Asynchronous / Synchronous and TCP or UDP - c#

I very confuse about Synchronous and Asynchronous Socket in C#, i want develop a game play on LAN network, but i confuse which one is better for my application Hangman game.
This game can play with 1player mode or 2 players mode.
In 1 player mode just a player interact with serer
But 2 players mode 2 players interact with server by turn base. It mean if player A guess wrong word, he lose his turn and player B take this turn.
Can you give me suggest about Synchornous and Asynchronous.
Beside that how can client can find server if client dont need enter server ip? it mean what should i choose between TCP and UDP
and last question is can i create a server is asynchronous but clients are synchronous, is it ok?
Thank You Very much

The important part of about choosing Asynchronous vs Synchronous is how you make the communications interact with your GUI thread. Don't let a synchronous socket block your UI. I see the article here gives an idea what to expect and gives some guidance about using Asynchronous with Windows programming.
Winsock tips
Your second question about TCP/UDP there are a lot of difference between the two you should be aware of. First and foremost, TCP is going to guaranteed packet delivery while the connection is valid. Given your situation and the simple requirements and lack of performance needs. TCP is probably your best choice. If you are designing a high performance game where you have to allow for dropped packets and handle latency better, UDP becomes a better option but then you have to take into consideration what happens when you drop packets and have things like Out of Order packets. TCP hides all of that complexity from you and will make working with it simpler.
Mixing synchronous and Asynchronous client/server should cause not problems. They only know about the communication link itself (TCP/UDP).

so regarding your questions :
Can you give me suggest about Synchornous and Asynchronous: In your case given the complexity of the application you can use either sync or async sockets, as twilson stated the sync sockets blocks your main thread while the async ones don't so if you have performance issues go for the asynchronous sockets
Beside that how can client can find server if client dont need enter server ip? it mean what should i choose between TCP and UDP: well there's a fair difference between TCP and UDP connections, you usually use UDP (connectionless) when you have peformance issues like Voip apps, real time games,video chat and so on, while in onther cases you use TCP, so in your case TCP should suit you good.
and last question is can i create a server is asynchronous but clients are synchronous, is it ok?
Yes you could use this kind of implementantion even if it.s a good practice to have the same type of socket on both clients and server.

Related

Socket Programming design questions

I'm messing around (for the first time) with Socket programming in C#, I'm making a Skype like application(Video call, IM, file share, screen share) and i have a couple of questions...
1) How should sockets truly work? On the client side I have a while loop which is effictively keeping the socket open, Is this correct? Or should i be closing the socket after each Send/Recieve (Im using BeginSend() and BeginRecieve()) and creating a new socket? interact() is called after the connection has been made. my code:
private static void interact()
{
try
{
while (true)
{
receive(client);
send(client);
}
}
catch (Exception e)
{
Logging.errorDisconnect(client, e);
}
}
2) How would you design a robust client/server application, by using BeginSend/BegingRecieve from System.Net.Sockets, or creating your own Task implementation?
3) Is there any good tutorials on Client/Server architecture for robust/scaleable applications? I've had a look at P2P but i'm not entirely sure its what i need.
Also, i'm trying to avoid 3rd party implementations so i can learn how it's done myself..
Thanks in advance..
I assume you want to run a persistent connection and occasionally send commands to the remote side. This usually means that both sides must have a read loop running at all times to receive commands. Alternating between reading and writing makes sense for a request/reply model which you do not have here (because both sides can send requests and you might mistake an incoming request for an expected reply).
The loop is not keeping the socket alive. If you tell me why you were thinking that I can clarify. You decide the lifetime of the connection independently from any kind of "loop".
What kind of call style you want to use (sync, APM, TAP) does not affect how the socket behaves or what goes over the wire. You can choose freely. Sockets are super hard to get right, start with synchronous IO. Async IO is considerably harder and likely unnecessary here.
In general you should try hard to avoid using sockets because they are difficult and low-level. Try using some higher-level RPC mechanism such as WCF or HTTP. If you insist on a custom wire format protobuf is a good choice.

InterProcess Communication and BroadCasting

I am working on a inter processes communication. I came across named pipe communication.
I already have some basic idea but need to make sure the following points?
Does name pipe can have more than one client at a same time?
Does it supports communication over different process build on different languages.
And please do tell me that what is the difference between named pipe communication and broadcasting for inter process communication ?
No, a single pipe only supports a single client. Much like a web server, it also creates multiple connections to each individual client. A pipe server works the same way.
Yes, bridging the wall between processes is a major use case for named pipes.
Windows supports a different object for broadcasting, a mailslot. It was never ported to .NET, it is pretty useless. Broadcasting is not reliable, it is like yelling in a crowded football stadium without any guarantee that anybody can hear you. If you need broadcasts then you should consider an UDP socket. And of course deal with the consequence of it randomly losing data.
WCF is the usual recommendation if you consider named pipes. It puts a layer on top of them to make them easier to use.

