Controlled exception handling in dynamic invocations with variable numbers of parameters - c#

In a thread resolved yesterday, #hvd showed me how to get "control" over exception handling by .Invoke when dealing with delegates of unknown type (an issue seen in libraries like Isis2, where the end-user provides polymorphic event handlers and the library type-matches to decide which to call). Hvd's suggestion revolved around knowing how many arguments the upcall handler received and then using that information to construct a generic of the right type, which allowed him to construct a dynamic object and invoke it. The sequence yielded full control over exception handling.
The core of his suggestion was that Isis2 might consider doing upcalls this way:
MethodInfo mi = typeof(Program).GetMethod("Foo", BindingFlags.Static | BindingFlags.NonPublic);
Delegate del = Delegate.CreateDelegate(typeof(Action<,>).MakeGenericType(mi.GetParameters().Select(p => p.ParameterType).ToArray()), mi);
((dynamic)del).Invoke(arg0, arg1);
Here's my question: Can anyone suggest a way to do this same thing that works for an arbitrary number of arguments? Clearly I can do a switch statement and write code for the case of 1 arg, 2, etc. But is there a way to do it where mi.GetParameters().Length tells us how many arguments?
As a capsule summary for those who don't want to click the link, the core issue is this: when doing these kinds of dynamic upcalls, the end-user (who registered the method being called) may throw an exception due to bugs. Turns out that when not running under Visual Studio -- when running directly in the CLR -- the C# .Invoke will catch and rethrow exceptions, packaging them as inner exceptions inside a InvocationTargetException. This unwinds the stack and causes the user to perceive the bug as having been some kind of problem with the code that called .Invoke (e.g. with MY code). This is why the C# reference manual argues that catch/rethrow is poor coding practice: one should only catch exceptions that one plans to handle...
hvd explained that this was basically because .Invoke had no clue as to the number or types of the arguments and in that mode, apparently, catchs and rethrows exceptions for some reason. His workaround essentially pins down the number of arguments (the generic in the example: Action<,>) and this apparently is enough so that .Invoke doesn't do a "universal catch". But to use his example for arbitrary code, I need a case for each possible number of parameters. Doable (after all, who would ever want more than 16?) but ugly!
Hence today's challenge: Improve that code so that with a similar 3 line snippet of C# it works no matter how many parameters. Of course the resulting delegate needs to be callable too, presumably with a vector of objects, one per argument...
PS: One reason for pessimism: Action itself comes in 16 forms, with 1 to 16 arguments. So to me this suggests that the C# developers didn't see a more general way to do it, and ended up with the version that would correspond to me using a switch statement (and I guess the switch would have cases for 0 to 16 arguments, since I would need an Action<...> with N type arguments to handle N user-supplied arguments!)

I don't want to leave this open forever, so I've done what I could to understand the core issue, including downloading the code for .Invoke in Mono. As far as I can tell, the original problem is simply due to an optimization that favors faster invocations at the cost of catching exceptions this way when a dynamic Invoke is done on an object with an argument vector. The code for a dynamic delegate created using the generic template simply doesn't have this catch in it.
Not a great answer but without access to the .NET implementation of Invoke, it apparently won't be possible to give a better one.

Related

Can the C# compiler throw an error or warning if a certain method is called in a loop

Often times a developer on my team writes code in a loop that makes a call that is relatively slow (i.e. database access or web service call or other slow method). This is a super common mistake.
Yes, we practice code reviews, and we try to catch these and fix them before merging. However, failing early is better, right?
So is there a way to catch this mistake via the compiler?
Example:
Imagine this method
public ReturnObject SlowMethod(Something thing)
{
// method work
}
Below the method is called in a loop, which is a mistake.
public ReturnObject Call(IEnumerable<Something> things)
{
foreach(var thing in Things)
SlowMethod(thing); // Should throw compiler error or warning in a loop
}
Is there any way to decorate the above SlowMethod() with an attribute or compiler statement so that it would complain if used in a loop?
No, there is nothing in regular C# to prevent a method being used in a loop.
Your options:
discourage usage in a loop by providing easier to use alternatives. Providing second (or only) method that deals with collections will likely discourage one from writing calls in a loop enough so it is no longer a major concern.
try to write your own code analysis rule (stating tutorial - https://learn.microsoft.com/en-us/dotnet/csharp/roslyn-sdk/tutorials/how-to-write-csharp-analyzer-code-fix)
add run-time protection to the method if it is called more often than you'd like.
Obviously it makes sense to invoke those slow methods in a loop - you're trying to put work into preventing that, but that's putting work into something fundamentally negative. Why not do something positive instead? Obviously, you've provided an API that's convenient to use in a loop. So, provide some alternatives that are easier to use correctly where formerly an incorrect use in a loop would take place, like:
an iterable-based API that would make the loop implicit, to remove some of the latency since you'd have a full view of what will be iterated, and can hide the latency appropriately,
an async API that won't block the thread, with example code showing how to use it in the typical situations you've encountered thus far; remember that an API that's too hard to use correctly won't get used!
a lowest-common-denominator API: split the methods into a requester and a result provider, so that there'd naturally be two loops: one to submit all the requests, another to collect and process the results (I dislike this approach, since it doesn't make the code any nicer)

Should I throw on null parameters in private/internal methods?

