How to shrink this particular if lines(messy) by using "?" operator - c#

I am working on a project where I have to look into someone else's code and modify it.
However since many classmates in my class are quite new to program, many have such a messy organization.
The code that I am assigned to improvise has a lot of flaws and messy redundant lines.
I am trying my best to clean them up, however due to my inexperience, I find it hard to clean them up.
Lines such as
if (turnElapsed[1] == 2)
{
turnElapsed[0] += 1;
turnElapsed[1] = 0;
}
turnElapsed[1]++;
looks quite redundant to me.
I believe, and there must be a better way to write a simple version of it.
so I tried the code below but it seemed to not work properly.
turnElapsed[0] += (turnElapsed[1]++ == 2) ? 1 ; 0 ;
turnElapsed[1] = (turnElapsed[1] == 2 ) ? 0; turnElapsed[1];

Firstly, you are using ; as separator instead of : which is a syntax error. Secondly, you're incrementing turnElapsed[1] on the first line, which means that when it reaches the second line it will no longer equal 2 - that's different to the original logic. This is why your version does not work properly.
However, if you did fix those errors I don't think your code would be easier to read. The original is more readable, because it expresses the intention more clearly. You can read that and verbalise it as "if turnElapsed[1] is 2 then ...". Your alternative takes fewer lines, but is more "cryptic". Another advantage of the original code is that you can put a breakpoint inside the braces if you wanted to break when the if condition was true - you cannot do that with the ternary operator (?).

Your problem is that it is not readable and comprehensible. That is why you don't see your bug.
The bug is that you don't increment in the second version. Try this
turnElapsed[0] += (turnElapsed[1]++ == 2) ? 1 : 0 ;
turnElapsed[1] = ((turnElapsed[1] == 2 ) ? 0; turnElapsed[1]) + 1;

Aren't you just keeping a binary number in turnedElapsed, with the most significant bit in turnElapsed[0]? A much better version of the code would be:
long turnElapsed;
...
turnElapsed++;
Or, if you really don't want to start messing with bits:
turnElapsed[0] += turnElapsed[1]
turnElapsed[1] = (1 + turnElapsed[1]) % 2
EDIT: Apparantly turnElapsed[1] is 0 or 1, and turnElapsed[0] is incremented every time turnElapsed changes from 1 to 0. So you have the following:
long number;
...
number++;
turnElapsed[0] = number/2;
turnElapsed[1] = number%2;
No need for ifs, ?:'s or anything else. In fact, you don't even need the array.

Related

Find/Replace function RichTextBox

I want to make a find and a find & replace function for my RichTextBox. So far I've found out that the .Find() function comes in quite handy, but I can't think of a good way to let it skip to the next word in the textbox.
So far I have this:
BeginIndex = txtDocument.Find(str, BeginIndex + WordLength, RichTextBoxFinds.None);
WordLength = str.Length;
BeginIndex is a variable that is public and starts out as 0, same as WordLength. This way it will start looking at the first character, and the next time it won't find the same one.
There is a big malfunction though, let me try to describe it:
"Hello blablab hello blablaal balbalbla hello blabla" If I would look for "hello" in this sentence, it will select the first hello, then the second, then the third, then the third again. After that it will just find the second and the third over and over. Because WordLength is still > 0.
So I need a new way to tell the Find() method that its not allowed to find the one already found, but move on, and when the last one is found, go back to the first. Is there a more clean and better way to do this?
Edit: Its almost fixed, I use this now:
BeginIndex = txtDocument.Find(str, BeginIndex, RichTextBoxFinds.None);
if(BeginIndex == -1) {
BeginIndex = 0;
SearchString(str, heelwoord, casesensitive);
}
BeginIndex += str.Length;
Now, this loops quite nice, instead of calling itself (int the if) I can also make a MessageBox that says something like "End is reached!". But if it finds nothing, it gives me an error. I use the function with 2 checkboxes, one that does MatchCase, and one that does WholeWord, but when I look for 'a' in "asdasdasd" and check WholeWord, it errors because its unfindable.
You might be better off implementing Knuth-Morris Pratt's algorithm, it might be faster than the internal .NET solution and it will allow you to know exactly where the strings are found. You can do substring concatenation magic afterwards, assign the result to the rtf's text and you'll be all set.
http://en.wikipedia.org/wiki/Knuth%E2%80%93Morris%E2%80%93Pratt_algorithm

Is It Ever Good Practice To Modify The Index Variable Inside a FOR Loop?