Can your program receive info via TCP while UDP is currently sending packets?

Now, I'm interested to know - if I have a program of mine connection to a Server through TCP and the server sends a message to my program, but I am sending UDP packets at the same time, will the TCP packet get to me? Everything is in one class!
Thanks for your help!
Your question is actually on the border of several issues that all network application programmers must know and consider.
First of all: all data received from the network is stored in operating system's internal buffer, where it awaits to be read. The buffer is not infinite, so if you wait long enough, some data may be dropped. Usually the chunks of data that are written there are single packets, but not always. You can never make any assumptions of how much data will be available for reading in TCP/IP communication. In UDP, on the other hand, you must always read a single packet, otherwise the data will be lost. You can use recvfrom to read UDP packets and I suggest using it.
Secondly: using blocking and non-blocking approach is one of the most important decisions for your network app. There is a lot of information about it in the Internet: C- Unix Sockets - Non-blocking read , what is the definition of blocking read vs non- blocking read? or a non-blocking tutorial.
As for threads: threads are never required to write a multiple connection handler application. Sometimes they will simplify your code, sometimes they will make it run faster. There are some well-known programming patterns for using threads, like handling each separate connection in a separate thread. More often than not, especially for an inexperienced programmer, using threads will only be a source of strange errors and headaches.
I hope that my post answers your question and addresses the discussion I've been having below another answer.
Depends on what you mean by "at the same time". Usually the answer is "yes", you can have multiple TCP/IP connections and multiple UDP sockets all transmitting and receiving at the same time.
Unless you're really worried about latency - where a few microseconds can cause you trouble. If that's the case, one connection may interfere with the other.
Short answer - Yes.
You can have many connections at once, all sending and receiving; assuming that you've got multiple sockets.
You don't mention the number of clients that your server will have to deal with, or what you are doing with the data being sent/received.
Dependent on your implementation, multiple threads may also be required (As Dariusz Wawer points out, this is not essential, but I mention them because a scalable solution that can handle larger numbers of clients will likely use threads).
Check out this post on TCP and UDP Ports for some further info:
TCP and UDP Ports Explained
A good sample C# tutorial can be found here: C# Tutorial - Simple Threaded TCP Server

Online Multiplayer Game Basics [closed]

Closed. This question is off-topic. It is not currently accepting answers.
Want to improve this question? Update the question so it's on-topic for Stack Overflow.
Closed 11 years ago.
Improve this question
I'm currently working on a c# online multiplayer game in real-time. The aim is to have client/server based connection using the UDP protocol. So far I've used UDP for players' movements and TCP for events (a player shooting, a player losing life) because I need to be sure such data will arrive to all players connected to the server. I know that UDP is said 'unreliable' and some packets may be lost. But I've read everywhere to never mix TCP and UDP because it can affect the connection.
The main question is how should I organize my network?
UDP is connectionless, how should I save who's is who? Should I save ip adresses of the clients in a list?
Should I use TCP for important events or use UDP? If I need to use UDP, how can I make sure that data will not be lost?
By using both TCP and UDP, I need to save for each player their IP in a list (for UDP) and the TcpClient which is connected in another list (for the UDP). How could I change that to be more effective?
Connections have improved a lot since early game development. In the past the speed advantages of UDP made it a very desirable protocol, even balanced out the reliability issues. However as networks have improved the reasons to shy away from TCP have dissipated.
I would advise picking one of the two protocols and going with it. But mostly because it will simply your network layer and make it easier to debug network issues. When I have to pick between TCP and UDP I make the decision more on how I want my networking logic to flow.
With a UDP based system you do need to do a bit more bookkeeping yourself, but not really enough for it to factor into the decision. A UDP game flows more like independent cells that all happen to share the same world. You don't want a lot of reactive logic (after he does this, i do that), if something is dropped or forgotten the game will keep going smoothly.
TCP will give you much more control. Depending on the API and can involve a bit more setup but its worth the effort. TCP lets you work with a networked partner much like you would work with another thread on the same CPU. There is an overhead with everything that you do but it sounds like you already have it working so might as well stick with it.
I generally tend towards UDP myself because its ingrained I think. Also whenever dealing with networking you have to plan for the un-expected, the lost or delayed packet, and UDP helps drive that message home. If you break that rule you will notice right away with UDP, might not with TCP.

