Is it possible to copy this functionality of offering an abstract method in an enum that inner enum constants must override and provide functionality to?
public enum Logic {
PAY_DAY {
#Override
public void acceptPlayer(Player player) {
// Perform logic
}
},
COLLECT_CASH {
#Override
public void acceptPlayer(Player player) {
// Perform logic
}
}
,
ETC_ETC {
#Override
public void acceptPlayer(Player player) {
// Perform logic
}
};
public abstract void acceptPlayer(Player player);
}
If it can't::
Could you provide a way which I can implement lots of specific logic in a similar manner?
Edit :: I know that enums in C# are not really 'objects' like they are in Java, but I wish to perform similar logic.
Edit :: To clarify, I do not want to provide concrete classes for each specific bit of logic. IE, creating an interface acceptPlayer and creating many new classes is not appropiate
Here's one option - not using enums, but something similar-ish...
public abstract class Logic
{
public static readonly Logic PayDay = new PayDayImpl();
public static readonly Logic CollectCash = new CollectCashImpl();
public static readonly Logic EtcEtc = new EtcEtcImpl();
// Prevent other classes from subclassing
private Logic() {}
public abstract void AcceptPlayer(Player player);
private class PayDayImpl : Logic
{
public override void AcceptPlayer(Player player)
{
// Perform logic
}
}
private class CollectCashImpl : Logic
{
public override void AcceptPlayer(Player player)
{
// Perform logic
}
}
private class EtcEtcImpl : Logic
{
public override void AcceptPlayer(Player player)
{
// Perform logic
}
}
}
You say that you don't want to provide a concrete class for each bit of logic - but that's basically what you'd be doing in Java anyway, it's just that the class would be slightly hidden from you.
Here's an alternative approach using delegates for the varying behaviour:
public sealed class Logic
{
public static readonly Logic PayDay = new Logic(PayDayAccept);
public static readonly Logic CollectCash = new Logic(CollectCashAccept);
public static readonly Logic EtcEtc = new Logic(player => {
// An alternative using lambdas...
});
private readonly Action<Player> accept;
private Logic(Action<Player> accept)
{
this.accept = accept;
}
public void AcceptPlayer(Player player)
{
accept(player);
}
private static void PayDayAccept(Player player)
{
// Logic here
}
private static void CollectCashAccept(Player player)
{
// Logic here
}
}
In both cases, you still get a fixed set of values - but you won't be able to switch on them. You could potentially have a separate "real" enum, but that would be a bit messy.
If you don't want to use interfaces and a class hierarchy, you could use delegates, something like :
public class Player{}
public static class Logic
{
public static readonly Action<Player> PAY_DAY = p => Console.WriteLine( "Pay day : " + p.ToString());
public static readonly Action<Player> COLLECT_CASH = p=> Console.WriteLine(p.ToString ());
public static void AcceptPlayer( this Action<Player> PlayerAction, Player ActingPlayer )
{
PlayerAction(ActingPlayer);
}
}
class MainClass
{
public static void Main (string[] args)
{
var player = new Player();
Logic.PAY_DAY.AcceptPlayer( player );
}
}
I like the advantages of Java enums and wanted to try to simulate them. I have looked at many posts here and could not find a simple way to do this so I came up with the following. I am not a professional so please forgive me for any stupid mistakes.
This, I beleive, provides almost all of the functionality to a Java enum (I did not write a clone method).
Also, I apologize for the length of this post.
This is the abstract class:
#region + Using Directives
using System;
using System.Collections;
using System.Collections.Generic;
using System.ComponentModel;
using TestEnum;
#endregion
namespace TestEnum
{
public abstract class ACsEnum<T, U, V> :
IComparable<ACsEnum<T, U, V>>
where T : ACsEnum<T, U, V>
{
static ACsEnum()
{
// the static constructor causes
// early creation of the object
Count = 0;
}
// constructor
protected ACsEnum(Enum m, V v)
{
Enum = m;
Value = v;
Ordinal = Count++;
}
#region Admin Private fields
// the list of members
protected static readonly List<T> members = new List<T>();
#endregion
#region Admin Public Properties
// the enum associated with this class
public Enum Enum { get; }
// number of members
public static int Count { get; private set; }
// ordinal number of this member (zero based)
public int Ordinal { get; }
// a name of this member
public string Name => ToString();
// the value attached to the enum
public U Amount => (U) (IConvertible) Enum;
// the value of this member - this value is
// returned from the implicit conversion
public V Value { get; }
#endregion
#region Admin Operator
public static implicit operator V (ACsEnum<T, U, V> m)
{
return m.Value;
}
#endregion
#region Admin Functions
// compare
public int CompareTo(ACsEnum<T, U, V> other)
{
if (other.GetType() != typeof(T)) { return -1; }
return Ordinal.CompareTo(other.Ordinal);
}
// determine if the name provided is a member
public static bool IsMember(string name, bool caseSensitive)
{
return Find(name, caseSensitive) != null;
}
// finds and returns a member
public static T Find (string name, bool caseSensitive = false)
{
if (caseSensitive)
{
return members.Find(s => s.ToString().Equals(name));
}
else
{
return members.Find(s => s.ToString().ToLower().Equals(name.ToLower()));
}
}
// allow enumeration over the members
public static IEnumerable Members()
{
foreach (T m in members)
{
yield return m;
}
}
// get the members as an array
public static T[] Values()
{
return members.ToArray();
}
// same as Find but throws an exception
public static T ValueOf(string name)
{
T m = Find(name, true);
if (m != null) return m;
throw new InvalidEnumArgumentException();
}
#endregion
#region Admin Overrides
public override bool Equals(object obj)
{
if (obj != null && obj.GetType() != typeof(T)) return false;
return ((T) obj).Ordinal == Ordinal ;
}
#endregion
}
}
This is an extension method to help with enum's:
namespace TestEnum
{
// special enum extension that gets the value of an enum
//
public static class EnumEx
{