Given the code:
for (int i = 1; i <= 5; i++)
{
// Do work
}
Is is ever acceptable to change the value of i from within the loop?
For example:
for (int i = 1; i <= 5; i++)
{
if( i == 2)
{
i = 4;
}
// Do work
}
In my opinion, it is too confusing. Better use a while loop in such case.
It is acceptable, however, I personally think this should be avoided. Since it's creating code that will be unexpected by most developers, I find that it's causing something much less maintainable.
Personally, if you need to do this, I would recommend switching to a while loop:
int i=1;
while (i <= 5)
{
if (i == 2)
i = 4;
++i;
}
This, at least, warns people that you're using non-standard logic.
Alternatively, if you're just trying to skip elements, use continue:
for (int i = 1; i <= 5; i++)
{
if (i == 2 || i == 3)
continue;
}
While this is, technically, a few more operations than just setting i directly, it will make more sense to other developers...
YES
You see that frequently in apps that parse data. For example, suppose I'm scanning a binary file, and I'm basically looking for certain data structures. I might have code that does the following:
int SizeOfInterestingSpot = 4;
int InterestingSpotCount = 0;
for (int currentSpot = 0; currentSpot < endOfFile; currentSpot++)
{
if (IsInterestingPart(file[currentSpot])
{
InterestingSpotCount++;
//I know that I have one of what I need ,and further, that this structure in the file takes 20 bytes, so...
currentSpot += SizeOfInterestingSpot-1; //Skip the rest of that structure.
}
}
An example would be deleting items which match some criteria:
for (int i = 0; i < array.size(); /*nothing*/)
{
if (pred(array[i]))
i++;
else
array.erase(array.begin() + i);
}
However a better idea would be using iterators:
for (auto it = array.begin(); it != array.end(); /*nothing*/)
{
if (pred(*it))
++it;
else
it = array.erase(it);
}
EDIT
Oh sorry, my code is C++, and the question is about C#. But nevertheless the idea is the same:
for (int i = 0; i < list.Length; /*nothing*/)
{
if (pred(list[i]))
i++;
else
list.RemoveAt(i);
}
And a better idea might be of course just
list.RemoveAll(x => !pred(x));
Or in a slightly more modern style,
list = list.Where(pred);
(here list should be IEnumerable<...>)
I would say yes, but only in a specific cases.
It may be a bit confusing - if I set i=4 will it be incremented before the next iteration or not?
It may be a sign of a code smell - maybe you should do a LINQ query before and only process relevant elements?
Use with care!
Yes it can be. As there are an extremely enormous amount of possible situations, you're bound to find one exception where it would be considered good practice.
But stopping the theoretica lside of things, i'd say: no. Don't do it.
It gets quite complicated, and hard to read and/or follow. I would rather see something like the continue statement, although i'm not a big fan of that either.
Personally, I would say that if the logic of the algorithm called for a normally-linearly-iterating behavior, but skipping or repeating certain iterations, go for it. However, I also agree with most people that this is not normal for loop usage, so were I in your shoes, I'd make sure to throw in a line or two of comments stating WHY this is happening.
A perfectly valid use case for such a thing might be to parse a roman numeral string. For each character index in the string, look at that character and the next one. If the next character's numeric value is greater than the current character, subtract the current character's value from the next one's, add the result to the total, and skip the next char by incrementing the current index. Otherwise, just add the current character's value to the running total and continue.
An example could be a for loop where you want in a certain condition to repeat current iteration or go back to a previous iteration or even skip a certain amount of iterations (instead of a numered continue).
But these cases are rare. And even for these cases, consider that the for loop is just one means among while, do and other tools that can be used. so consider this as bad practice and try to avoid it. your code will also be less readable that way.
So for conclusion: It's achievable (not in a foreach) but strive to avoid this using while and do etc. instead.
Quoting Petar Minchev:
In my opinion, it is too confusing.
Better use a while loop in such case.
And I would say by doing that, you must be aware of some things that could happen, such as infinite loops, premature-canceled loops, weird variable values or maths when they are based on your index, and mainly (not excluding any of the others) execution flow problems based on your index and other variabes modified by the fail loop.
But if you got such a case, go for it.

