{
return _manager.GetString(key, _culture);
}
_culture is simply a property which can be set from outside:
public void ChangeCulture(CultureInfo newCulture)
{
_culture = newCulture;
}
If I call this code from a lets say console-app, everything works fine:
var res = ResHandler.GetInstance(Guid.NewGuid().ToString());
//change the culture to "en"
res.ChangeCulture(new CultureInfo("en"));
Console.WriteLine(res.GetResString("TXT_0001"));
This code writes the english version to the console. However, if I call the exact same code from a unit-test-method, the contents of the MyResources.resx will appear. Whats wrong here? Are unit-tests unable to do this for some reason?
Beware that satellite assemblies are stored in a subdirectory of the directory that contains the EXE. Like "en-US" or "en" for English. Problem is, your test runs under a different EXE, mstest.exe and not your app.exe. It will therefore not find the satellite assembly. I think you can fix this by using Deployment in the test settings, not sure.

Embed .net dll in c# .exe [duplicate]

Is it possible to embed a pre-existing DLL into a compiled C# executable (so that you only have one file to distribute)? If it is possible, how would one go about doing it?
Normally, I'm cool with just leaving the DLLs outside and having the setup program handle everything, but there have been a couple of people at work who have asked me this and I honestly don't know.
I highly recommend to use Costura.Fody - by far the best and easiest way to embed resources in your assembly. It's available as NuGet package.
Install-Package Costura.Fody
After adding it to the project, it will automatically embed all references that are copied to the output directory into your main assembly. You might want to clean the embedded files by adding a target to your project:
Install-CleanReferencesTarget
You'll also be able to specify whether to include the pdb's, exclude certain assemblies, or extracting the assemblies on the fly. As far as I know, also unmanaged assemblies are supported.
Update
Currently, some people are trying to add support for DNX.
Update 2
For the lastest Fody version, you will need to have MSBuild 16 (so Visual Studio 2019). Fody version 4.2.1 will do MSBuild 15. (reference: Fody is only supported on MSBuild 16 and above. Current version: 15)
Just right-click your project in Visual Studio, choose Project Properties -> Resources -> Add Resource -> Add Existing File…
And include the code below to your App.xaml.cs or equivalent.
public App()
{
AppDomain.CurrentDomain.AssemblyResolve +=new ResolveEventHandler(CurrentDomain_AssemblyResolve);
}
System.Reflection.Assembly CurrentDomain_AssemblyResolve(object sender, ResolveEventArgs args)
{
string dllName = args.Name.Contains(',') ? args.Name.Substring(0, args.Name.IndexOf(',')) : args.Name.Replace(".dll","");
dllName = dllName.Replace(".", "_");
if (dllName.EndsWith("_resources")) return null;
System.Resources.ResourceManager rm = new System.Resources.ResourceManager(GetType().Namespace + ".Properties.Resources", System.Reflection.Assembly.GetExecutingAssembly());
byte[] bytes = (byte[])rm.GetObject(dllName);
return System.Reflection.Assembly.Load(bytes);
}
Here's my original blog post:
http://codeblog.larsholm.net/2011/06/embed-dlls-easily-in-a-net-assembly/
If they're actually managed assemblies, you can use ILMerge. For native DLLs, you'll have a bit more work to do.
See also: How can a C++ windows dll be merged into a C# application exe?
Yes, it is possible to merge .NET executables with libraries. There are multiple tools available to get the job done:
ILMerge is a utility that can be used to merge multiple .NET assemblies into a single assembly.
Mono mkbundle, packages an exe and all assemblies with libmono into a single binary package.
IL-Repack is a FLOSS alterantive to ILMerge, with some additional features.
In addition this can be combined with the Mono Linker, which does remove unused code and therefor makes the resulting assembly smaller.
Another possibility is to use .NETZ, which does not only allow compressing of an assembly, but also can pack the dlls straight into the exe. The difference to the above mentioned solutions is that .NETZ does not merge them, they stay separate assemblies but are packed into one package.
.NETZ is a open source tool that compresses and packs the Microsoft .NET Framework executable (EXE, DLL) files in order to make them smaller.