public static dynamic Value(this Enum e)
{
switch (e.GetTypeCode())
{
case TypeCode.Byte:
{
return (byte) (IConvertible) e;
}
case TypeCode.Int16:
{
return (short) (IConvertible) e;
}
case TypeCode.Int32:
{
return (int) (IConvertible) e;
}
case TypeCode.Int64:
{
return (long) (IConvertible) e;
}
case TypeCode.UInt16:
{
return (ushort) (IConvertible) e;
}
case TypeCode.UInt32:
{
return (uint) (IConvertible) e;
}
case TypeCode.UInt64:
{
return (ulong) (IConvertible) e;
}
case TypeCode.SByte:
{
return (sbyte) (IConvertible) e;
}
}
return 0;
}
}
}
This is the actual "enum" class:
namespace TestEnum
{
public class Planet : ACsEnum<Planet, byte, double>
{
#region Base enum
// this holds the position from the sun
public enum planet : byte
{
MERCURY = 1,
VENUS = 2,
EARTH = 3,
MARS = 4,
JUPITER = 5,
SATURN = 6,
URANUS = 7,
NEPTUNE = 8,
PLUTO = 9
}
#endregion
#region ctror
// planet enum, mass, radius, orbital period (earth days)
private Planet( planet p, double m, double r, double v) : base(p, v)
{
Mass = m;
Radius = r;
members.Add(this);
}
#endregion
#region enum specific Properties
public double Mass { get; }
public double Radius { get; }
#endregion
#region enum specific Functions
public static double G = 6.67300E-11;
public double SurfaceGravity()
{
return (G * Mass) / (Radius * Radius);
}
public double SurfaceWeight(double otherMass)
{
return otherMass * SurfaceGravity();
}
#endregion
#region Overrides
public override string ToString() => Enum.ToString();
#endregion
#region Members
// enum mass radius "year"
public static readonly Planet MERCURY = new Planet(planet.MERCURY, 3.303e+23 , 2.4397e6 , 88.0);
public static readonly Planet VENUS = new Planet(planet.VENUS , 4.869e+24 , 6.0518e6 , 224.7);
public static readonly Planet EARTH = new Planet(planet.EARTH , 5.976e+24 , 6.37814e6 , 365.2);
public static readonly Planet MARS = new Planet(planet.MARS , 6.421e+23 , 3.3972e6 , 687.0);
public static readonly Planet JUPITER = new Planet(planet.JUPITER, 1.9e+27 , 7.1492e7 , 4331.0);
public static readonly Planet SATURN = new Planet(planet.SATURN , 5.688e+26 , 6.0268e7 , 10747.0);
public static readonly Planet URANUS = new Planet(planet.NEPTUNE, 8.686e+25 , 2.5559e7 , 30589.0);
public static readonly Planet NEPTUNE = new Planet(planet.URANUS , 1.024e+26 , 2.4746e7 , 59800.0);
public static readonly Planet PLUTO = new Planet(planet.PLUTO , 11.30900e+22 , 1.187e6 , 90560.0);
#endregion
}
}
Lastly, here is the usage example:
using System;
using static TestEnum.Planet;
namespace TestEnum
{
class Program
{
static void Main(string[] args)
{
Program p = new Program();
p.EnumTest();
Console.WriteLine("\n\nWaiting ...: ");
Console.ReadKey();
}
private void EnumTest()
{
// test:
// each admin property: count, ordinal, value, name
// each unique property: APlanet, Mass, Radius, G
// implicit operator
// admin functions:
// admin overrides:
// unique properties
// unique functions
Console.WriteLine("\nadmin properties\n");
Console.WriteLine("count | " + Planet.Count + " (== 9)");
Console.WriteLine("ordinal | " + MERCURY.Ordinal + " (== 0)");
Console.WriteLine("name | " + MERCURY.Name + " (== MERCURY)");
Console.WriteLine("value | " + MERCURY.Value + " (== 88 Mercury year)");
double x = EARTH;
Console.WriteLine("\nadmin Operator\n");
Console.WriteLine("Year | " + x + " (== 365.2 year)");
Console.WriteLine("\nadmin functions\n");
Console.WriteLine("Compare to| " + MERCURY.CompareTo(EARTH) + " (== -1)");
Console.WriteLine("IsMember | " + Planet.IsMember("EARTH", true) + " (== true)");
Console.WriteLine("Find | " + Planet.Find("EARTH", true).Name + " (== EARTH)");
Console.WriteLine("ValueOf | " + Planet.ValueOf("EARTH").Name + " (== EARTH)");
Console.WriteLine("Equals | " + EARTH.Equals(MERCURY) + " (== false => EARTH != MERCURY)");
Console.WriteLine("\n\nunique admin\n");
Console.WriteLine("G | " + Planet.G);
Console.WriteLine("\nunique properties\n");
Console.WriteLine("Enum | " + MERCURY.Enum);
Console.WriteLine("Mass | " + MERCURY.Mass);
Console.WriteLine("Radius | " + MERCURY.Radius);
Console.WriteLine("amount | " + MERCURY.Amount + " (== 1 MERCURY first planet)");
Console.WriteLine("\n\nunique functions");
// typical Java enum usage example
double earthWeight = 175; // lbs
double mass = earthWeight / EARTH.SurfaceGravity();
Console.WriteLine("\ncalc weight via foreach\n");
foreach (Planet p in Planet.Members())
{
Console.WriteLine("Your weight on {0} is {1:F5}",
p.Name, p.SurfaceWeight(mass));
}
// end, typical Java enum usage example
// test Values
Planet[] planets = Planet.Values();
Console.WriteLine("\ncalc weight via array\n");
foreach (Planet p in planets)
{
Console.WriteLine("Your weight on {0} is {1:F5}",
p.Name, p.SurfaceWeight(mass));
}
// test switch
Planet planet = PLUTO;
Console.WriteLine("\nuse switch - looking for PLUTO\n");
switch (planet.Enum)
{
case Planet.planet.EARTH:
{
Console.WriteLine("found EARTH\n");
break;
}
case Planet.planet.JUPITER:
{
Console.WriteLine("found JUPITER\n");
break;
}
case Planet.planet.PLUTO:
{
Console.WriteLine("found PLUTO\n");
break;
}
}
// these will use implicit value
Console.WriteLine("\ntest comparison checks\n");
if (EARTH == EARTH)
{
Console.WriteLine("\npassed - EARTH == EARTH\n");
}
if (MERCURY < EARTH)
{
Console.WriteLine("passed - MERCURY < EARTH\n");
}
if (PLUTO > EARTH)
{
Console.WriteLine("passed - PLUTO > EARTH\n");
}
// test enum extension
Console.WriteLine("\nbonus - enum extension\n");
Console.WriteLine("PLUTO AsShort| " + Planet.planet.PLUTO.Value() + " (9th planet)");
// test ValueOf failure
Console.WriteLine("\n\nValueOf that fails\n");
try
{
planet = Planet.ValueOf("xxx");
}
catch (Exception e)
{
Console.WriteLine(e);
}
}
}
}
I hope this helps anyone who wants to provide added features to enum's and maybe this will help someone convert their program from Java to C#
In c#, you do this with classes, not enums. Create a base class with the virtual method you want to override.
Each member of the Java enum will be a sub-class with the implementation you want.
Finally, create a read-only static field in the base class for each enum member, initializing it with an instance of the sub-class for that enum value.