Changing variables outside of Scope C#

I'm a beginner C# programmer, and to improve my skills I decided to give Project Euler a try. The first problem on the site asks you to find the sum of all the multiples of 3 and 5 under 1000. Since I'm essentially doing the same thing twice, I made a method to multiply a base number incrementally, and add the sum of all the answers togethor.
public static int SumOfMultiplication(int Base, int limit)
{
bool Escape = false;
for (int mult = 1; Escape == true; mult++)
{
int Number = 0;
int iSum = 0;
Number = Base * mult;
if (Number > limit)
return iSum;
else
iSum = iSum + Number;
}
regardless of what I put in for both parameters, it ALWAYS returns zero. I'm 99% sure it has something to do with the scope of the variables, but I have no clue how to fix it. All help is appreciated.
Thanks in advance,
Sam
Your loop never actually executes:
bool Escape = false;
for (int mult = 1; Escape == true; mult++)
Escape is set to false initially, so the first test fails (Escape == true returns false) and the body of the loop is skipped.
The compiler would have told you if you were trying to access variables outside of their defined scope, so that's not the problem. You are also missing a return statement, but that is probably a typo.
I would also note that your code never checks if the number to be added to the sum is actually a multiple of 3 or 5. There are other issues as well (for example, iSum is declared inside of the loop and initialized to 0 after each iteration), but I'll let you work that one out since this is practice. The debugger is your friend in cases like these :)
EDIT: If you need help with the actual logic I'll be happy to help, but I figure you want to work it out on your own if possible.
As others have pointed out, the problem is that the control flow does not do what you think it does. This is a common beginner problem.
My suggestion to you is learn how to use your debugger. Beginners often have this strange idea that they're not allowed to use tools to solve their coding problems; that rather, they have to reason out the defect in the program by simply reading it. Once the programs become more than a page long, that becomes impossible for humans. The debugger is your best friend, so get to know its features really well.
In this case if you'd stepped through the code in the debugger you'd see that the loop condition was being evaluated and then the loop was being skipped. At that point you wouldn't be asking "why does this return zero?", you'd be asking "why is the loop body always skipped?" Clearly that is a much more productive question to ask since that is actually the problem here.
Don't write any code without stepping through it in the debugger. Watch every variable, watch how it changes value (the debugger highlights variables in the watch windows right after they change value, by the way) and make sure that the control flow and the variable changes are exactly as you'd expect. Pay attention to quiet doubts; if anything seems out of the ordinary, track it down, and either learn why it is correct, or fix it until it is.
Regarding the actual problem: remember that 15, 30, 45, 60... are all multiples of both three and five, but you only want to add them to the sum once. My advice when solving Project Euler problems is to write code that is as like what you are trying to solve as is possible. Try writing the problem out in "pseudocode" first. I'd pseudocode this as:
sum = 0
for each positive number under 1000:
if number is multiple of three or five then:
add number to sum
Once you have that pseudocode you can notice its subtleties. Like, is 1000 included? Does the problem say "under 1000" or "up to 1000"? Make sure your loop condition considers that. And so on.
The closer the program reads like the problem actually being solved, the more likely it is to be correct.
It does not enter for loop because for condition is false.
Escape == true
returns false
Advice:
Using for loop is much simpler if you use condition as limit for breaking loop
for (int mult = 1; something < limit; mult++)
This way in most cases you do not need to check condition in loop
Most programming languages have have operator modulo division.
http://en.wikipedia.org/wiki/Modulo_operation
It might come handy whit this problem.
There are several problems with this code. The first, and most important, is that you are using the Escape variable only once. It is never set to false within your for loop, so it serves no purpose whatsoever. It should be removed. Second, isum is declared within your for loop, which means it will keep being re-initialized to 0 every time the loop executes. This means you will only get the last multiple, not the addition of all multiples. Here is a corrected code sample:
int iSum = 0;
for(int mult = 1; true; mult++)
{
int Number = Base * mult;
if(Number > limit)
return iSum;
else
iSum += Number;
}

'do...while' vs. 'while'