ILMerge can combine assemblies to one single assembly provided the assembly has only managed code. You can use the commandline app, or add reference to the exe and programmatically merge. For a GUI version there is Eazfuscator, and also .Netz both of which are free. Paid apps include BoxedApp and SmartAssembly.
If you have to merge assemblies with unmanaged code, I would suggest SmartAssembly. I never had hiccups with SmartAssembly but with all others. Here, it can embed the required dependencies as resources to your main exe.
You can do all this manually not needing to worry if assembly is managed or in mixed mode by embedding dll to your resources and then relying on AppDomain's Assembly ResolveHandler. This is a one stop solution by adopting the worst case, ie assemblies with unmanaged code.
static void Main()
{
AppDomain.CurrentDomain.AssemblyResolve += (sender, args) =>
{
string assemblyName = new AssemblyName(args.Name).Name;
if (assemblyName.EndsWith(".resources"))
return null;
string dllName = assemblyName + ".dll";
string dllFullPath = Path.Combine(GetMyApplicationSpecificPath(), dllName);
using (Stream s = Assembly.GetEntryAssembly().GetManifestResourceStream(typeof(Program).Namespace + ".Resources." + dllName))
{
byte[] data = new byte[stream.Length];
s.Read(data, 0, data.Length);
//or just byte[] data = new BinaryReader(s).ReadBytes((int)s.Length);
File.WriteAllBytes(dllFullPath, data);
}
return Assembly.LoadFrom(dllFullPath);
};
}
The key here is to write the bytes to a file and load from its location. To avoid chicken and egg problem, you have to ensure you declare the handler before accessing assembly and that you do not access the assembly members (or instantiate anything that has to deal with the assembly) inside the loading (assembly resolving) part. Also take care to ensure GetMyApplicationSpecificPath() is not any temp directory since temp files could be attempted to get erased by other programs or by yourself (not that it will get deleted while your program is accessing the dll, but at least its a nuisance. AppData is good location). Also note that you have to write the bytes each time, you cant load from location just 'cos the dll already resides there.
For managed dlls, you need not write bytes, but directly load from the location of the dll, or just read the bytes and load the assembly from memory. Like this or so:
using (Stream s = Assembly.GetEntryAssembly().GetManifestResourceStream(typeof(Program).Namespace + ".Resources." + dllName))
{
byte[] data = new byte[stream.Length];
s.Read(data, 0, data.Length);
return Assembly.Load(data);
}
//or just
return Assembly.LoadFrom(dllFullPath); //if location is known.
If the assembly is fully unmanaged, you can see this link or this as to how to load such dlls.
.NET Core 3.0 natively supports compiling to a single .exe
The feature is enabled by the usage of the following property in your project file (.csproj):
<PropertyGroup>
<PublishSingleFile>true</PublishSingleFile>
</PropertyGroup>
This is done without any external tool.
See my answer for this question for further details.
The excerpt by Jeffrey Richter is very good. In short, add the libraries as embedded resources and add a callback before anything else. Here is a version of the code (found in the comments of his page) that I put at the start of Main method for a console app (just make sure that any calls that use the libraries are in a different method to Main).
AppDomain.CurrentDomain.AssemblyResolve += (sender, bargs) =>
{
String dllName = new AssemblyName(bargs.Name).Name + ".dll";
var assem = Assembly.GetExecutingAssembly();
String resourceName = assem.GetManifestResourceNames().FirstOrDefault(rn => rn.EndsWith(dllName));
if (resourceName == null) return null; // Not found, maybe another handler will find it
using (var stream = assem.GetManifestResourceStream(resourceName))
{
Byte[] assemblyData = new Byte[stream.Length];
stream.Read(assemblyData, 0, assemblyData.Length);
return Assembly.Load(assemblyData);
}
};
To expand on #Bobby's asnwer above. You can edit your .csproj to use IL-Repack to automatically package all files into a single assembly when you build.
Install the nuget ILRepack.MSBuild.Task package with Install-Package ILRepack.MSBuild.Task
Edit the AfterBuild section of your .csproj
Here is a simple sample that merges ExampleAssemblyToMerge.dll into your project output.