Extending the answer by Jon Skeet I found a slightly other approach that even allows you individual behavior / data with an enum similar structure. It is maybe not a real answer to the question, because it does not fulfill:
Edit :: To clarify, I do not want to provide concrete classes for each specific bit of logic. IE, creating an interface acceptPlayer and creating many new classes is not appropiate
The following construct together with C# 7 gives a very enum like syntax:
public abstract class Logic
{
private Logic() { }
public abstract void acceptPlayer(Player player);
public sealed class PayDay : Logic
{
public PayDay(DateTime timeOfPayment)
{
TimeOfPayment = timeOfPayment;
}
public DateTime TimeOfPayment { get; }
public override void acceptPlayer(Player player)
{
// Perform logic
}
}
public sealed class CollectCash : Logic
{
public CollectCash(int amountOfMoney)
{
AmountOfMoney = amountOfMoney;
}
public int AmountOfMoney { get; }
public override void acceptPlayer(Player player)
{
// Perform logic
}
}
public sealed class EtcEtc : Logic
{
public override void acceptPlayer(Player player)
{
// Perform logic
}
};
}
The private constructor of the abstract Logic class and the sealed implementations guarantee that there is only a well defined set of options that are all part of the scope of the Logic class.
Creation looks somewhat unusual:
Logic logic = new Logic.PayDay(DateTime.Now);
But together with C# 7's Pattern Matching it even starts to feel like an enum:
switch (logic)
{
case Logic.PayDay payday:
var timeOfPayment = payday.TimeOfPayment;
// ...
break;
case Logic.CollectCash collectCash:
// ...
break;
// ...
}
And also other test logic is quite readable:
if (logic is Logic.EtcEtc)
{
// ...
}
Or if you need the casted instance:
if (logic is Logic.EtcEtc etcEtc)
{
// ...
}
Related
I have an enum in a low level namespace. I'd like to provide a class or enum in a mid level namespace that "inherits" the low level enum.
namespace low
{
public enum base
{
x, y, z
}
}
namespace mid
{
public enum consume : low.base
{
}
}
I'm hoping that this is possible, or perhaps some kind of class that can take the place of the enum consume which will provide a layer of abstraction for the enum, but still let an instance of that class access the enum.
Thoughts?
EDIT:
One of the reasons I haven't just switched this to consts in classes is that the low level enum is needed by a service that I must consume. I have been given the WSDLs and the XSDs, which define the structure as an enum. The service cannot be changed.
This is not possible. Enums cannot inherit from other enums. In fact all enums must actually inherit from System.Enum. C# allows syntax to change the underlying representation of the enum values which looks like inheritance, but in actuality they still inherit from System.enum.
See section 8.5.2 of the CLI spec for the full details. Relevant information from the spec
All enums must derive from System.Enum
Because of the above, all enums are value types and hence sealed
You can achieve what you want with classes:
public class Base
{
public const int A = 1;
public const int B = 2;
public const int C = 3;
}
public class Consume : Base
{
public const int D = 4;
public const int E = 5;
}
Now you can use these classes similar as when they were enums:
int i = Consume.B;
Update (after your update of the question):
If you assign the same int values to the constants as defined in the existing enum, then you can cast between the enum and the constants, e.g:
public enum SomeEnum // this is the existing enum (from WSDL)
{
A = 1,
B = 2,
...
}
public class Base
{
public const int A = (int)SomeEnum.A;
//...
}
public class Consume : Base
{
public const int D = 4;
public const int E = 5;
}
// where you have to use the enum, use a cast:
SomeEnum e = (SomeEnum)Consume.B;
The short answer is no. You can play a bit, if you want:
You can always do something like this:
private enum Base
{
A,
B,
C
}
private enum Consume
{
A = Base.A,
B = Base.B,
C = Base.C,
D,
E
}
But, it doesn't work all that great because Base.A != Consume.A
You can always do something like this, though:
public static class Extensions
{
public static T As<T>(this Consume c) where T : struct
{
return (T)System.Enum.Parse(typeof(T), c.ToString(), false);
}
}
In order to cross between Base and Consume...
You could also cast the values of the enums as ints, and compare them as ints instead of enum, but that kind of sucks too.
The extension method return should type cast it type T.
The solutions above using classes with int constants lack type-safety. I.e. you could invent new values actually not defined in the class.
Furthermore it is not possible for example to write a method taking one of these classes as input.
You would need to write
public void DoSomethingMeaningFull(int consumeValue) ...
However, there is a class based solution of the old days of Java, when there were no enums available. This provides an almost enum-like behaviour. The only caveat is that these constants cannot be used within a switch-statement.
public class MyBaseEnum
{
public static readonly MyBaseEnum A = new MyBaseEnum( 1 );
public static readonly MyBaseEnum B = new MyBaseEnum( 2 );
public static readonly MyBaseEnum C = new MyBaseEnum( 3 );
public int InternalValue { get; protected set; }
protected MyBaseEnum( int internalValue )
{
this.InternalValue = internalValue;
}
}
public class MyEnum : MyBaseEnum
{
public static readonly MyEnum D = new MyEnum( 4 );
public static readonly MyEnum E = new MyEnum( 5 );
protected MyEnum( int internalValue ) : base( internalValue )
{
// Nothing
}
}
[TestMethod]
public void EnumTest()
{
this.DoSomethingMeaningful( MyEnum.A );
}
private void DoSomethingMeaningful( MyBaseEnum enumValue )
{
// ...
if( enumValue == MyEnum.A ) { /* ... */ }
else if (enumValue == MyEnum.B) { /* ... */ }
// ...
}
Ignoring the fact that base is a reserved word you cannot do inheritance of enum.
The best thing you could do is something like that:
public enum Baseenum
{
x, y, z
}
public enum Consume
{
x = Baseenum.x,
y = Baseenum.y,
z = Baseenum.z
}
public void Test()
{
Baseenum a = Baseenum.x;
Consume newA = (Consume) a;
if ((Int32) a == (Int32) newA)
{
MessageBox.Show(newA.ToString());
}
}
Since they're all the same base type (ie: int) you could assign the value from an instance of one type to the other which a cast. Not ideal but it work.
This is what I did. What I've done differently is use the same name and the new keyword on the "consuming" enum. Since the name of the enum is the same, you can just mindlessly use it and it will be right. Plus you get intellisense. You just have to manually take care when setting it up that the values are copied over from the base and keep them sync'ed. You can help that along with code comments. This is another reason why in the database when storing enum values I always store the string, not the value. Because if you are using automatically assigned increasing integer values those can change over time.