Tcp Reliability versus Udp Burdens for serious, high-performance server

Speed, optimization, and scalability are the typical comparisons between the Udp and Tcp protocols. Tcp touts reliability with the disadvantage of a little extra overhead, but speed is good to excellent. Once a Tcp socket is instanced, keeping the socket open requires some overhead. But compared to the oft described burdens of Udp, which protocol actually has more overhead?. I've also heard that there are scalability issues with Tcp...yet the Internet (Web pages/servers) runs on Tcp - so what is it about Tcp that inhibits scalability?
Okay...so Udp doesn't require that overhead of keeping a connection open. But, it requires that you write extra methods to ensure all of the packet gets there, hopefully in the order that you want it received. If a packet isn't received in full, then you have to tell the client or server to resend. And you also have to keep some sort of message collection for partial packets, rebuild the partial messages, and check for a complete message before the message can finally be processed. Not to mention if the second part of a message never makes it, you have to either say resend the entire thing, or resend the part we are missing, or whatever.
Basically, my questions are:
Why would I choose Udp over Tcp for a serious, high-performance server with the added "overhead" of message
checking and manual ACK versus the "overhead" of a continuous stream?
If Tcp is good enough for the likes of World of Warcraft, why isn't Tcp more widely accepted as the protocol to use for a game server?
Note: I am not opposed to implementing Udp options for a server. We are using C# on .Net 3.5 framework. So I would also be interested in the best practices for dealing with Udp burdens. I am also using the asynchronous methods at the socket level rather than using TcpListener, TcpClient, etc. etc.
Well, I would recommend reading up some more. There are plenty places to look at the pro's and con's of TCP vs. UDP and vice versa, here are a few:
What Are The Advantages Of Using TCP Over UDP?
When should I use UDP instead of TCP?
TCP and UDP
What are the advantages of UDP over TCP?
However, this link may interest you the most, as it is directly about networked game programming:
Gaffer on Games - UDP vs. TCP
If I were to quote something small:
The decision seems pretty clear then,
TCP does everything we want and its
super easy to use, while UDP is a huge
pain in the ass and we have to code
everything ourselves from scratch. So
obviously we just use TCP right?
Wrong.
Using TCP is the worst possible
mistake you can make when developing a
networked game! To understand why, you
need to see what TCP is actually doing
above IP to make everything look so
simple!
I still recommend doing your own research on the matter though, and make sure which of the protocols suits your needs at the end of the day. This being said, it does seem to be the case that majority of games use UDP for their data. Anything that updates the entire state continuously does not need the overhead of guaranteed packet delivery.
First, I'll just paraphrase Stevens from Unix Network Programming Section 22.4 "When to Use UDP instead of TCP":
He basically says the following:
UDP is the only option for broadcast / multicast - so you have to use it there.
UDP can be used for simple request / reply apps. But you have to add your own error detection meaning at least acks, timesouts and retransmission.
UDP should not be used for bulk data transfer ( file transfers ) since you would have to build in all the functionality arleady in TCP to make it work right.
UDP should be used for real time data where speed of delivery is most important and some data loss is not an issue such as real time sensor data, live multimedia streams, real time stock quotes, etc.
The answer to your first question is very dependent on your definition of "high-performance". If you're primary concern is low latency, i.e. the individual data packets / requests arriving as quickly as possible than UDP would be the way to go. There are two primary reasons for this. Assuming packets / requests are fairly independent of each other than using TCP would introduce a problem known as head-of-line blocking.
Let's say you send two independent packets / requests. First A then B. Since TCP is stream based, if A get's lost in the network and needs to be retransmitted then even if B has already successfully arrived it can't be delivered to the application by the stack until A arrives, introducing unnecessary latency. Not only that, but until A arrives, B can't be acknowledged by the stack which might cause B to also be retransmitted causing needless network congestion.
One way around this problem is to use separate connections for each request, however this also introduces latency and hogs system resources. UDP bypasses all these problems.
Another issue in high performance ( low latency ) servers is the Nagle Algorithm which can add significant latency in TCP communications.
The answer to your second question is that WoW probably sends streams of data, not independent request / reply pairs. Also, some of the latency of TCP can be removed by disabling the Nagle algorithm. If they do use some request / reply communications they may have simply made a design decision that reliability is more important to them than latency.
Define "serious high performance" - how many concurrent connections are you talking about and how much data is flowing?