<!-- ILRepack -->
<Target Name="AfterBuild" Condition="'$(Configuration)' == 'Release'">
<ItemGroup>
<InputAssemblies Include="$(OutputPath)\$(AssemblyName).exe" />
<InputAssemblies Include="$(OutputPath)\ExampleAssemblyToMerge.dll" />
</ItemGroup>
<ILRepack
Parallel="true"
Internalize="true"
InputAssemblies="#(InputAssemblies)"
TargetKind="Exe"
OutputFile="$(OutputPath)\$(AssemblyName).exe"
/>
</Target>
The following method DO NOT use external tools and AUTOMATICALLY include all needed DLL (no manual action required, everything done at compilation)
I read a lot of answer here saying to use ILMerge, ILRepack or Jeffrey Ritcher method but none of that worked with WPF applications nor was easy to use.
When you have a lot of DLL it can be hard to manually include the one you need in your exe. The best method i found was explained by Wegged here on StackOverflow
Copy pasted his answer here for clarity (all credit to Wegged)
1) Add this to your .csproj file:
<Target Name="AfterResolveReferences">
<ItemGroup>
<EmbeddedResource Include="#(ReferenceCopyLocalPaths)" Condition="'%(ReferenceCopyLocalPaths.Extension)' == '.dll'">
<LogicalName>%(ReferenceCopyLocalPaths.DestinationSubDirectory)%(ReferenceCopyLocalPaths.Filename)%(ReferenceCopyLocalPaths.Extension)</LogicalName>
</EmbeddedResource>
</ItemGroup>
</Target>
2) Make your Main Program.cs look like this:
[STAThreadAttribute]
public static void Main()
{
AppDomain.CurrentDomain.AssemblyResolve += OnResolveAssembly;
App.Main();
}
3) Add the OnResolveAssembly method:
private static Assembly OnResolveAssembly(object sender, ResolveEventArgs args)
{
Assembly executingAssembly = Assembly.GetExecutingAssembly();
AssemblyName assemblyName = new AssemblyName(args.Name);
var path = assemblyName.Name + ".dll";
if (assemblyName.CultureInfo.Equals(CultureInfo.InvariantCulture) == false) path = String.Format(#"{0}\{1}", assemblyName.CultureInfo, path);
using (Stream stream = executingAssembly.GetManifestResourceStream(path))
{
if (stream == null) return null;
var assemblyRawBytes = new byte[stream.Length];
stream.Read(assemblyRawBytes, 0, assemblyRawBytes.Length);
return Assembly.Load(assemblyRawBytes);
}
}
You could add the DLLs as embedded resources, and then have your program unpack them into the application directory on startup (after checking to see if they're there already).
Setup files are so easy to make, though, that I don't think this would be worth it.
EDIT: This technique would be easy with .NET assemblies. With non-.NET DLLs it would be a lot more work (you'd have to figure out where to unpack the files and register them and so on).
Another product that can handle this elegantly is SmartAssembly, at SmartAssembly.com. This product will, in addition to merging all dependencies into a single DLL, (optionally) obfuscate your code, remove extra meta-data to reduce the resulting file size, and can also actually optimize the IL to increase runtime performance.
There is also some kind of global exception handling/reporting feature it adds to your software (if desired) that could be useful. I believe it also has a command-line API so you can make it part of your build process.
Neither the ILMerge approach nor Lars Holm Jensen's handling the AssemblyResolve event will work for a plugin host. Say executable H loads assembly P dynamically and accesses it via interface IP defined in an separate assembly. To embed IP into H one shall need a little modification to Lars's code:
Dictionary<string, Assembly> loaded = new Dictionary<string,Assembly>();
AppDomain.CurrentDomain.AssemblyResolve += (sender, args) =>
{ Assembly resAssembly;
string dllName = args.Name.Contains(",") ? args.Name.Substring(0, args.Name.IndexOf(',')) : args.Name.Replace(".dll","");
dllName = dllName.Replace(".", "_");
if ( !loaded.ContainsKey( dllName ) )
{ if (dllName.EndsWith("_resources")) return null;
System.Resources.ResourceManager rm = new System.Resources.ResourceManager(GetType().Namespace + ".Properties.Resources", System.Reflection.Assembly.GetExecutingAssembly());
byte[] bytes = (byte[])rm.GetObject(dllName);
resAssembly = System.Reflection.Assembly.Load(bytes);
loaded.Add(dllName, resAssembly);
}
else
{ resAssembly = loaded[dllName]; }
return resAssembly;
};
The trick to handle repeated attempts to resolve the same assembly and return the existing one instead of creating a new instance.