I'm writing a library that has several public classes and methods, as well as several private or internal classes and methods that the library itself uses.
In the public methods I have a null check and a throw like this:
public int DoSomething(int number)
{
if (number == null)
{
throw new ArgumentNullException(nameof(number));
}
}
But then this got me thinking, to what level should I be adding parameter null checks to methods? Do I also start adding them to private methods? Should I only do it for public methods?
Ultimately, there isn't a uniform consensus on this. So instead of giving a yes or no answer, I'll try to list the considerations for making this decision:
Null checks bloat your code. If your procedures are concise, the null guards at the beginning of them may form a significant part of the overall size of the procedure, without expressing the purpose or behaviour of that procedure.
Null checks expressively state a precondition. If a method is going to fail when one of the values is null, having a null check at the top is a good way to demonstrate this to a casual reader without them having to hunt for where it's dereferenced. To improve this, people often use helper methods with names like Guard.AgainstNull, instead of having to write the check each time.
Checks in private methods are untestable. By introducing a branch in your code which you have no way of fully traversing, you make it impossible to fully test that method. This conflicts with the point of view that tests document the behaviour of a class, and that that class's code exists to provide that behaviour.
The severity of letting a null through depends on the situation. Often, if a null does get into the method, it'll be dereferenced a few lines later and you'll get a NullReferenceException. This really isn't much less clear than throwing an ArgumentNullException. On the other hand, if that reference is passed around quite a bit before being dereferenced, or if throwing an NRE will leave things in a messy state, then throwing early is much more important.
Some libraries, like .NET's Code Contracts, allow a degree of static analysis, which can add an extra benefit to your checks.
If you're working on a project with others, there may be existing team or project standards covering this.
If you're not a library developer, don't be defensive in your code
Write unit tests instead
In fact, even if you're developing a library, throwing is most of the time: BAD
1. Testing null on int must never be done in c# :
It raises a warning CS4072, because it's always false.
2. Throwing an Exception means it's exceptional: abnormal and rare.
It should never raise in production code. Especially because exception stack trace traversal can be a cpu intensive task. And you'll never be sure where the exception will be caught, if it's caught and logged or just simply silently ignored (after killing one of your background thread) because you don't control the user code. There is no "checked exception" in c# (like in java) which means you never know - if it's not well documented - what exceptions a given method could raise. By the way, that kind of documentation must be kept in sync with the code which is not always easy to do (increase maintenance costs).
3. Exceptions increases maintenance costs.
As exceptions are thrown at runtime and under certain conditions, they could be detected really late in the development process. As you may already know, the later an error is detected in the development process, the more expensive the fix will be. I've even seen exception raising code made its way to production code and not raise for a week, only for raising every day hereafter (killing the production. oops!).
4. Throwing on invalid input means you don't control input.
It's the case for public methods of libraries. However if you can check it at compile time with another type (for example a non nullable type like int) then it's the way to go. And of course, as they are public, it's their responsibility to check for input.
Imagine the user who uses what he thinks as valid data and then by a side effect, a method deep in the stack trace trows a ArgumentNullException.
What will be his reaction?
How can he cope with that?
Will it be easy for you to provide an explanation message ?
5. Private and internal methods should never ever throw exceptions related to their input.
You may throw exceptions in your code because an external component (maybe Database, a file or else) is misbehaving and you can't guarantee that your library will continue to run correctly in its current state.
Making a method public doesn't mean that it should (only that it can) be called from outside of your library (Look at Public versus Published from Martin Fowler). Use IOC, interfaces, factories and publish only what's needed by the user, while making the whole library classes available for unit testing. (Or you can use the InternalsVisibleTo mechanism).
6. Throwing exceptions without any explanation message is making fun of the user
No need to remind what feelings one can have when a tool is broken, without having any clue on how to fix it. Yes, I know. You comes to SO and ask a question...
7. Invalid input means it breaks your code
If your code can produce a valid output with the value then it's not invalid and your code should manage it. Add a unit test to test this value.
8. Think in user terms:
Do you like when a library you use throws exceptions for smashing your face ? Like: "Hey, it's invalid, you should have known that!"
Even if from your point of view - with your knowledge of the library internals, the input is invalid, how you can explain it to the user (be kind and polite):
Clear documentation (in Xml doc and an architecture summary may help).
Publish the xml doc with the library.
Clear error explanation in the exception if any.
Give the choice :
Look at Dictionary class, what do you prefer? what call do you think is the fastest ? What call can raises exception ?
Dictionary<string, string> dictionary = new Dictionary<string, string>();
string res;
dictionary.TryGetValue("key", out res);
or
var other = dictionary["key"];
9. Why not using Code Contracts ?
It's an elegant way to avoid the ugly if then throw and isolate the contract from the implementation, permitting to reuse the contract for different implementations at the same time. You can even publish the contract to your library user to further explain him how to use the library.
As a conclusion, even if you can easily use throw, even if you can experience exceptions raising when you use .Net Framework, that doesn't mean it could be used without caution.
Here are my opinions:
General Cases
Generally speaking, it is better to check for any invalid inputs before you process them in a method for robustness reason - be it private, protected, internal, protected internal, or public methods. Although there are some performance costs paid for this approach, in most cases, this is worth doing rather than paying more time to debug and to patch the codes later.
Strictly Speaking, however...