Possible Duplicates:
While vs. Do While
When should I use do-while instead of while loops?
I've been programming for a while now (2 years work + 4.5 years degree + 1 year pre-college), and I've never used a do-while loop short of being forced to in the Introduction to Programming course. I have a growing feeling that I'm doing programming wrong if I never run into something so fundamental.
Could it be that I just haven't run into the correct circumstances?
What are some examples where it would be necessary to use a do-while instead of a while?
(My schooling was almost all in C/C++ and my work is in C#, so if there is another language where it absolutely makes sense because do-whiles work differently, then these questions don't really apply.)
To clarify...I know the difference between a while and a do-while. While checks the exit condition and then performs tasks. do-while performs tasks and then checks exit condition.
If you always want the loop to execute at least once. It's not common, but I do use it from time to time. One case where you might want to use it is trying to access a resource that could require a retry, e.g.
do
{
try to access resource...
put up message box with retry option
} while (user says retry);
do-while is better if the compiler isn't competent at optimization. do-while has only a single conditional jump, as opposed to for and while which have a conditional jump and an unconditional jump. For CPUs which are pipelined and don't do branch prediction, this can make a big difference in the performance of a tight loop.
Also, since most compilers are smart enough to perform this optimization, all loops found in decompiled code will usually be do-while (if the decompiler even bothers to reconstruct loops from backward local gotos at all).
I have used this in a TryDeleteDirectory function. It was something like this
do
{
try
{
DisableReadOnly(directory);
directory.Delete(true);
}
catch (Exception)
{
retryDeleteDirectoryCount++;
}
} while (Directory.Exists(fullPath) && retryDeleteDirectoryCount < 4);
Do while is useful for when you want to execute something at least once. As for a good example for using do while vs. while, lets say you want to make the following: A calculator.
You could approach this by using a loop and checking after each calculation if the person wants to exit the program. Now you can probably assume that once the program is opened the person wants to do this at least once so you could do the following:
do
{
//do calculator logic here
//prompt user for continue here
} while(cont==true);//cont is short for continue
This is sort of an indirect answer, but this question got me thinking about the logic behind it, and I thought this might be worth sharing.
As everyone else has said, you use a do ... while loop when you want to execute the body at least once. But under what circumstances would you want to do that?
Well, the most obvious class of situations I can think of would be when the initial ("unprimed") value of the check condition is the same as when you want to exit. This means that you need to execute the loop body once to prime the condition to a non-exiting value, and then perform the actual repetition based on that condition. What with programmers being so lazy, someone decided to wrap this up in a control structure.
So for example, reading characters from a serial port with a timeout might take the form (in Python):
response_buffer = []
char_read = port.read(1)
while char_read:
response_buffer.append(char_read)
char_read = port.read(1)
# When there's nothing to read after 1s, there is no more data
response = ''.join(response_buffer)
Note the duplication of code: char_read = port.read(1). If Python had a do ... while loop, I might have used:
do:
char_read = port.read(1)
response_buffer.append(char_read)
while char_read
The added benefit for languages that create a new scope for loops: char_read does not pollute the function namespace. But note also that there is a better way to do this, and that is by using Python's None value:
response_buffer = []
char_read = None
while char_read != '':
char_read = port.read(1)
response_buffer.append(char_read)
response = ''.join(response_buffer)
So here's the crux of my point: in languages with nullable types, the situation initial_value == exit_value arises far less frequently, and that may be why you do not encounter it. I'm not saying it never happens, because there are still times when a function will return None to signify a valid condition. But in my hurried and briefly-considered opinion, this would happen a lot more if the languages you used did not allow for a value that signifies: this variable has not been initialised yet.
This is not perfect reasoning: in reality, now that null-values are common, they simply form one more element of the set of valid values a variable can take. But practically, programmers have a way to distinguish between a variable being in sensible state, which may include the loop exit state, and it being in an uninitialised state.
I used them a fair bit when I was in school, but not so much since.
In theory they are useful when you want the loop body to execute once before the exit condition check. The problem is that for the few instances where I don't want the check first, typically I want the exit check in the middle of the loop body rather than at the very end. In that case, I prefer to use the well-known for (;;) with an if (condition) exit; somewhere in the body.
In fact, if I'm a bit shaky on the loop exit condition, sometimes I find it useful to start writing the loop as a for (;;) {} with an exit statement where needed, and then when I'm done I can see if it can be "cleaned up" by moving initilizations, exit conditions, and/or increment code inside the for's parentheses.