EDIT:
Lest it spoil .NET's serialization, make sure to return null for all assemblies not embedded in yours, thereby defaulting to the standard behaviour. You can get a list of these libraries by:
static HashSet<string> IncludedAssemblies = new HashSet<string>();
string[] resources = System.Reflection.Assembly.GetExecutingAssembly().GetManifestResourceNames();
for(int i = 0; i < resources.Length; i++)
{ IncludedAssemblies.Add(resources[i]); }
and just return null if the passed assembly does not belong to IncludedAssemblies .
It may sound simplistic, but WinRar gives the option to compress a bunch of files to a self-extracting executable.
It has lots of configurable options: final icon, extract files to given path, file to execute after extraction, custom logo/texts for popup shown during extraction, no popup window at all, license agreement text, etc.
May be useful in some cases.
I use the csc.exe compiler called from a .vbs script.
In your xyz.cs script, add the following lines after the directives (my example is for the Renci SSH):
using System;
using Renci;//FOR THE SSH
using System.Net;//FOR THE ADDRESS TRANSLATION
using System.Reflection;//FOR THE Assembly
//+ref>"C:\Program Files (x86)\Microsoft\ILMerge\Renci.SshNet.dll"
//+res>"C:\Program Files (x86)\Microsoft\ILMerge\Renci.SshNet.dll"
//+ico>"C:\Program Files (x86)\Microsoft CAPICOM 2.1.0.2 SDK\Samples\c_sharp\xmldsig\resources\Traffic.ico"
The ref, res and ico tags will be picked up by the .vbs script below to form the csc command.
Then add the assembly resolver caller in the Main:
public static void Main(string[] args)
{
AppDomain.CurrentDomain.AssemblyResolve += new ResolveEventHandler(CurrentDomain_AssemblyResolve);
.
...and add the resolver itself somewhere in the class:
static Assembly CurrentDomain_AssemblyResolve(object sender, ResolveEventArgs args)
{
String resourceName = new AssemblyName(args.Name).Name + ".dll";
using (var stream = Assembly.GetExecutingAssembly().GetManifestResourceStream(resourceName))
{
Byte[] assemblyData = new Byte[stream.Length];
stream.Read(assemblyData, 0, assemblyData.Length);
return Assembly.Load(assemblyData);
}
}
I name the vbs script to match the .cs filename (e.g. ssh.vbs looks for ssh.cs); this makes running the script numerous times a lot easier, but if you aren't an idiot like me then a generic script could pick up the target .cs file from a drag-and-drop:
Dim name_,oShell,fso
Set oShell = CreateObject("Shell.Application")
Set fso = CreateObject("Scripting.fileSystemObject")
'TAKE THE VBS SCRIPT NAME AS THE TARGET FILE NAME
'################################################
name_ = Split(wscript.ScriptName, ".")(0)
'GET THE EXTERNAL DLL's AND ICON NAMES FROM THE .CS FILE
'#######################################################
Const OPEN_FILE_FOR_READING = 1
Set objInputFile = fso.OpenTextFile(name_ & ".cs", 1)
'READ EVERYTHING INTO AN ARRAY
'#############################
inputData = Split(objInputFile.ReadAll, vbNewline)
For each strData In inputData
if left(strData,7)="//+ref>" then
csc_references = csc_references & " /reference:" & trim(replace(strData,"//+ref>","")) & " "
end if
if left(strData,7)="//+res>" then
csc_resources = csc_resources & " /resource:" & trim(replace(strData,"//+res>","")) & " "
end if
if left(strData,7)="//+ico>" then
csc_icon = " /win32icon:" & trim(replace(strData,"//+ico>","")) & " "
end if
Next
objInputFile.Close
'COMPILE THE FILE
'################
oShell.ShellExecute "c:\windows\microsoft.net\framework\v3.5\csc.exe", "/warn:1 /target:exe " & csc_references & csc_resources & csc_icon & " " & name_ & ".cs", "", "runas", 2
WScript.Quit(0)
If you are using .NET Core 3.0
You can do this with the dotnet publish command with PublishSingleFile property:
dotnet publish -r win-x64 -c Release /p:PublishSingleFile=true
The only downside is you end up with a single EXE file with a huge size.