Strictly speaking, however, it is not always needed to do so. Some methods, usually private ones, can be left without any input checking provided that you have full guarantee that there isn't single call for the method with invalid inputs. This may give you some performance benefit, especially if the method is called frequently to do some basic computation/action. For such cases, doing checking for input validity may impair the performance significantly.
Public Methods
Now the public method is trickier. This is because, more strictly speaking, although the access modifier alone can tell who can use the methods, it cannot tell who will use the methods. More over, it also cannot tell how the methods are going to be used (that is, whether the methods are going to be called with invalid inputs in the given scopes or not).
The Ultimate Determining Factor
Although access modifiers for methods in the code can hint on how to use the methods, ultimately, it is humans who will use the methods, and it is up to the humans how they are going to use them and with what inputs. Thus, in some rare cases, it is possible to have a public method which is only called in some private scope and in that private scope, the inputs for the public methods are guaranteed to be valid before the public method is called.
In such cases then, even the access modifier is public, there isn't any real need to check for invalid inputs, except for robust design reason. And why is this so? Because there are humans who know completely when and how the methods shall be called!
Here we can see, there is no guarantee either that public method always require checking for invalid inputs. And if this is true for public methods, it must also be true for protected, internal, protected internal, and private methods as well.
Conclusions
So, in conclusion, we can say a couple of things to help us making decisions:
Generally, it is better to have checks for any invalid inputs for robust design reason, provided that performance is not at stake. This is true for any type of access modifiers.
The invalid inputs check could be skipped if performance gain could be significantly improved by doing so, provided that it can also be guaranteed that the scope where the methods are called are always giving the methods valid inputs.
private method is usually where we skip such checking, but there is no guarantee that we cannot do that for public method as well
Humans are the ones who ultimately use the methods. Regardless of how the access modifiers can hint the use of the methods, how the methods are actually used and called depend on the coders. Thus, we can only say about general/good practice, without restricting it to be the only way of doing it.
The public interface of your library deserves tight checking of preconditions, because you should expect the users of your library to make mistakes and violate the preconditions by accident. Help them understand what is going on in your library.
The private methods in your library do not require such runtime checking because you call them yourself. You are in full control of what you are passing. If you want to add checks because you are afraid to mess up, then use asserts. They will catch your own mistakes, but do not impede performance during runtime.
Though you tagged language-agnostic, it seems to me that it probably doesn't exist a general response.
Notably, in your example you hinted the argument: so with a language accepting hinting it'll fire an error as soon as entering the function, before you can take any action.
In such a case, the only solution is to have checked the argument before calling your function... but since you're writing a library, that cannot have sense!
In the other hand, with no hinting, it remains realistic to check inside the function.
So at this step of the reflexion, I'd already suggest to give up hinting.
Now let's go back to your precise question: to what level should it be checked?
For a given data piece it'd happen only at the highest level where it can "enter" (may be several occurrences for the same data), so logically it'd concern only public methods.
That's for the theory. But maybe you plan a huge, complex, library so it might be not easy to ensure having certainty about registering all "entry points".
In this case, I'd suggest the opposite: consider to merely apply your controls everywhere, then only omit it where you clearly see it's duplicate.
Hope this helps.
In my opinion you should ALWAYS check for "invalid" data - independent whether it is a private or public method.
Looked from the other way... why should you be able to work with something invalid just because the method is private? Doesn't make sense, right? Always try to use defensive programming and you will be happier in life ;-)
This is a question of preference. But consider instead why are you checking for null or rather checking for valid input. It's probably because you want to let the consumer of your library to know when he/she is using it incorrectly.
Let's imagine that we have implemented a class PersonList in a library. This list can only contain objects of the type Person. We have also on our PersonList implemented some operations and therefore we do not want it to contain any null values.
Consider the two following implementations of the Add method for this list:
Implementation 1
public void Add(Person item)
{
if(_size == _items.Length)
{
EnsureCapacity(_size + 1);
}
_items[_size++] = item;
}
Implementation 2
public void Add(Person item)
{
if(item == null)
{
throw new ArgumentNullException("Cannot add null to PersonList");
}
if(_size == _items.Length)
{
EnsureCapacity(_size + 1);
}
_items[_size++] = item;
}
Let's say we go with implementation 1
Null values can now be added in the list
All opoerations implemented on the list will have to handle theese null values
If we should check for and throw a exception in our operation, consumer will be notified about the exception when he/she is calling one of the operations and it will at this state be very unclear what he/she has done wrong (it just wouldn't make any sense to go for this approach).
If we instead choose to go with implementation 2, we make sure input to our library has the quality that we require for our class to operate on it. This means we only need to handle this here and then we can forget about it while we are implementing our other operations.
It will also become more clear for the consumer that he/she is using the library in the wrong way when he/she gets a ArgumentNullException on .Add instead of in .Sort or similair.
To sum it up my preference is to check for valid argument when it is being supplied by the consumer and it's not being handled by the private/internal methods of the library. This basically means we have to check arguments in constructors/methods that are public and takes parameters. Our private/internal methods can only be called from our public ones and they have allready checked the input which means we are good to go!
Using Code Contracts should also be considered when verifying input.