A situation where you always need to run a piece of code once, and depending on its result, possibly more times. The same can be produced with a regular while loop as well.
rc = get_something();
while (rc == wrong_stuff)
{
rc = get_something();
}
do
{
rc = get_something();
}
while (rc == wrong_stuff);
It's as simple as that:
precondition vs postcondition
while (cond) {...} - precondition, it executes the code only after checking.
do {...} while (cond) - postcondition, code is executed at least once.
Now that you know the secret .. use them wisely :)
do while is if you want to run the code block at least once. while on the other hand won't always run depending on the criteria specified.
I see that this question has been adequately answered, but would like to add this very specific use case scenario. You might start using do...while more frequently.
do
{
...
} while (0)
is often used for multi-line #defines. For example:
#define compute_values \
area = pi * r * r; \
volume = area * h
This works alright for:
r = 4;
h = 3;
compute_values;
-but- there is a gotcha for:
if (shape == circle) compute_values;
as this expands to:
if (shape == circle) area = pi *r * r;
volume = area * h;
If you wrap it in a do ... while(0) loop it properly expands to a single block:
if (shape == circle)
do
{
area = pi * r * r;
volume = area * h;
} while (0);
The answers so far summarize the general use for do-while. But the OP asked for an example, so here is one: Get user input. But the user's input may be invalid - so you ask for input, validate it, proceed if it's valid, otherwise repeat.
With do-while, you get the input while the input is not valid. With a regular while-loop, you get the input once, but if it's invalid, you get it again and again until it is valid. It's not hard to see that the former is shorter, more elegant, and simpler to maintain if the body of the loop grows more complex.
I've used it for a reader that reads the same structure multiple times.
using(IDataReader reader = connection.ExecuteReader())
{
do
{
while(reader.Read())
{
//Read record
}
} while(reader.NextResult());
}
I can't imagine how you've gone this long without using a do...while loop.
There's one on another monitor right now and there are multiple such loops in that program. They're all of the form:
do
{
GetProspectiveResult();
}
while (!ProspectIsGood());
I like to understand these two as:
while -> 'repeat until',
do ... while -> 'repeat if'.
I've used a do while when I'm reading a sentinel value at the beginning of a file, but other than that, I don't think it's abnormal that this structure isn't too commonly used--do-whiles are really situational.
-- file --
5
Joe
Bob
Jake
Sarah
Sue
-- code --
int MAX;
int count = 0;
do {
MAX = a.readLine();
k[count] = a.readLine();
count++;
} while(count <= MAX)
Here's my theory why most people (including me) prefer while(){} loops to do{}while(): A while(){} loop can easily be adapted to perform like a do..while() loop while the opposite is not true. A while loop is in a certain way "more general". Also programmers like easy to grasp patterns. A while loop says right at start what its invariant is and this is a nice thing.
Here's what I mean about the "more general" thing. Take this do..while loop:
do {
A;
if (condition) INV=false;
B;
} while(INV);
Transforming this in to a while loop is straightforward:
INV=true;
while(INV) {
A;
if (condition) INV=false;
B;
}
Now, we take a model while loop:
while(INV) {
A;
if (condition) INV=false;
B;
}
And transform this into a do..while loop, yields this monstrosity:
if (INV) {
do
{
A;
if (condition) INV=false;
B;
} while(INV)
}
Now we have two checks on opposite ends and if the invariant changes you have to update it on two places. In a certain way do..while is like the specialized screwdrivers in the tool box which you never use, because the standard screwdriver does everything you need.
I am programming about 12 years and only 3 months ago I have met a situation where it was really convenient to use do-while as one iteration was always necessary before checking a condition. So guess your big-time is ahead :).
It is a quite common structure in a server/consumer:
DOWHILE (no shutdown requested)
determine timeout
wait for work(timeout)
IF (there is work)
REPEAT
process
UNTIL(wait for work(0 timeout) indicates no work)
do what is supposed to be done at end of busy period.
ENDIF
ENDDO
the REPEAT UNTIL(cond) being a do {...} while(!cond)
Sometimes the wait for work(0) can be cheaper CPU wise (even eliminating the timeout calculation might be an improvement with very high arrival rates). Moreover, there are many queuing theory results that make the number served in a busy period an important statistic. (See for example Kleinrock - Vol 1.)
Similarly:
DOWHILE (no shutdown requested)
determine timeout
wait for work(timeout)
IF (there is work)
set throttle
REPEAT
process
UNTIL(--throttle<0 **OR** wait for work(0 timeout) indicates no work)
ENDIF
check for and do other (perhaps polled) work.
ENDDO
where check for and do other work may be exorbitantly expensive to put in the main loop or perhaps a kernel that does not support an efficient waitany(waitcontrol*,n) type operation or perhaps a situation where a prioritized queue might starve the other work and throttle is used as starvation control.
This type of balancing can seem like a hack, but it can be necessary. Blind use of thread pools would entirely defeat the performance benefits of the use of a caretaker thread with a private queue for a high updating rate complicated data structure as the use of a thread pool rather than a caretaker thread would require thread-safe implementation.
I really don't want to get into a debate about the pseudo code (for example, whether shutdown requested should be tested in the UNTIL) or caretaker threads versus thread pools - this is just meant to give a flavor of a particular use case of the control flow structure.