// Base Class for balls
public class Ball
{
// keep synced with subclasses!
public enum Sizes
{
Small,
Medium,
Large
}
}
public class VolleyBall : Ball
{
// keep synced with base class!
public new enum Sizes
{
Small = Ball.Sizes.Small,
Medium = Ball.Sizes.Medium,
Large = Ball.Sizes.Large,
SmallMedium,
MediumLarge,
Ginormous
}
}
I know this answer is kind of late but this is what I ended up doing:
public class BaseAnimal : IEquatable<BaseAnimal>
{
public string Name { private set; get; }
public int Value { private set; get; }
public BaseAnimal(int value, String name)
{
this.Name = name;
this.Value = value;
}
public override String ToString()
{
return Name;
}
public bool Equals(BaseAnimal other)
{
return other.Name == this.Name && other.Value == this.Value;
}
}
public class AnimalType : BaseAnimal
{
public static readonly BaseAnimal Invertebrate = new BaseAnimal(1, "Invertebrate");
public static readonly BaseAnimal Amphibians = new BaseAnimal(2, "Amphibians");
// etc
}
public class DogType : AnimalType
{
public static readonly BaseAnimal Golden_Retriever = new BaseAnimal(3, "Golden_Retriever");
public static readonly BaseAnimal Great_Dane = new BaseAnimal(4, "Great_Dane");
// etc
}
Then I am able to do things like:
public void SomeMethod()
{
var a = AnimalType.Amphibians;
var b = AnimalType.Amphibians;
if (a == b)
{
// should be equal
}
// call method as
Foo(a);
// using ifs
if (a == AnimalType.Amphibians)
{
}
else if (a == AnimalType.Invertebrate)
{
}
else if (a == DogType.Golden_Retriever)
{
}
// etc
}
public void Foo(BaseAnimal typeOfAnimal)
{
}
Alternative solution
In my company, we avoid "jumping over projects" to get to non-common lower level projects. For instance, our presentation/API layer can only reference our domain layer, and the domain layer can only reference the data layer.
However, this is a problem when there are enums that need to be referenced by both the presentation and the domain layers.
Here is the solution that we have implemented (so far). It is a pretty good solution and works well for us. The other answers were hitting all around this.
The basic premise is that enums cannot be inherited - but classes can. So...
// In the lower level project (or DLL)...
public abstract class BaseEnums
{
public enum ImportanceType
{
None = 0,
Success = 1,
Warning = 2,
Information = 3,
Exclamation = 4
}
[Flags]
public enum StatusType : Int32
{
None = 0,
Pending = 1,
Approved = 2,
Canceled = 4,
Accepted = (8 | Approved),
Rejected = 16,
Shipped = (32 | Accepted),
Reconciled = (64 | Shipped)
}
public enum Conveyance
{
None = 0,
Feet = 1,
Automobile = 2,
Bicycle = 3,
Motorcycle = 4,
TukTuk = 5,
Horse = 6,
Yak = 7,
Segue = 8
}
Then, to "inherit" the enums in another higher level project...
// Class in another project
public sealed class SubEnums: BaseEnums
{
private SubEnums()
{}
}
This has three real advantages...
The enum definitions are automatically the same in both projects - by
definition.
Any changes to the enum definitions are automatically
echoed in the second without having to make any modifications to the
second class.
The enums are based on the same code - so the values can easily be compared (with some caveats).
To reference the enums in the first project, you can use the prefix of the class: BaseEnums.StatusType.Pending or add a "using static BaseEnums;" statement to your usings.
In the second project when dealing with the inherited class however, I could not get the "using static ..." approach to work, so all references to the "inherited enums" would be prefixed with the class, e.g. SubEnums.StatusType.Pending. If anyone comes up with a way to allow the "using static" approach to be used in the second project, let me know.
I am sure that this can be tweaked to make it even better - but this actually works and I have used this approach in working projects.
I also wanted to overload Enums and created a mix of the answer of 'Seven' on this page and the answer of 'Merlyn Morgan-Graham' on a duplicate post of this, plus a couple of improvements.
Main advantages of my solution over the others:
automatic increment of the underlying int value
automatic naming
This is an out-of-the-box solution and may be directly inserted into your project. It is designed to my needs, so if you don't like some parts of it, just replace them with your own code.
First, there is the base class CEnum that all custom enums should inherit from. It has the basic functionality, similar to the .net Enum type:
public class CEnum
{
protected static readonly int msc_iUpdateNames = int.MinValue;
protected static int ms_iAutoValue = -1;
protected static List<int> ms_listiValue = new List<int>();
public int Value
{
get;
protected set;
}
public string Name
{
get;
protected set;
}
protected CEnum ()
{
CommonConstructor (-1);
}
protected CEnum (int i_iValue)
{
CommonConstructor (i_iValue);
}
public static string[] GetNames (IList<CEnum> i_listoValue)
{
if (i_listoValue == null)
return null;
string[] asName = new string[i_listoValue.Count];
for (int ixCnt = 0; ixCnt < asName.Length; ixCnt++)
asName[ixCnt] = i_listoValue[ixCnt]?.Name;
return asName;
}
public static CEnum[] GetValues ()
{
return new CEnum[0];
}
protected virtual void CommonConstructor (int i_iValue)
{
if (i_iValue == msc_iUpdateNames)
{
UpdateNames (this.GetType ());
return;
}
else if (i_iValue > ms_iAutoValue)
ms_iAutoValue = i_iValue;
else
i_iValue = ++ms_iAutoValue;
if (ms_listiValue.Contains (i_iValue))
throw new ArgumentException ("duplicate value " + i_iValue.ToString ());
Value = i_iValue;
ms_listiValue.Add (i_iValue);
}
private static void UpdateNames (Type i_oType)
{
if (i_oType == null)
return;
FieldInfo[] aoFieldInfo = i_oType.GetFields (BindingFlags.Public | BindingFlags.Static);
foreach (FieldInfo oFieldInfo in aoFieldInfo)
{
CEnum oEnumResult = oFieldInfo.GetValue (null) as CEnum;
if (oEnumResult == null)
continue;
oEnumResult.Name = oFieldInfo.Name;
}
}
}
Secondly, here are 2 derived Enum classes. All derived classes need some basic methods in order to work as expected. It's always the same boilerplate code; I haven't found a way yet to outsource it to the base class. The code of the first level of inheritance differs slightly from all subsequent levels.