Best practice for null testing [duplicate]

To avoid all standard-answers I could have Googled on, I will provide an example you all can attack at will.
C# and Java (and too many others) have with plenty of types some of ‘overflow’ behaviour I don’t like at all (e.g type.MaxValue + type.SmallestValue == type.MinValue for example : int.MaxValue + 1 == int.MinValue).
But, seen my vicious nature, I’ll add some insult to this injury by expanding this behaviour to, let’s say an Overridden DateTime type. (I know DateTime is sealed in .NET, but for the sake of this example, I’m using a pseudo language that is exactly like C#, except for the fact that DateTime isn’t sealed).
The overridden Add method:
/// <summary>
/// Increments this date with a timespan, but loops when
/// the maximum value for datetime is exceeded.
/// </summary>
/// <param name="ts">The timespan to (try to) add</param>
/// <returns>The Date, incremented with the given timespan.
/// If DateTime.MaxValue is exceeded, the sum wil 'overflow' and
/// continue from DateTime.MinValue.
/// </returns>
public DateTime override Add(TimeSpan ts)
{
try
{
return base.Add(ts);
}
catch (ArgumentOutOfRangeException nb)
{
// calculate how much the MaxValue is exceeded
// regular program flow
TimeSpan saldo = ts - (base.MaxValue - this);
return DateTime.MinValue.Add(saldo)
}
catch(Exception anyOther)
{
// 'real' exception handling.
}
}
Of course an if could solve this just as easy, but the fact remains that I just fail to see why you couldn’t use exceptions (logically that is, I can see that when performance is an issue that in certain cases exceptions should be avoided).
I think in many cases they are more clear than if-structures and don’t break any contract the method is making.
IMHO the “Never use them for regular program flow” reaction everybody seems to have is not that well underbuild as the strength of that reaction can justify.
Or am I mistaken?
I've read other posts, dealing with all kind of special cases, but my point is there's nothing wrong with it if you are both:
Clear
Honour the contract of your method
Shoot me.
Have you ever tried to debug a program raising five exceptions per second in the normal course of operation ?
I have.
The program was quite complex (it was a distributed calculation server), and a slight modification at one side of the program could easily break something in a totally different place.
I wish I could just have launched the program and wait for exceptions to occur, but there were around 200 exceptions during the start-up in the normal course of operations
My point : if you use exceptions for normal situations, how do you locate unusual (ie exceptional) situations ?
Of course, there are other strong reasons not to use exceptions too much, especially performance-wise
Exceptions are basically non-local goto statements with all the consequences of the latter. Using exceptions for flow control violates a principle of least astonishment, make programs hard to read (remember that programs are written for programmers first).
Moreover, this is not what compiler vendors expect. They expect exceptions to be thrown rarely, and they usually let the throw code be quite inefficient. Throwing exceptions is one of the most expensive operations in .NET.
However, some languages (notably Python) use exceptions as flow-control constructs. For example, iterators raise a StopIteration exception if there are no further items. Even standard language constructs (such as for) rely on this.
My rule of thumb is:
If you can do anything to recover from an error, catch exceptions
If the error is a very common one (eg. user tried to log in with the wrong password), use returnvalues
If you can't do anything to recover from an error, leave it uncaught (Or catch it in your main-catcher to do some semi-graceful shutdown of the application)
The problem I see with exceptions is from a purely syntax point of view (I'm pretty sure the perfomance overhead is minimal). I don't like try-blocks all over the place.
Take this example:
try
{
DoSomeMethod(); //Can throw Exception1
DoSomeOtherMethod(); //Can throw Exception1 and Exception2
}
catch(Exception1)
{
//Okay something messed up, but is it SomeMethod or SomeOtherMethod?
}
.. Another example could be when you need to assign something to a handle using a factory, and that factory could throw an exception:
Class1 myInstance;
try
{
myInstance = Class1Factory.Build();
}
catch(SomeException)
{
// Couldn't instantiate class, do something else..
}
myInstance.BestMethodEver(); // Will throw a compile-time error, saying that myInstance is uninitalized, which it potentially is.. :(
Soo, personally, I think you should keep exceptions for rare error-conditions (out of memory etc.) and use returnvalues (valueclasses, structs or enums) to do your error checking instead.
Hope I understood your question correct :)
A first reaction to a lot of answers :
you're writing for the programmers and the principle of least astonishment
Of course! But an if just isnot more clear all the time.
It shouldn't be astonishing eg : divide (1/x) catch (divisionByZero) is more clear than any if to me (at Conrad and others) . The fact this kind of programming isn't expected is purely conventional, and indeed, still relevant. Maybe in my example an if would be clearer.
But DivisionByZero and FileNotFound for that matter are clearer than ifs.
Of course if it's less performant and needed a zillion time per sec, you should of course avoid it, but still i haven't read any good reason to avoid the overal design.
As far as the principle of least astonishment goes : there's a danger of circular reasoning here : suppose a whole community uses a bad design, this design will become expected! Therefore the principle cannot be a grail and should be concidered carefully.
exceptions for normal situations, how do you locate unusual (ie exceptional) situations ?
In many reactions sth. like this shines trough. Just catch them, no? Your method should be clear, well documented, and hounouring it's contract. I don't get that question I must admit.
Debugging on all exceptions : the same, that's just done sometimes because the design not to use exceptions is common. My question was : why is it common in the first place?
Before exceptions, in C, there were setjmp and longjmp that could be used to accomplish a similar unrolling of the stack frame.
Then the same construct was given a name: "Exception". And most of the answers rely on the meaning of this name to argue about its usage, claiming that exceptions are intended to be used in exceptional conditions. That was never the intent in the original longjmp. There were just situations where you needed to break control flow across many stack frames.
Exceptions are slightly more general in that you can use them within the same stack frame too. This raises analogies with goto that I believe are wrong. Gotos are a tightly coupled pair (and so are setjmp and longjmp). Exceptions follow a loosely coupled publish/subscribe that is much cleaner! Therefore using them within the same stack frame is hardly the same thing as using gotos.
The third source of confusion relates to whether they are checked or unchecked exceptions. Of course, unchecked exceptions seem particularly awful to use for control flow and perhaps a lot of other things.
Checked exceptions however are great for control flow, once you get over all the Victorian hangups and live a little.
My favorite usage is a sequence of throw new Success() in a long fragment of code that tries one thing after the other until it finds what it is looking for. Each thing -- each piece of logic -- may have arbritrary nesting so break's are out as also any kind of condition tests. The if-else pattern is brittle. If I edit out an else or mess up the syntax in some other way, then there is a hairy bug.
Using throw new Success() linearizes the code flow. I use locally defined Success classes -- checked of course -- so that if I forget to catch it the code won't compile. And I don't catch another method's Successes.
Sometimes my code checks for one thing after the other and only succeeds if everything is OK. In this case I have a similar linearization using throw new Failure().
Using a separate function messes with the natural level of compartmentalization. So the return solution is not optimal. I prefer to have a page or two of code in one place for cognitive reasons. I don't believe in ultra-finely divided code.
What JVMs or compilers do is less relevant to me unless there is a hotspot. I cannot believe there is any fundamental reason for compilers to not detect locally thrown and caught Exceptions and simply treat them as very efficient gotos at the machine code level.
As far as using them across functions for control flow -- i. e. for common cases rather than exceptional ones -- I cannot see how they would be less efficient than multiple break, condition tests, returns to wade through three stack frames as opposed to just restore the stack pointer.
I personally do not use the pattern across stack frames and I can see how it would require design sophistication to do so elegantly. But used sparingly it should be fine.