This is my personal opinion, but this question begs for an answer rooted in experience:
I have been programming in C for 38 years, and I never use do / while loops in regular code.
The only compelling use for this construct is in macros where it can wrap multiple statements into a single statement via a do { multiple statements } while (0)
I have seen countless examples of do / while loops with bogus error detection or redundant function calls.
My explanation for this observation is programmers tend to model problems incorrectly when they think in terms of do / while loops. They either miss an important ending condition or they miss the possible failure of the initial condition which they move to the end.
For these reasons, I have come to believe that where there is a do / while loop, there is a bug, and I regularly challenge newbie programmers to show me a do / while loop where I cannot spot a bug nearby.
This type of loop can be easily avoided: use a for (;;) { ... } and add the necessary termination tests where they are appropriate. It is quite common that there need be more than one such test.
Here is a classic example:
/* skip the line */
do {
c = getc(fp);
} while (c != '\n');
This will fail if the file does not end with a newline. A trivial example of such a file is the empty file.
A better version is this:
int c; // another classic bug is to define c as char.
while ((c = getc(fp)) != EOF && c != '\n')
continue;
Alternately, this version also hides the c variable:
for (;;) {
int c = getc(fp);
if (c == EOF || c == '\n')
break;
}
Try searching for while (c != '\n'); in any search engine, and you will find bugs such as this one (retrieved June 24, 2017):
In ftp://ftp.dante.de/tex-archive/biblio/tib/src/streams.c , function getword(stream,p,ignore), has a do / while and sure enough at least 2 bugs:
c is defined as a char and
there is a potential infinite loop while (c!='\n') c=getc(stream);
Conclusion: avoid do / while loops and look for bugs when you see one.
while loops check the condition before the loop, do...while loops check the condition after the loop. This is useful is you want to base the condition on side effects from the loop running or, like other posters said, if you want the loop to run at least once.
I understand where you're coming from, but the do-while is something that most use rarely, and I've never used myself. You're not doing it wrong.
You're not doing it wrong. That's like saying someone is doing it wrong because they've never used the byte primitive. It's just not that commonly used.
The most common scenario I run into where I use a do/while loop is in a little console program that runs based on some input and will repeat as many times as the user likes. Obviously it makes no sense for a console program to run no times; but beyond the first time it's up to the user -- hence do/while instead of just while.
This allows the user to try out a bunch of different inputs if desired.
do
{
int input = GetInt("Enter any integer");
// Do something with input.
}
while (GetBool("Go again?"));
I suspect that software developers use do/while less and less these days, now that practically every program under the sun has a GUI of some sort. It makes more sense with console apps, as there is a need to continually refresh the output to provide instructions or prompt the user with new information. With a GUI, in contrast, the text providing that information to the user can just sit on a form and never need to be repeated programmatically.
I use do-while loops all the time when reading in files. I work with a lot of text files that include comments in the header:
# some comments
# some more comments
column1 column2
1.234 5.678
9.012 3.456
... ...
i'll use a do-while loop to read up to the "column1 column2" line so that I can look for the column of interest. Here's the pseudocode:
do {
line = read_line();
} while ( line[0] == '#');
/* parse line */
Then I'll do a while loop to read through the rest of the file.
Being a geezer programmer, many of my school programming projects used text menu driven interactions. Virtually all used something like the following logic for the main procedure:
do
display options
get choice
perform action appropriate to choice
while choice is something other than exit
Since school days, I have found that I use the while loop more frequently.
One of the applications I have seen it is in Oracle when we look at result sets.
Once you a have a result set, you first fetch from it (do) and from that point on.. check if the fetch returns an element or not (while element found..) .. The same might be applicable for any other "fetch-like" implementations.
I 've used it in a function that returned the next character position in an utf-8 string:
char *next_utf8_character(const char *txt)
{
if (!txt || *txt == '\0')
return txt;
do {
txt++;
} while (((signed char) *txt) < 0 && (((unsigned char) *txt) & 0xc0) == 0xc0)
return (char *)txt;
}
Note that, this function is written from mind and not tested. The point is that you have to do the first step anyway and you have to do it before you can evaluate the condition.
Any sort of console input works well with do-while because you prompt the first time, and re-prompt whenever the input validation fails.
Even though there are plenty of answers here is my take. It all comes down to optimalization. I'll show two examples where one is faster then the other.
Case 1: while
string fileName = string.Empty, fullPath = string.Empty;
while (string.IsNullOrEmpty(fileName) || File.Exists(fullPath))
{
fileName = Guid.NewGuid().ToString() + fileExtension;
fullPath = Path.Combine(uploadDirectory, fileName);
}
Case 2: do while
string fileName = string.Empty, fullPath = string.Empty;
do
{
fileName = Guid.NewGuid().ToString() + fileExtension;
fullPath = Path.Combine(uploadDirectory, fileName);
}
while (File.Exists(fullPath));