public class CEnumResult : CEnum
{
private static List<CEnumResult> ms_listoValue = new List<CEnumResult>();
public static readonly CEnumResult Nothing = new CEnumResult ( 0);
public static readonly CEnumResult SUCCESS = new CEnumResult ( 1);
public static readonly CEnumResult UserAbort = new CEnumResult ( 11);
public static readonly CEnumResult InProgress = new CEnumResult (101);
public static readonly CEnumResult Pausing = new CEnumResult (201);
private static readonly CEnumResult Dummy = new CEnumResult (msc_iUpdateNames);
protected CEnumResult () : base ()
{
}
protected CEnumResult (int i_iValue) : base (i_iValue)
{
}
protected override void CommonConstructor (int i_iValue)
{
base.CommonConstructor (i_iValue);
if (i_iValue == msc_iUpdateNames)
return;
if (this.GetType () == System.Reflection.MethodBase.GetCurrentMethod ().DeclaringType)
ms_listoValue.Add (this);
}
public static new CEnumResult[] GetValues ()
{
List<CEnumResult> listoValue = new List<CEnumResult> ();
listoValue.AddRange (ms_listoValue);
return listoValue.ToArray ();
}
}
public class CEnumResultClassCommon : CEnumResult
{
private static List<CEnumResultClassCommon> ms_listoValue = new List<CEnumResultClassCommon>();
public static readonly CEnumResult Error_InternalProgramming = new CEnumResultClassCommon (1000);
public static readonly CEnumResult Error_Initialization = new CEnumResultClassCommon ();
public static readonly CEnumResult Error_ObjectNotInitialized = new CEnumResultClassCommon ();
public static readonly CEnumResult Error_DLLMissing = new CEnumResultClassCommon ();
// ... many more
private static readonly CEnumResult Dummy = new CEnumResultClassCommon (msc_iUpdateNames);
protected CEnumResultClassCommon () : base ()
{
}
protected CEnumResultClassCommon (int i_iValue) : base (i_iValue)
{
}
protected override void CommonConstructor (int i_iValue)
{
base.CommonConstructor (i_iValue);
if (i_iValue == msc_iUpdateNames)
return;
if (this.GetType () == System.Reflection.MethodBase.GetCurrentMethod ().DeclaringType)
ms_listoValue.Add (this);
}
public static new CEnumResult[] GetValues ()
{
List<CEnumResult> listoValue = new List<CEnumResult> (CEnumResult.GetValues ());
listoValue.AddRange (ms_listoValue);
return listoValue.ToArray ();
}
}
The classes have been successfully tested with follwing code:
private static void Main (string[] args)
{
CEnumResult oEnumResult = CEnumResultClassCommon.Error_Initialization;
string sName = oEnumResult.Name; // sName = "Error_Initialization"
CEnum[] aoEnumResult = CEnumResultClassCommon.GetValues (); // aoEnumResult = {testCEnumResult.Program.CEnumResult[9]}
string[] asEnumNames = CEnum.GetNames (aoEnumResult);
int ixValue = Array.IndexOf (aoEnumResult, oEnumResult); // ixValue = 6
}
I realize I'm a bit late to this party, but here's my two cents.
We're all clear that Enum inheritance is not supported by the framework. Some very interesting workarounds have been suggested in this thread, but none of them felt quite like what I was looking for, so I had a go at it myself.
Introducing: ObjectEnum
You can check the code and documentation here: https://github.com/dimi3tron/ObjectEnum.
And the package here: https://www.nuget.org/packages/ObjectEnum
Or just install it: Install-Package ObjectEnum
In short, ObjectEnum<TEnum> acts as a wrapper for any enum. By overriding the GetDefinedValues() in subclasses, one can specify which enum values are valid for this specific class.
A number of operator overloads have been added to make an ObjectEnum<TEnum> instance behave as if it were an instance of the underlying enum, keeping in mind the defined value restrictions. This means you can easily compare the instance to an int or enum value, and thus use it in a switch case or any other conditional.
I'd like to refer to the github repo mentioned above for examples and further info.
I hope you find this useful. Feel free to comment or open an issue on github for further thoughts or comments.
Here are a few short examples of what you can do with ObjectEnum<TEnum>:
var sunday = new WorkDay(DayOfWeek.Sunday); //throws exception
var monday = new WorkDay(DayOfWeek.Monday); //works fine
var label = $"{monday} is day {(int)monday}." //produces: "Monday is day 1."
var mondayIsAlwaysMonday = monday == DayOfWeek.Monday; //true, sorry...
var friday = new WorkDay(DayOfWeek.Friday);
switch((DayOfWeek)friday){
case DayOfWeek.Monday:
//do something monday related
break;
/*...*/
case DayOfWeek.Friday:
//do something friday related
break;
}
Enums are not actual classes, even if they look like it. Internally, they are treated just like their underlying type (by default Int32). Therefore, you can only do this by "copying" single values from one enum to another and casting them to their integer number to compare them for equality.
Enums cannot be derrived from other enums, but only from int, uint, short, ushort, long, ulong, byte and sbyte.
Like Pascal said, you can use other enum's values or constants to initialize an enum value, but that's about it.
another possible solution:
public enum #base
{
x,
y,
z
}
public enum consume
{
x = #base.x,
y = #base.y,
z = #base.z,
a,b,c
}
// TODO: Add a unit-test to check that if #base and consume are aligned
HTH
This is not possible (as #JaredPar already mentioned). Trying to put logic to work around this is a bad practice. In case you have a base class that have an enum, you should list of all possible enum-values there, and the implementation of class should work with the values that it knows.
E.g. Supposed you have a base class BaseCatalog, and it has an enum ProductFormats (Digital, Physical). Then you can have a MusicCatalog or BookCatalog that could contains both Digital and Physical products, But if the class is ClothingCatalog, it should only contains Physical products.
The way you do this, if warranted, is to implement your own class structure that includes the features you wanted from your concept of an inherited enum, plus you can add more.
You simply implement equality comparators and functions to look up values you simply code yourself.
You make the constructors private and declare static instances of the class and any subclasses to whatever extent you want.
Or find a simple work around for your problem and stick with the native enum implementation.
Code Heavy Implementation of Inherited Enumerations:
/// <summary>
/// Generic Design for implementing inheritable enum
/// </summary>
public class ServiceBase
{
//members
protected int _id;
protected string _name;
//constructors
private ServiceBase(int id, string name)
{
_id = id;
_name = name;
}
//onlu required if subclassing
protected ServiceBase(int id, string name, bool isSubClass = true )
{
if( id <= _maxServiceId )
throw new InvalidProgramException("Bad Id in ServiceBase" );
_id = id;
_name = name;
}
//members
public int Id => _id;
public string Name => _name;
public virtual ServiceBase getService(int serviceBaseId)
{
return ALLBASESERVICES.SingleOrDefault(s => s.Id == _id);
}
//implement iComparable if required
//static methods
public static ServiceBase getServiceOrDefault(int serviceBaseId)
{
return SERVICE1.getService(serviceBaseId);
}
//Enumerations Here
public static ServiceBase SERVICE1 = new ServiceBase( 1, "First Service" );
public static ServiceBase SERVICE2 = new ServiceBase( 2, "Second Service" );
protected static ServiceBase[] ALLBASESERVICES =
{
//Enumerations list
SERVICE1,
SERVICE2
};
private static int _maxServiceId = ALLBASESERVICES.Max( s => s.Id );
//only required if subclassing
protected static ServiceBase[] combineServices(ServiceBase[] array1, ServiceBase[] array2)
{
List<ServiceBase> serviceBases = new List<ServiceBase>();
serviceBases.AddRange( array1 );
serviceBases.AddRange( array2 );
return serviceBases.ToArray();
}
}
/// <summary>
/// Generic Design for implementing inheritable enum
/// </summary>
public class ServiceJobs : ServiceBase
{
//constructor
private ServiceJobs(int id, string name)
: base( id, name )
{
_id = id;
_name = name;
}
//only required if subclassing
protected ServiceJobs(int id, string name, bool isSubClass = true )
: base( id, name )
{
if( id <= _maxServiceId )
throw new InvalidProgramException("Bad Id in ServiceJobs" );
_id = id;
_name = name;
}
//members
public override ServiceBase getService(int serviceBaseId)
{
if (ALLSERVICES == null)
{
ALLSERVICES = combineServices(ALLBASESERVICES, ALLJOBSERVICES);
}
return ALLSERVICES.SingleOrDefault(s => s.Id == _id);
}
//static methods
public static ServiceBase getServiceOrDefault(int serviceBaseId)
{
return SERVICE3.getService(serviceBaseId);
}
//sub class services here
public static ServiceBase SERVICE3 = new ServiceJobs( 3, "Third Service" );
public static ServiceBase SERVICE4 = new ServiceJobs( 4, "Forth Service" );
private static int _maxServiceId = ALLJOBSERVICES.Max( s => s.Id );
private static ServiceBase[] ALLJOBSERVICES =
{
//subclass service list
SERVICE3,
SERVICE4
};
//all services including superclass items
private static ServiceBase[] ALLSERVICES = null;
}
Note that you can use an enum instead of an int as the id, though the subclass will need a separate enum.