Lastly, regarding surprising virgin programmers, it is not a compelling reason. If you gently introduce them to the practice, they will learn to love it. I remember C++ used to surprise and scare the heck out of C programmers.
The standard anwser is that exceptions are not regular and should be used in exceptional cases.
One reason, which is important to me, is that when I read a try-catch control structure in a software I maintain or debug, I try to find out why the original coder used an exception handling instead of an if-else structure. And I expect to find a good answer.
Remember that you write code not only for the computer but also for other coders. There is a semantic associated to an exception handler that you cannot throw away just because the machine doesn't mind.
Josh Bloch deals with this topic extensively in Effective Java. His suggestions are illuminating and should apply to .NET as well (except for the details).
In particular, exceptions should be used for exceptional circumstances. The reasons for this are usability-related, mainly. For a given method to be maximally usable, its input and output conditions should be maximally constrained.
For example, the second method is easier to use than the first:
/**
* Adds two positive numbers.
*
* #param addend1 greater than zero
* #param addend2 greater than zero
* #throws AdditionException if addend1 or addend2 is less than or equal to zero
*/
int addPositiveNumbers(int addend1, int addend2) throws AdditionException{
if( addend1 <= 0 ){
throw new AdditionException("addend1 is <= 0");
}
else if( addend2 <= 0 ){
throw new AdditionException("addend2 is <= 0");
}
return addend1 + addend2;
}
/**
* Adds two positive numbers.
*
* #param addend1 greater than zero
* #param addend2 greater than zero
*/
public int addPositiveNumbers(int addend1, int addend2) {
if( addend1 <= 0 ){
throw new IllegalArgumentException("addend1 is <= 0");
}
else if( addend2 <= 0 ){
throw new IllegalArgumentException("addend2 is <= 0");
}
return addend1 + addend2;
}
In either case, you need to check to make sure that the caller is using your API appropriately. But in the second case, you require it (implicitly). The soft Exceptions will still be thrown if the user didn't read the javadoc, but:
You don't need to document it.
You don't need to test for it (depending upon how aggresive your
unit testing strategy is).
You don't require the caller to handle three use cases.
The ground-level point is that Exceptions should not be used as return codes, largely because you've complicated not only YOUR API, but the caller's API as well.
Doing the right thing comes at a cost, of course. The cost is that everyone needs to understand that they need to read and follow the documentation. Hopefully that is the case anyway.
How about performance? While load testing a .NET web app we topped out at 100 simulated users per web server until we fixed a commonly-occuring exception and that number increased to 500 users.
I think that you can use Exceptions for flow control. There is, however, a flipside of this technique. Creating Exceptions is a costly thing, because they have to create a stack trace. So if you want to use Exceptions more often than for just signalling an exceptional situation you have to make sure that building the stack traces doesn't negatively influence your performance.
The best way to cut down the cost of creating exceptions is to override the fillInStackTrace() method like this:
public Throwable fillInStackTrace() { return this; }
Such an exception will have no stacktraces filled in.
Here are best practices I described in my blog post:
Throw an exception to state an unexpected situation in your software.
Use return values for input validation.
If you know how to deal with exceptions a library throws, catch them at the lowest level possible.
If you have an unexpected exception, discard current operation completely. Don’t pretend you know how to deal with them.
I don't really see how you're controlling program flow in the code you cited. You'll never see another exception besides the ArgumentOutOfRange exception. (So your second catch clause will never be hit). All you're doing is using an extremely costly throw to mimic an if statement.
Also you aren't performing the more sinister of operations where you just throw an exception purely for it to be caught somewhere else to perform flow control. You're actually handling an exceptional case.
Apart from the reasons stated, one reason not to use exceptions for flow control is that it can greatly complicate the debugging process.
For example, when I'm trying to track down a bug in VS I'll typically turn on "break on all exceptions". If you're using exceptions for flow control then I'm going to be breaking in the debugger on a regular basis and will have to keep ignoring these non-exceptional exceptions until I get to the real problem. This is likely to drive someone mad!!
Lets assume you have a method that does some calculations. There are many input parameters it has to validate, then to return a number greater then 0.
Using return values to signal validation error, it's simple: if method returned a number lesser then 0, an error occured. How to tell then which parameter didn't validate?
I remember from my C days a lot of functions returned error codes like this:
-1 - x lesser then MinX
-2 - x greater then MaxX
-3 - y lesser then MinY
etc.
Is it really less readable then throwing and catching an exception?
Because the code is hard to read, you may have troubles debugging it, you will introduce new bugs when fixing bugs after a long time, it is more expensive in terms of resources and time, and it annoys you if you are debugging your code and the debugger halts on the occurence of every exception ;)
If you are using exception handlers for control flow, you are being too general and lazy. As someone else mentioned, you know something happened if you are handling processing in the handler, but what exactly? Essentially you are using the exception for an else statement, if you are using it for control flow.
If you don't know what possible state could occur, then you can use an exception handler for unexpected states, for example when you have to use a third-party library, or you have to catch everything in the UI to show a nice error message and log the exception.
However, if you do know what might go wrong, and you don't put an if statement or something to check for it, then you are just being lazy. Allowing the exception handler to be the catch-all for stuff you know could happen is lazy, and it will come back to haunt you later, because you will be trying to fix a situation in your exception handler based on a possibly false assumption.
If you put logic in your exception handler to determine what exactly happened, then you would be quite stupid for not putting that logic inside the try block.
Exception handlers are the last resort, for when you run out of ideas/ways to stop something from going wrong, or things are beyond your ability to control. Like, the server is down and times out and you can't prevent that exception from being thrown.
Finally, having all the checks done up front shows what you know or expect will occur and makes it explicit. Code should be clear in intent. What would you rather read?
You can use a hammer's claw to turn a screw, just like you can use exceptions for control flow. That doesn't mean it is the intended usage of the feature. The if statement expresses conditions, whose intended usage is controlling flow.
If you are using a feature in an unintended way while choosing to not use the feature designed for that purpose, there will be an associated cost. In this case, clarity and performance suffer for no real added value. What does using exceptions buy you over the widely-accepted if statement?
Said another way: just because you can doesn't mean you should.
As others have mentioned numerously, the principle of least astonishment will forbid that you use exceptions excessively for control flow only purposes. On the other hand, no rule is 100% correct, and there are always those cases where an exception is "just the right tool" - much like goto itself, by the way, which ships in the form of break and continue in languages like Java, which are often the perfect way to jump out of heavily nested loops, which aren't always avoidable.
The following blog post explains a rather complex but also rather interesting use-case for a non-local ControlFlowException:
http://blog.jooq.org/2013/04/28/rare-uses-of-a-controlflowexception
It explains how inside of jOOQ (a SQL abstraction library for Java), such exceptions are occasionally used to abort the SQL rendering process early when some "rare" condition is met.
Examples of such conditions are:
Too many bind values are encountered. Some databases do not support arbitrary numbers of bind values in their SQL statements (SQLite: 999, Ingres 10.1.0: 1024, Sybase ASE 15.5: 2000, SQL Server 2008: 2100). In those cases, jOOQ aborts the SQL rendering phase and re-renders the SQL statement with inlined bind values. Example:
// Pseudo-code attaching a "handler" that will
// abort query rendering once the maximum number
// of bind values was exceeded:
context.attachBindValueCounter();
String sql;
try {
// In most cases, this will succeed:
sql = query.render();
}
catch (ReRenderWithInlinedVariables e) {
sql = query.renderWithInlinedBindValues();
}
If we explicitly extracted the bind values from the query AST to count them every time, we'd waste valuable CPU cycles for those 99.9% of the queries that don't suffer from this problem.
Some logic is available only indirectly via an API that we want to execute only "partially". The UpdatableRecord.store() method generates an INSERT or UPDATE statement, depending on the Record's internal flags. From the "outside", we don't know what kind of logic is contained in store() (e.g. optimistic locking, event listener handling, etc.) so we don't want to repeat that logic when we store several records in a batch statement, where we'd like to have store() only generate the SQL statement, not actually execute it. Example:
// Pseudo-code attaching a "handler" that will
// prevent query execution and throw exceptions
// instead:
context.attachQueryCollector();
// Collect the SQL for every store operation
for (int i = 0; i < records.length; i++) {
try {
records[i].store();
}
// The attached handler will result in this
// exception being thrown rather than actually
// storing records to the database
catch (QueryCollectorException e) {
// The exception is thrown after the rendered
// SQL statement is available
queries.add(e.query());
}
}
If we had externalised the store() logic into "re-usable" API that can be customised to optionally not execute the SQL, we'd be looking into creating a rather hard to maintain, hardly re-usable API.
Conclusion
In essence, our usage of these non-local gotos is just along the lines of what [Mason Wheeler][5] said in his answer:
"I just encountered a situation that I cannot deal with properly at this point, because I don't have enough context to handle it, but the routine that called me (or something further up the call stack) ought to know how to handle it."
Both usages of ControlFlowExceptions were rather easy to implement compared to their alternatives, allowing us to reuse a wide range of logic without refactoring it out of the relevant internals.
But the feeling of this being a bit of a surprise to future maintainers remains. The code feels rather delicate and while it was the right choice in this case, we'd always prefer not to use exceptions for local control flow, where it is easy to avoid using ordinary branching through if - else.
Typically there is nothing wrong, per se, with handling an exception at a low level. An exception IS a valid message that provides a lot of detail for why an operation cannot be performed. And if you can handle it, you ought to.
In general if you know there is a high probability of failure that you can check for... you should do the check... i.e. if(obj != null) obj.method()
In your case, i'm not familiar enough with the C# library to know if date time has an easy way to check whether a timestamp is out of bounds. If it does, just call if(.isvalid(ts))
otherwise your code is basically fine.
So, basically it comes down to whichever way creates cleaner code... if the operation to guard against an expected exception is more complex than just handling the exception; than you have my permission to handle the exception instead of creating complex guards everywhere.
You might be interested in having a look at Common Lisp's condition system which is a sort of generalization of exceptions done right. Because you can unwind the stack or not in a controlled way, you get "restarts" as well, which are extremely handy.
This doesn't have anything much to do with best practices in other languages, but it shows you what can be done with some design thought in (roughly) the direction you are thinking of.
Of course there are still performance considerations if you're bouncing up and down the stack like a yo-yo, but it's a much more general idea than "oh crap, lets bail" kind of approach that most catch/throw exception systems embody.
I don't think there is anything wrong with using Exceptions for flow-control. Exceptions are somewhat similar to continuations and in statically typed languages, Exceptions are more powerful than continuations, so, if you need continuations but your language doesn't have them, you can use Exceptions to implement them.
Well, actually, if you need continuations and your language doesn't have them, you chose the wrong language and you should rather be using a different one. But sometimes you don't have a choice: client-side web programming is the prime example – there's just no way to get around JavaScript.
An example: Microsoft Volta is a project to allow writing web applications in straight-forward .NET, and let the framework take care of figuring out which bits need to run where. One consequence of this is that Volta needs to be able to compile CIL to JavaScript, so that you can run code on the client. However, there is a problem: .NET has multithreading, JavaScript doesn't. So, Volta implements continuations in JavaScript using JavaScript Exceptions, then implements .NET Threads using those continuations. That way, Volta applications that use threads can be compiled to run in an unmodified browser – no Silverlight needed.
But you won't always know what happens in the Method/s that you call. You won't know exactly where the exception was thrown. Without examining the exception object in greater detail....
I feel that there is nothing wrong with your example. On the contrary, it would be a sin to ignore the exception thrown by the called function.
In the JVM, throwing an exception is not that expensive, only creating the exception with new xyzException(...), because the latter involves a stack walk. So if you have some exceptions created in advance, you may throw them many times without costs. Of course, this way you can't pass data along with the exception, but I think that is a bad thing to do anyway.
There are a few general mechanisms via which a language could allow for a method to exit without returning a value and unwind to the next "catch" block:
Have the method examine the stack frame to determine the call site, and use the metadata for the call site to find either information about a try block within the calling method, or the location where the calling method stored the address of its caller; in the latter situation, examine metadata for the caller's caller to determine in the same fashion as the immediate caller, repeating until one finds a try block or the stack is empty. This approach adds very little overhead to the no-exception case (it does preclude some optimizations) but is expensive when an exception occurs.
Have the method return a "hidden" flag which distinguishes a normal return from an exception, and have the caller check that flag and branch to an "exception" routine if it's set. This routine adds 1-2 instructions to the no-exception case, but relatively little overhead when an exception occurs.
Have the caller place exception-handling information or code at a fixed address relative to the stacked return address. For example, with the ARM, instead of using the instruction "BL subroutine", one could use the sequence:
adr lr,next_instr
b subroutine
b handle_exception
next_instr:
To exit normally, the subroutine would simply do bx lr or pop {pc}; in case of an abnormal exit, the subroutine would either subtract 4 from LR before performing the return or use sub lr,#4,pc (depending upon the ARM variation, execution mode, etc.) This approach will malfunction very badly if the caller is not designed to accommodate it.
A language or framework which uses checked exceptions might benefit from having those handled with a mechanism like #2 or #3 above, while unchecked exceptions are handled using #1. Although the implementation of checked exceptions in Java is rather nuisancesome, they would not be a bad concept if there were a means by which a call site could say, essentially, "This method is declared as throwing XX, but I don't expect it ever to do so; if it does, rethrow as an "unchecked" exception. In a framework where checked exceptions were handled in such fashion, they could be an effective means of flow control for things like parsing methods which in some contexts may have a high likelihood of failure, but where failure should return fundamentally different information than success. I'm unaware of any frameworks that use such a pattern, however. Instead, the more common pattern is to use the first approach above (minimal cost for the no-exception case, but high cost when exceptions are thrown) for all exceptions.
One aesthetic reason:
A try always comes with a catch, whereas an if doesn't have to come with an else.
if (PerformCheckSucceeded())
DoSomething();
With try/catch, it becomes much more verbose.
try
{
PerformCheckSucceeded();
DoSomething();
}
catch
{
}
That's 6 lines of code too many.