So there two will do the exact same things. But there is one fundamental difference and that is that the while requires an extra statement to enter the while. Which is ugly because let's say every possible scenario of the Guid class has already been taken except for one variant. This means I'll have to loop around 5,316,911,983,139,663,491,615,228,241,121,400,000 times.
Every time I get to the end of my while statement I will need to do the string.IsNullOrEmpty(fileName) check. So this would take up a little bit, a tiny fraction of CPU work. But do this very small task times the possible combinations the Guid class has and we are talking about hours, days, months or extra time?
Of course this is an extreme example because you probably wouldn't see this in production. But if we would think about the YouTube algorithm, it is very well possible that they would encounter the generation of an ID where some ID's have already been taken. So it comes down to big projects and optimalization.
Even in educational references you barely would find a do...while example. Only recently, after reading Ethan Brown beautiful book, Learning JavaScript I encountered one do...while well defined example. That's been said, I believe it is OK if you don't find application for this structure in you routine job.
It's true that do/while loops are pretty rare. I think this is because a great many loops are of the form
while(something needs doing)
do it;
In general, this is an excellent pattern, and it has the usually-desirable property that if nothing needs doing, the loop runs zero times.
But once in a while, there's some fine reason why you definitely want to make at least one trip through the loop, no matter what. My favorite example is: converting an integer to its decimal representation as a string, that is, implementing printf("%d"), or the semistandard itoa() function.
To illustrate, here is a reasonably straightforward implementation of itoa(). It's not quite the "traditional" formulation; I'll explain it in more detail below if anyone's curious. But the key point is that it embodies the canonical algorithm, repeatedly dividing by 10 to pick off digits from the right, and it's written using an ordinary while loop... and this means it has a bug.
#include <stddef.h>
char *itoa(unsigned int n, char buf[], int bufsize)
{
if(bufsize < 2) return NULL;
char *p = &buf[bufsize];
*--p = '\0';
while(n > 0) {
if(p == buf) return NULL;
*--p = n % 10 + '0';
n /= 10;
}
return p;
}
If you didn't spot it, the bug is that this code returns nothing — an empty string — if you ask it to convert the integer 0. So this is an example of a case where, when there's "nothing" to do, we don't want the code to do nothing — we always want it to produce at least one digit. So we always want it to make at least one trip through the loop. So a do/while loop is just the ticket:
do {
if(p == buf) return NULL;
*--p = n % 10 + '0';
n /= 10;
} while(n > 0);
So now we have a loop that usually stops when n reaches 0, but if n is initially 0 — if you pass in a 0 — it returns the string "0", as desired.
As promised, here's a bit more information about the itoa function in this example. You pass it arguments which are: an int to convert (actually, an unsigned int, so that we don't have to worry about negative numbers); a buffer to render into; and the size of that buffer. It returns a char * pointing into your buffer, pointing at the beginning of the rendered string. (Or it returns NULL if it discovers that the buffer you gave it wasn't big enough.) The "nontraditional" aspect of this implementation is that it fills in the array from right to left, meaning that it doesn't have to reverse the string at the end — and also meaning that the pointer it returns to you is usually not to the beginning of the buffer. So you have to use the pointer it returns to you as the string to use; you can't call it and then assume that the buffer you handed it is the string you can use.
Finally, for completeness, here is a little test program to test this version of itoa with.
#include <stdio.h>
#include <stdlib.h>
int main(int argc, char *argv[])
{
int n;
if(argc > 1)
n = atoi(argv[1]);
else {
printf("enter a number: "); fflush(stdout);
if(scanf("%d", &n) != 1) return EXIT_FAILURE;
}
if(n < 0) {
fprintf(stderr, "sorry, can't do negative numbers yet\n");
return EXIT_FAILURE;
}
char buf[20];
printf("converted: %s\n", itoa(n, buf, sizeof(buf)));
return EXIT_SUCCESS;
}
I ran across this while researching the proper loop to use for a situation I have. I believe this will fully satisfy a common situation where a do.. while loop is a better implementation than a while loop (C# language, since you stated that is your primary for work).
I am generating a list of strings based on the results of an SQL query. The returned object by my query is an SQLDataReader. This object has a function called Read() which advances the object to the next row of data, and returns true if there was another row. It will return false if there is not another row.
Using this information, I want to return each row to a list, then stop when there is no more data to return. A Do... While loop works best in this situation as it ensures that adding an item to the list will happen BEFORE checking if there is another row. The reason this must be done BEFORE checking the while(condition) is that when it checks, it also advances. Using a while loop in this situation would cause it to bypass the first row due to the nature of that particular function.
In short:
This won't work in my situation.
//This will skip the first row because Read() returns true after advancing.
while (_read.NextResult())
{
list.Add(_read.GetValue(0).ToString());
}
return list;
This will.
//This will make sure the currently read row is added before advancing.
do
{
list.Add(_read.GetValue(0).ToString());
}
while (_read.NextResult());
return list;