The enum class itself can be decorated with all kinds of flags, messages, functions etc.
A generic implementation would reduce a great deal of the code.
Depending on your situation you may NOT need derived Enums as they're based off System.Enum.
Take this code, you can pass in any Enum you like and get its selected value:
public CommonError FromErrorCode(Enum code)
{
Code = (int)Enum.Parse(code.GetType(), code.ToString());
You can perform inheritance in enum, however it's limited to following types only .
int, uint, byte, sbyte, short, ushort, long, ulong
E.g.
public enum Car:int{
Toyota,
Benz,
}
I have an enum in a low level namespace. I'd like to provide a class or enum in a mid level namespace that "inherits" the low level enum.
namespace low
{
public enum base
{
x, y, z
}
}
namespace mid
{
public enum consume : low.base
{
}
}
I'm hoping that this is possible, or perhaps some kind of class that can take the place of the enum consume which will provide a layer of abstraction for the enum, but still let an instance of that class access the enum.
Thoughts?
EDIT:
One of the reasons I haven't just switched this to consts in classes is that the low level enum is needed by a service that I must consume. I have been given the WSDLs and the XSDs, which define the structure as an enum. The service cannot be changed.
This is not possible. Enums cannot inherit from other enums. In fact all enums must actually inherit from System.Enum. C# allows syntax to change the underlying representation of the enum values which looks like inheritance, but in actuality they still inherit from System.enum.
See section 8.5.2 of the CLI spec for the full details. Relevant information from the spec
All enums must derive from System.Enum
Because of the above, all enums are value types and hence sealed
You can achieve what you want with classes:
public class Base
{
public const int A = 1;
public const int B = 2;
public const int C = 3;
}
public class Consume : Base
{
public const int D = 4;
public const int E = 5;
}
Now you can use these classes similar as when they were enums:
int i = Consume.B;
Update (after your update of the question):
If you assign the same int values to the constants as defined in the existing enum, then you can cast between the enum and the constants, e.g:
public enum SomeEnum // this is the existing enum (from WSDL)
{
A = 1,
B = 2,
...
}
public class Base
{
public const int A = (int)SomeEnum.A;
//...
}
public class Consume : Base
{
public const int D = 4;
public const int E = 5;
}
// where you have to use the enum, use a cast:
SomeEnum e = (SomeEnum)Consume.B;
The short answer is no. You can play a bit, if you want:
You can always do something like this:
private enum Base
{
A,
B,
C
}
private enum Consume
{
A = Base.A,
B = Base.B,
C = Base.C,
D,
E
}
But, it doesn't work all that great because Base.A != Consume.A
You can always do something like this, though:
public static class Extensions
{
public static T As<T>(this Consume c) where T : struct
{
return (T)System.Enum.Parse(typeof(T), c.ToString(), false);
}
}
In order to cross between Base and Consume...
You could also cast the values of the enums as ints, and compare them as ints instead of enum, but that kind of sucks too.
The extension method return should type cast it type T.
The solutions above using classes with int constants lack type-safety. I.e. you could invent new values actually not defined in the class.
Furthermore it is not possible for example to write a method taking one of these classes as input.
You would need to write
public void DoSomethingMeaningFull(int consumeValue) ...
However, there is a class based solution of the old days of Java, when there were no enums available. This provides an almost enum-like behaviour. The only caveat is that these constants cannot be used within a switch-statement.
public class MyBaseEnum
{
public static readonly MyBaseEnum A = new MyBaseEnum( 1 );
public static readonly MyBaseEnum B = new MyBaseEnum( 2 );
public static readonly MyBaseEnum C = new MyBaseEnum( 3 );
public int InternalValue { get; protected set; }
protected MyBaseEnum( int internalValue )
{
this.InternalValue = internalValue;
}
}
public class MyEnum : MyBaseEnum
{
public static readonly MyEnum D = new MyEnum( 4 );
public static readonly MyEnum E = new MyEnum( 5 );
protected MyEnum( int internalValue ) : base( internalValue )
{
// Nothing
}
}
[TestMethod]
public void EnumTest()
{
this.DoSomethingMeaningful( MyEnum.A );
}
private void DoSomethingMeaningful( MyBaseEnum enumValue )
{
// ...
if( enumValue == MyEnum.A ) { /* ... */ }
else if (enumValue == MyEnum.B) { /* ... */ }
// ...
}
Ignoring the fact that base is a reserved word you cannot do inheritance of enum.
The best thing you could do is something like that:
public enum Baseenum
{
x, y, z
}
public enum Consume
{
x = Baseenum.x,
y = Baseenum.y,
z = Baseenum.z
}
public void Test()
{
Baseenum a = Baseenum.x;
Consume newA = (Consume) a;
if ((Int32) a == (Int32) newA)
{
MessageBox.Show(newA.ToString());
}
}
Since they're all the same base type (ie: int) you could assign the value from an instance of one type to the other which a cast. Not ideal but it work.
This is what I did. What I've done differently is use the same name and the new keyword on the "consuming" enum. Since the name of the enum is the same, you can just mindlessly use it and it will be right. Plus you get intellisense. You just have to manually take care when setting it up that the values are copied over from the base and keep them sync'ed. You can help that along with code comments. This is another reason why in the database when storing enum values I always store the string, not the value. Because if you are using automatically assigned increasing integer values those can change over time.