It's possible but not all that easy, to create a hybrid native/managed assembly in C#. Were you using C++ instead it'd be a lot easier, as the Visual C++ compiler can create hybrid assemblies as easily as anything else.
Unless you have a strict requirement to produce a hybrid assembly, I'd agree with MusiGenesis that this isn't really worth the trouble to do with C#. If you need to do it, perhaps look at moving to C++/CLI instead.
Generally you would need some form of post build tool to perform an assembly merge like you are describing. There is a free tool called Eazfuscator (eazfuscator.blogspot.com/) which is designed for bytecode mangling that also handles assembly merging. You can add this into a post build command line with Visual Studio to merge your assemblies, but your mileage will vary due to issues that will arise in any non trival assembly merging scenarios.
You could also check to see if the build make untility NANT has the ability to merge assemblies after building, but I am not familiar enough with NANT myself to say whether the functionality is built in or not.
There are also many many Visual Studio plugins that will perform assembly merging as part of building the application.
Alternatively if you don't need this to be done automatically, there are a number of tools like ILMerge that will merge .net assemblies into a single file.
The biggest issue I've had with merging assemblies is if they use any similar namespaces. Or worse, reference different versions of the same dll (my problems were generally with the NUnit dll files).
Try this:
https://github.com/ytk2128/dll-merger
here you can merge all 32 bit dlls/exe - even its not ".net" dlls - so for me better then ilmerge for example ...

Get Assembly name at compile time in Visual Studio

Is there a way to find out the assembly name at design-time (i.e. not using reflection or runtime APIs such as System.Reflection.Assembly.GetEntryAssembly) from within Visual Studio?
The scenario requires a tool to get the assembly name that a Visual Studio project will eventually compile into.
This is like parsing the AssemblyName property of the .csproj - I am wondering if there are any APIs that can give this information reliably.
Please do not respond back with runtime APIs that use reflection - there is no assembly file present at the time I need the assembly name - just the metadata of the assembly in the csproj file.
if you are calling the tool via a post/pre-build event, this data is very easy to access.
Just go to the "project properties->Build Events" tab, then select either "edit pre-build" or "edit post-build", depending on when you want the tool to run. This should bring up an edit window with the ever helpful "Macros >>" button. Press this and you will be given a heap of macros to use and should be pretty much everything you need.
The "API" you could use is LINQ to XML after all the .csproj file is just xml. (and you can get the location of the .csproj file if you need from the solution file which for some reason is not XML but can be easily parsed)
You can use "TargetName" available in Macros for Post-build events. It will give you the assembly name for your project.
After a quick run through MSDN I found this article which might be a good start for some further research:
Accessing Project Type Specific Project, Project Item, and Configuration Properties
I think you will need to write some regular expression that will give you the value of "AssemblyTitle" attribute in AssemblyInfo.cs file.
Something like this:
public class Assembly
{
public static string GetTitle (string fileFullName) {
var contents = File.ReadAllText (fileFullName); //may raise exception if file doesn't exist
//regex string is: AssemblyTitle\x20*\(\x20*"(?<Title>.*)"\x20*\)
//loading from settings because it is annoying to type it in editor
var reg = new Regex (Settings.Default.Expression);
var match = reg.Match (contents);
var titleGroup = match.Groups["Title"];
return (match.Success && titleGroup.Success) ? titleGroup.Value : String.Empty;
}
}

Categories

Resources