Different ways of writing the "if" statement [closed]

Closed. This question is opinion-based. It is not currently accepting answers.
Want to improve this question? Update the question so it can be answered with facts and citations by editing this post.
Closed 8 years ago.
Improve this question
I have seen different ways of writing an if statement.
Which one do you prefer and why?
Example 1:
if (val % 2 == 1){output = “Number is odd”;}else{output = “Number is even”;}
Example 2:
if (val % 2 == 1)
{
output = “Number is odd”;
}
else
{
output = “Number is even”;
}
Example 3:
if (val % 2 == 1)
output = “Number is odd”;
else
output = “Number is even”;
Example 4:
if (val % 2 == 1){
output = “Number is odd”;
} else {
output = “Number is even”;
}
Similar question:
Why is it considered a bad practice to omit curly braces?
For cases like this, there's also the conditional operator:
output = (val % 2 == 1) ? "Number is odd" : "Number is even";
If you're definitely going to use an "if" I'd use version 2 or version 4, depending on the rest of your bracing style. (At work I use 4; for personal projects I use 2.) The main thing is that there are braces even around single statements.
BTW, for testing parity it's slightly quicker to use:
if ((val & 1) == 1)
Version 2. I always include the brackets because if you ever need to put more than one line under the conditional you won't have to worry about putting the brackets in at a later date. That, and it makes sure that ALL of your if statements have the same structure which helps when you're scanning code for a certain if statement.
I use version 2.
One reason to use curly braces becomes more clear if you don't have an else.
if(SomeCondition)
{
DoSomething();
}
If you then need to add another line of code, you are less likely to have an issue:
if(SomeCondition)
{
DoSomething();
DoSomethingElse();
}
Without the braces you might have done this:
if(SomeCondition)
DoSomething();
DoSomethingElse();
I personally prefer 3. The extra curly braces just add too much unnecessary visual noise and whitespace.
I can somewhat see the reasoning for 2/4 to reduce bugs, but I have personally never had a bug because thinking extra lines were inside an if statement. I do use C# and visual studio so my code always stays pretty well formatted. This could however be a problem if I was a more notepad style programmer.
I prefer #2. Easy readability.
None of the above.
If my execution block only has one line (even if it's a huge for statement) then I don't use braces, but I do indent it, similar to #3
if (num > 3)
print "num is greater than 3";
else
print "num is not greater than 3";
An example with multiple statements that do not need curly braces:
if (num > 3)
for (int i = 0; i < 100)
print i + "\n";
else
print "booya!";
That said, Jon Skeet's response in this question is the best
It is more important to be consistent than to select the best.
These styles have different advantages and drawbacks, but none is as bad as mixing them within a project or even a compilation unit or within a function.
Ternary operator is the obvious choice for this specific code. For simple single statement if/else's that can't be otherwise expressed, I'd prefer a properly indented case 3:
if (val % 2 == 1)
output = “Number is odd”;
else
output = “Number is even”;
I understand the motivation behind "always use braces", but I've personally never been bitten by their omission (OK, once. With a macro.)
From the above styles, I'd pick (2). (4) would be ok if "properly" indented.
(1) I'd attribute to a young developer who hopefully will grow out of "compact code", or someone who can't afford a decent monitor. Still, I'd go with it if it was the local style.
I use version 2.
I agree with the ternary operator. Very under utilized in code that I come across, and I think it is much easier and nicer to read than all the extra brackets and indents it takes to write out an if/else statement.
It's strange that nobody mentioned this:
if ( x == 1) {
...
}
else {
...
}
To me, this is the only correct way, of course :-)
I prefer 4 myself, but I think 2 is definitely good too.
Personally, there are two methods that I find being good-practice:
For if-blocks, there's only this way:
if(...)
{
// ...
}
else if (...)
{
// ...
}
else
{
// ...
}
This is the safest and most comprehensible way to write if-else-blocks.
For one liners (true one liners that are comprehensible on one line), you can use the ternary operator.
var objectInstance = condition ? foo : bar;
// Or the binary operator when dealing with null values
var objectInstance = condition ?? foo;
You shouldn't call methods that do something that do not help the current assignation.
I wouldn't use any other way than those stated above.
Version #2 for me - easiest to see, easiest to read, easy to see where the if starts and ends, same for else, you dont have to worry about putting in brackets if you want to add more than one statement.
I would use them in the following order:
1) the Ternary operator
2) example 3, but indented properly
3) either 2 or 4, they are basically the same. I would go with whatever the general styl was where I worked.
I agree with what jake said about omitting the unnecessary curly braces. I have never caused or seen a bug caused by new code being added and someone thinking they were part of an if statement but they weren't because of the lack of curly braces. If someone ever did do that, I would ridicule them mercilessly.
You'd have to torture me to get me to use number 1.
I'd always use #2. #4 is a truly awful layout and would only be done by someone who believes that a method must be one screen size in length and will do anything to cram it in, rather than refactor the code!!!
Personally I prefer version 2. But since it's only formating it doesn't matter. Use which is best readable for you and your team members!
I use a #2 with a minor change
if (condition1)
{
doStuff();
} else
{
doSomethingElse();
}
Single short statements:
if (condition) output = firstChoice;
else doSomethingElse();
Multiple or long statements
if (condition) {
output = firstChoice;
...
} else {
...
}
using with the braces is suggested, I have seen some issue with the if else statement without braces ,(I don't remember exactly) i.e. Statement under if was not executed, when I added the same with braces then only worked.( Using Visual studio & C#4.0).
Example 2 is without a doubt the least error prone approach. Please see this answer I gave to a similar question for the reason why:
What is the prefered style for single decision and action statements?
Although the Visual Studio default for brace usage is to put braces on a newline (my preferred method), the Framework Design Guidelines book (first edition) by Krzysztof Cwalina and Brad Abrams propose a different convention, example 4, placing the opening brace at the end of a preceding if statement (Page 274). They also state "Avoid omitting braces, even if the language allows it".
Not having the second edition at hand, I couldn't say if these conventions have changed or not.

Categories

Resources