// Base Class for balls
public class Ball
{
// keep synced with subclasses!
public enum Sizes
{
Small,
Medium,
Large
}
}
public class VolleyBall : Ball
{
// keep synced with base class!
public new enum Sizes
{
Small = Ball.Sizes.Small,
Medium = Ball.Sizes.Medium,
Large = Ball.Sizes.Large,
SmallMedium,
MediumLarge,
Ginormous
}
}
I know this answer is kind of late but this is what I ended up doing:
public class BaseAnimal : IEquatable<BaseAnimal>
{
public string Name { private set; get; }
public int Value { private set; get; }
public BaseAnimal(int value, String name)
{
this.Name = name;
this.Value = value;
}
public override String ToString()
{
return Name;
}
public bool Equals(BaseAnimal other)
{
return other.Name == this.Name && other.Value == this.Value;
}
}
public class AnimalType : BaseAnimal
{
public static readonly BaseAnimal Invertebrate = new BaseAnimal(1, "Invertebrate");
public static readonly BaseAnimal Amphibians = new BaseAnimal(2, "Amphibians");
// etc
}
public class DogType : AnimalType
{
public static readonly BaseAnimal Golden_Retriever = new BaseAnimal(3, "Golden_Retriever");
public static readonly BaseAnimal Great_Dane = new BaseAnimal(4, "Great_Dane");
// etc
}
Then I am able to do things like:
public void SomeMethod()
{
var a = AnimalType.Amphibians;
var b = AnimalType.Amphibians;
if (a == b)
{
// should be equal
}
// call method as
Foo(a);
// using ifs
if (a == AnimalType.Amphibians)
{
}
else if (a == AnimalType.Invertebrate)
{
}
else if (a == DogType.Golden_Retriever)
{
}
// etc
}
public void Foo(BaseAnimal typeOfAnimal)
{
}
Alternative solution
In my company, we avoid "jumping over projects" to get to non-common lower level projects. For instance, our presentation/API layer can only reference our domain layer, and the domain layer can only reference the data layer.
However, this is a problem when there are enums that need to be referenced by both the presentation and the domain layers.
Here is the solution that we have implemented (so far). It is a pretty good solution and works well for us. The other answers were hitting all around this.
The basic premise is that enums cannot be inherited - but classes can. So...
// In the lower level project (or DLL)...
public abstract class BaseEnums
{
public enum ImportanceType
{
None = 0,
Success = 1,
Warning = 2,
Information = 3,
Exclamation = 4
}
[Flags]
public enum StatusType : Int32
{
None = 0,
Pending = 1,
Approved = 2,
Canceled = 4,
Accepted = (8 | Approved),
Rejected = 16,
Shipped = (32 | Accepted),
Reconciled = (64 | Shipped)
}
public enum Conveyance
{
None = 0,
Feet = 1,
Automobile = 2,
Bicycle = 3,
Motorcycle = 4,
TukTuk = 5,
Horse = 6,
Yak = 7,
Segue = 8
}
Then, to "inherit" the enums in another higher level project...
// Class in another project
public sealed class SubEnums: BaseEnums
{
private SubEnums()
{}
}
This has three real advantages...
The enum definitions are automatically the same in both projects - by
definition.
Any changes to the enum definitions are automatically
echoed in the second without having to make any modifications to the
second class.
The enums are based on the same code - so the values can easily be compared (with some caveats).
To reference the enums in the first project, you can use the prefix of the class: BaseEnums.StatusType.Pending or add a "using static BaseEnums;" statement to your usings.
In the second project when dealing with the inherited class however, I could not get the "using static ..." approach to work, so all references to the "inherited enums" would be prefixed with the class, e.g. SubEnums.StatusType.Pending. If anyone comes up with a way to allow the "using static" approach to be used in the second project, let me know.
I am sure that this can be tweaked to make it even better - but this actually works and I have used this approach in working projects.
I also wanted to overload Enums and created a mix of the answer of 'Seven' on this page and the answer of 'Merlyn Morgan-Graham' on a duplicate post of this, plus a couple of improvements.
Main advantages of my solution over the others:
automatic increment of the underlying int value
automatic naming
This is an out-of-the-box solution and may be directly inserted into your project. It is designed to my needs, so if you don't like some parts of it, just replace them with your own code.
First, there is the base class CEnum that all custom enums should inherit from. It has the basic functionality, similar to the .net Enum type:
public class CEnum
{
protected static readonly int msc_iUpdateNames = int.MinValue;
protected static int ms_iAutoValue = -1;
protected static List<int> ms_listiValue = new List<int>();
public int Value
{
get;
protected set;
}
public string Name
{
get;
protected set;
}
protected CEnum ()
{
CommonConstructor (-1);
}
protected CEnum (int i_iValue)
{
CommonConstructor (i_iValue);
}
public static string[] GetNames (IList<CEnum> i_listoValue)
{
if (i_listoValue == null)
return null;
string[] asName = new string[i_listoValue.Count];
for (int ixCnt = 0; ixCnt < asName.Length; ixCnt++)
asName[ixCnt] = i_listoValue[ixCnt]?.Name;
return asName;
}
public static CEnum[] GetValues ()
{
return new CEnum[0];
}
protected virtual void CommonConstructor (int i_iValue)
{
if (i_iValue == msc_iUpdateNames)
{
UpdateNames (this.GetType ());
return;
}
else if (i_iValue > ms_iAutoValue)
ms_iAutoValue = i_iValue;
else
i_iValue = ++ms_iAutoValue;
if (ms_listiValue.Contains (i_iValue))
throw new ArgumentException ("duplicate value " + i_iValue.ToString ());
Value = i_iValue;
ms_listiValue.Add (i_iValue);
}
private static void UpdateNames (Type i_oType)
{
if (i_oType == null)
return;
FieldInfo[] aoFieldInfo = i_oType.GetFields (BindingFlags.Public | BindingFlags.Static);
foreach (FieldInfo oFieldInfo in aoFieldInfo)
{
CEnum oEnumResult = oFieldInfo.GetValue (null) as CEnum;
if (oEnumResult == null)
continue;
oEnumResult.Name = oFieldInfo.Name;
}
}
}
Secondly, here are 2 derived Enum classes. All derived classes need some basic methods in order to work as expected. It's always the same boilerplate code; I haven't found a way yet to outsource it to the base class. The code of the first level of inheritance differs slightly from all subsequent levels.