The call stack does not say "where you came from", but "where you are going next"?

In a previous question (Get object call hierarchy), I got this interesting answer:
The call stack is not there to tell you where you came from. It is to tell you where you are going next.
As far as I know, when arriving at a function call, a program generally does the following:
In calling code:
store return address (on the call stack)
save registers' states (on the call stack)
write parameters that will be passed to function (on the call stack or in registers)
jump to target function
In called target code:
Retrieve stored variables (if needed)
Return process: Undo what we did when we called the function, i.e. unroll/pop the call stack:
remove local variables from the call stack
remove function variables from the call stack
restore registers state (the one we stored before)
jump to return address (the one we stored before)
Question:
How can this be viewed as something that "tells you where you are going next" rather than "tell you where you came from"?
Is there something in C#'s JIT or C#'s runtime environment that makes that call stack work differently?
Thanks for any pointers to documentation about this description of a call stack — there's plenty of documentation about how a traditional call stack works.
You've explained it yourself. The "return address" by definition tells you where you are going next.
There is no requirement whatsoever that the return address that is put on the stack is an address inside the method that called the method you're in now. It typically is, which sure makes it easier to debug. But there is not a requirement that the return address be an address inside the caller. The optimizer is permitted to -- and sometimes does -- muck with the return address if doing so makes the program faster (or smaller, or whatever it is optimizing for) without changing its meaning.
The purpose of the stack is to make sure that when this subroutine finishes, it's continuation -- what happens next -- is correct. The purpose of the stack is not to tell you where you came from. That it usually does so is a happy accident.
Moreover: the stack is just an implementation detail of the concepts of continuation and activation. There is no requirement that both concepts be implemented by the same stack; there could be two stacks, one for activations (local variables) and one for continuation (return addresses). Such architectures are obviously much more resistant to stack smashing attacks by malware because the return address is nowhere near the data.
More interestingly, there is no requirement that there be any stack at all! We use call stacks to implement continuation because they are convenient for the kind of programming we typically do: subroutine-based synchronous calls. We could choose to implement C# as a "Continuation Passing Style" language, where the continuation is actually reified as an object on the heap, not as a bunch of bytes pushed on a million byte system stack. That object is then passed around from method to method, none of which use any stack. (Activations are then reified by breaking each method up into possibly many delegates, each of which is associated with an activation object.)
In continuation passing style there simply is no stack, and no way at all to tell where you came from; the continuation object does not have that information. It only knows where you are going next.
This might seem to be a highfalutin theoretical mumbo jumbo, but we essentially are making C# and VB into continuation passing style languages in the next version; the coming "async" feature is just continuation passing style in a thin disguise. In the next version, if you use the async feature you will essentially be giving up stack-based programming; there will be no way to look at the call stack and know how you got here, because the stack will frequently be empty.
Continuations reified as something other than a call stack is a hard idea for a lot of people to get their minds around; it certainly was for me. But once you get it, it just clicks and makes perfect sense. For a gentle introduction, here are a number of articles I've written on the subject:
An introduction to CPS, with examples in JScript:
http://blogs.msdn.com/b/ericlippert/archive/2005/08/08/recursion-part-four-continuation-passing-style.aspx
http://blogs.msdn.com/b/ericlippert/archive/2005/08/11/recursion-part-five-more-on-cps.aspx
http://blogs.msdn.com/b/ericlippert/archive/2005/08/15/recursion-part-six-making-cps-work.aspx
Here are a dozen articles that start by doing a deeper dive into CPS, and then explain how this all works with the coming "async" feature. Start from the bottom:
http://blogs.msdn.com/b/ericlippert/archive/tags/async/
Languages that support continuation passing style often have a magic control flow primitive called "call with current continuation", or "call/cc" for short. In this stackoverflow question, I explain the trivial difference between "await" and "call/cc":
How could the new async feature in c# 5.0 be implemented with call/cc?
To get your hands on the official "documentation" (a bunch of white papers), and a preview release of C# and VB's new "async await" feature, plus a forum for support Q&A, go to:
http://msdn.com/vstudio/async
Consider the following code:
void Main()
{
// do something
A();
// do something else
}
void A()
{
// do some processing
B();
}
void B()
{
}
Here, the last thing the function A is doing is calling B. A immediately returns after that. A clever optimizer might optimize out the call to B, and replace it with just a jump to B's start address. (Not sure whether current C# compilers do such optimizations, but almost all C++ compilers do). Why would this work? Because there's an address of the A's caller in the stack, so when B finishes, it would return not to A, but directly to A's caller.
So, you can see that the stack does not necessary contain the information about where did the execution come from, but rather where it should go to.
Without optimization, inside B the call stack is (I omit the local variables and other stuff for clarity):
----------------------------------------
|address of the code calling A |
----------------------------------------
|address of the return instruction in A|
----------------------------------------
So the return from B returns to A and immediately quits `A.
With the optimization, the call stack is just
----------------------------------------
|address of the code calling A |
----------------------------------------
So B returns directly to Main.
In his answer, Eric mentions another (more complicated) cases where the stack information doesn't contain the real caller.
What Eric is saying in his post is that the execution pointer does not need to know where it has come from, only where it has to go when the current method ends. These two things superficially would seem to be the same thing, but if the case of (for instance) tail recursion where we came from and where we are going next can diverge.
There is more to this than you think.
In C it is entirely possible to have a program rewrite the call stack. Indeed, that technique is the very basis of a style of exploit known as return oriented programming.
I've also written code in one language which gave you direct control over the callstack. You could pop off the function that called yours, and push some other one in its place. You could duplicate the item on the top of the call stack, so the rest of the code in the calling function would get executed twice, and a bunch of other interesting things. In fact direct manipulation of the call stack was the primary control structure provided by this language. (Challenge: can anybody Identify the language from this description?)
It did clearly show that the call stack indicates where you are going, not where you have been.
I think he's trying to say that it tells the Called method where to go next.
Method A calls Method B.
Method B completes, where does it go next?
It Pops the callee methods address off the top of the Stack and then goes to there.
So Method B knows where to go after it completes. Method B, doesn't really care where it came from.