Take a look at the answers to this question What do you use when you need reliable UDP? which list some of the reliable protocols that have already been built on UDP. You might find one that works for your situation, or you may at least find some useful ideas.
The key to using UDP effectively here is to have some level of reliability and some level of unreliability and you get more of an advantage the more each datagram is able to be handled independently of others. The advantage over TCP is that you get to act on each datagram and decide if you can use it as it arrives. This is why it works for action games.
So, IMHO, if you need 100% reliability AND in order delivery then go with TCP; don't try and reimplement TCP in UDP.
It's Reliability vs Performance.
FPS games don't require -all- the packets to reach the destination, to reach it in order, to be exceptionally big, or to assure big throughput. They only require the packets to reach the server AS SOON AS POSSIBLE. This is the ultimate priority and overhead of TCP is simply an unnecessary burden.
WoW, in its "not quite realtime" communication and often tons of data to transmit (in crowded areas), may have to deal with packets exceeding MTU (requiring fragmentation) and requires reliability (fewer bigger packets = packet lost hurts more). So its choice of TCP is logical. Same would go for most turn-based strategy games and the like. In games where the player with ping of 30ms beats the player with ping 50ms UDP is the king.
I think the biggest part of TCP/IP that inhibits scalability is that it maintains a buffer on all incoming / outgoing connections up to basically the size of the window. So if I have a high latency but high throughput client i'm talking to, I have to keep all sent packets in buffer until I receive an ack. So for a few connections this is fine, but for handling 100K connections, it can start to be problematic overhead. On the receiving end, if a packet is dropped, again it will buffer all new packets received until the one required is retransmitted.
If you're going to implement retransmission, you need to do the same thing, and hence will have the same overhead. However, UDP does give you an advantage, if you know the end-to-end link speeds, or if certain message can be delivered out of order, or certain messages don't need retransmission. Keeping the gaming scenario:
packet 1 = move to 1,1
packet 2 = shoot
packet 3 = move to 2,2
Most game designers, if packet 1 is lost, but packet 3 is received, packet 1 is no longer important because it contains out of date information anyways. However, you could opt to say packet 2 is important, so if it's not acked, send a retransmission.
If you need high throughput, and connect two servers directly with 1000Mbps ethernet, TCP/IP will take awhile to scale and have additional overhead, and will likely never achieve a true gigabit connection due to the congestion avoidance mechanisms. However, you know it's 1 Gbps, so you can set up you're UDP to transmit at up to a 1 Gbps (minus overhead) yourself.
To answer you're questions more directly:
If you are going to ack every packet anyways, there isn't a massive benefit to having UDP, other than you can process some messages while waiting for retransmission (unless you want in-order delivery as well).
Udp isn't considered for game servers as much, mainly out of the scenario above, and real time combat systems such as First person shooters, where a message can be dropped, and the new message to come will invalidate the dropped message anyways. World of warcraft can get away with using TCP, since they don't have to be as precise with timing, and likely have some good logic that makes it more difficult for you to tell the difference anyways. The combat system simply doesn't require the speed.
I'd also contend that some of the justification is holdover from years ago, when everyone had less-reliable, and slower Internet connections. TCP is also more lenient for sharing the network, so if there's a lot going on, it will slow down so everyone gets a share of the connection (congestion avoidance).
TCP/IP is a protocol designed by people far smarter than I over years of research. Tuning in the last several years has allowed it to perform better with the faster and faster average network speeds we are seeing, and doesn't require a great understanding to use.
However, replacing this with UDP, does require a significant understanding of networking. I've seen badly written UDP programs saturate 1Gbps links and kill all traffic on the link, because they implemented a rather naive retransmission algorithm.
Here's a list of things TCP/IP can now do that you'd loose by going UDP:
- In order arrival to you're program
- retransmission (Now with Fast retransmit, selective acknowledgement, and other features)
- Maximum segment size
- Path MTU Discovery
- Black Hole Detection (extension of Path MTU)
- Congestion avoidance
Because of this, I'd highly recommend sticking with TCP/IP if it suits you're needs.
Also not to nit pick, but you're comment about the Internet running on TCP/IP is wrong, there are in fact dozens of Internet routeable protocols check them out here. I think you were referring to web pages and web servers are all running on top of TCP/IP. Which again for the web is great where us humans won't notice a delay as long as the page shows up correctly. Even for TCP/IP, their is some challenge that TCP/IP isn't aggressive enough for the web: Google thinks tcp/ip should be more aggressive by default

Categories

Resources