Method-missing difficulties in C# 4.0: dynamic vs RealProxy

Does anyone know of a way to intercept dynamic method calls (particularly those that are going to raise RuntimeBinderExceptions) with a RealProxy? I was hoping to catch the exception and implement 'method missing' on top of that, but it appears to be thrown before the interceptor gets a look-in.
My test just looks like:
dynamic hello = MethodMissingInterceptor<DynamicObject>.Create();
Assert.AreEqual("World", hello.World());
Where World isn't actually implemented on DynamicObject. The interceptor is pretty straightforward - I was hoping to check IMethodReturnMessage.Exception for RuntimeBinderException and forward on to something like:
public IMessage MethodMissing(IMethodCallMessage call)
{
return new ReturnMessage(call.MethodBase.Name, new object[0], 0, call.LogicalCallContext, call);
}
Unfortunately, all I see in my interceptor are some calls to GetType, and not the non-existant World method.
Failing that - does anyone know if there's a DynamicProxy version running happily on .NET 4.0 yet that might have tackled the problem?
I'll start with the long answer. Every bind of a dynamic operation in C# does approximately these three things in this order:
Ask the object to bind itself if it implements IDynamicMetaObjectProvider or is a COM object, and if that fails, then...
Bind the operation to an operation on a plain-old-clr-object using reflection, and if that fails, then...
Return a DynamicMetaObject that represents a total failure to bind.
You're seeing the GetType calls because in step 2, the C# runtime binder is reflecting over you to try to figure out if you have a "World" method that is appropriate to call, and this is happening because the IDynamicMetaObjectProvider implementation of hello, if there is one, couldn't come up with anything special to do.
Unfortunately for you, by the time the RuntimeBinderException is thrown, we are no longer binding. The exception comes out of the execution phase of the dynamic operation, in response to the meta object returned due to step 3. The only opportunity for you to catch it is at the actual call site.
So that strategy isn't going to work out for you if you want to implement method_missing in C#. You do have some options though.
One easy option is to implement IDynamicMetaObjectProvider in your MethodMissingInterceptor, and defer to the IDMOP implementation of the wrapped object. In case of failure on the part of the inner IDMOP, you can bind to whatever you want (perhaps a call to a method_missing delegate stored in the interceptor). The downside here is that this only works for objects that are known to be dynamic objects, e.g. those that implement IDMOP to begin with. This is because you are basically inserting yourself between steps 1 and 2.
Another alternative I can think of is to implement IDynamicMetaObjectProvider, and in it, respond positively to every bind, returning a call to a method that (a) produces the same code the C# compiler would have produced to bind in the first place, and (b) catches RuntimeBinderException to call a method_missing method. The downside here is that it would be quite complicated--you'd need to generate arbitrary delegate types and the IL that uses them, against the public types in the C# runtime binder assembly which, frankly, are not meant for public consumption. But at least you'd get method missing against all operations.
I am sure there are other strategies I have not thought of, such as you seem to be hinting at about using remoting proxies. I can't imagine what they look like though and I can't say if they'd be successful.
The crux of the problem here is that C# 4.0 does not have a design that anticipates your desire to do this. Specifically, you cannot easily insert yourself between steps 2 and 3. That brings me to the short answer, which is sorry, C# 4.0 does not have method_missing.

Categories

Resources