public class CEnumResult : CEnum
{
private static List<CEnumResult> ms_listoValue = new List<CEnumResult>();
public static readonly CEnumResult Nothing = new CEnumResult ( 0);
public static readonly CEnumResult SUCCESS = new CEnumResult ( 1);
public static readonly CEnumResult UserAbort = new CEnumResult ( 11);
public static readonly CEnumResult InProgress = new CEnumResult (101);
public static readonly CEnumResult Pausing = new CEnumResult (201);
private static readonly CEnumResult Dummy = new CEnumResult (msc_iUpdateNames);
protected CEnumResult () : base ()
{
}
protected CEnumResult (int i_iValue) : base (i_iValue)
{
}
protected override void CommonConstructor (int i_iValue)
{
base.CommonConstructor (i_iValue);
if (i_iValue == msc_iUpdateNames)
return;
if (this.GetType () == System.Reflection.MethodBase.GetCurrentMethod ().DeclaringType)
ms_listoValue.Add (this);
}
public static new CEnumResult[] GetValues ()
{
List<CEnumResult> listoValue = new List<CEnumResult> ();
listoValue.AddRange (ms_listoValue);
return listoValue.ToArray ();
}
}
public class CEnumResultClassCommon : CEnumResult
{
private static List<CEnumResultClassCommon> ms_listoValue = new List<CEnumResultClassCommon>();
public static readonly CEnumResult Error_InternalProgramming = new CEnumResultClassCommon (1000);
public static readonly CEnumResult Error_Initialization = new CEnumResultClassCommon ();
public static readonly CEnumResult Error_ObjectNotInitialized = new CEnumResultClassCommon ();
public static readonly CEnumResult Error_DLLMissing = new CEnumResultClassCommon ();
// ... many more
private static readonly CEnumResult Dummy = new CEnumResultClassCommon (msc_iUpdateNames);
protected CEnumResultClassCommon () : base ()
{
}
protected CEnumResultClassCommon (int i_iValue) : base (i_iValue)
{
}
protected override void CommonConstructor (int i_iValue)
{
base.CommonConstructor (i_iValue);
if (i_iValue == msc_iUpdateNames)
return;
if (this.GetType () == System.Reflection.MethodBase.GetCurrentMethod ().DeclaringType)
ms_listoValue.Add (this);
}
public static new CEnumResult[] GetValues ()
{
List<CEnumResult> listoValue = new List<CEnumResult> (CEnumResult.GetValues ());
listoValue.AddRange (ms_listoValue);
return listoValue.ToArray ();
}
}
The classes have been successfully tested with follwing code:
private static void Main (string[] args)
{
CEnumResult oEnumResult = CEnumResultClassCommon.Error_Initialization;
string sName = oEnumResult.Name; // sName = "Error_Initialization"
CEnum[] aoEnumResult = CEnumResultClassCommon.GetValues (); // aoEnumResult = {testCEnumResult.Program.CEnumResult[9]}
string[] asEnumNames = CEnum.GetNames (aoEnumResult);
int ixValue = Array.IndexOf (aoEnumResult, oEnumResult); // ixValue = 6
}
I realize I'm a bit late to this party, but here's my two cents.
We're all clear that Enum inheritance is not supported by the framework. Some very interesting workarounds have been suggested in this thread, but none of them felt quite like what I was looking for, so I had a go at it myself.
Introducing: ObjectEnum
You can check the code and documentation here: https://github.com/dimi3tron/ObjectEnum.
And the package here: https://www.nuget.org/packages/ObjectEnum
Or just install it: Install-Package ObjectEnum
In short, ObjectEnum<TEnum> acts as a wrapper for any enum. By overriding the GetDefinedValues() in subclasses, one can specify which enum values are valid for this specific class.
A number of operator overloads have been added to make an ObjectEnum<TEnum> instance behave as if it were an instance of the underlying enum, keeping in mind the defined value restrictions. This means you can easily compare the instance to an int or enum value, and thus use it in a switch case or any other conditional.
I'd like to refer to the github repo mentioned above for examples and further info.
I hope you find this useful. Feel free to comment or open an issue on github for further thoughts or comments.
Here are a few short examples of what you can do with ObjectEnum<TEnum>:
var sunday = new WorkDay(DayOfWeek.Sunday); //throws exception
var monday = new WorkDay(DayOfWeek.Monday); //works fine
var label = $"{monday} is day {(int)monday}." //produces: "Monday is day 1."
var mondayIsAlwaysMonday = monday == DayOfWeek.Monday; //true, sorry...
var friday = new WorkDay(DayOfWeek.Friday);
switch((DayOfWeek)friday){
case DayOfWeek.Monday:
//do something monday related
break;
/*...*/
case DayOfWeek.Friday:
//do something friday related
break;
}
Enums are not actual classes, even if they look like it. Internally, they are treated just like their underlying type (by default Int32). Therefore, you can only do this by "copying" single values from one enum to another and casting them to their integer number to compare them for equality.
Enums cannot be derrived from other enums, but only from int, uint, short, ushort, long, ulong, byte and sbyte.
Like Pascal said, you can use other enum's values or constants to initialize an enum value, but that's about it.
another possible solution:
public enum #base
{
x,
y,
z
}
public enum consume
{
x = #base.x,
y = #base.y,
z = #base.z,
a,b,c
}
// TODO: Add a unit-test to check that if #base and consume are aligned
HTH
This is not possible (as #JaredPar already mentioned). Trying to put logic to work around this is a bad practice. In case you have a base class that have an enum, you should list of all possible enum-values there, and the implementation of class should work with the values that it knows.
E.g. Supposed you have a base class BaseCatalog, and it has an enum ProductFormats (Digital, Physical). Then you can have a MusicCatalog or BookCatalog that could contains both Digital and Physical products, But if the class is ClothingCatalog, it should only contains Physical products.
The way you do this, if warranted, is to implement your own class structure that includes the features you wanted from your concept of an inherited enum, plus you can add more.
You simply implement equality comparators and functions to look up values you simply code yourself.
You make the constructors private and declare static instances of the class and any subclasses to whatever extent you want.
Or find a simple work around for your problem and stick with the native enum implementation.
Code Heavy Implementation of Inherited Enumerations:
/// <summary>
/// Generic Design for implementing inheritable enum
/// </summary>
public class ServiceBase
{
//members
protected int _id;
protected string _name;
//constructors
private ServiceBase(int id, string name)
{
_id = id;
_name = name;
}
//onlu required if subclassing
protected ServiceBase(int id, string name, bool isSubClass = true )
{
if( id <= _maxServiceId )
throw new InvalidProgramException("Bad Id in ServiceBase" );
_id = id;
_name = name;
}
//members
public int Id => _id;
public string Name => _name;
public virtual ServiceBase getService(int serviceBaseId)
{
return ALLBASESERVICES.SingleOrDefault(s => s.Id == _id);
}
//implement iComparable if required
//static methods
public static ServiceBase getServiceOrDefault(int serviceBaseId)
{
return SERVICE1.getService(serviceBaseId);
}
//Enumerations Here
public static ServiceBase SERVICE1 = new ServiceBase( 1, "First Service" );
public static ServiceBase SERVICE2 = new ServiceBase( 2, "Second Service" );
protected static ServiceBase[] ALLBASESERVICES =
{
//Enumerations list
SERVICE1,
SERVICE2
};
private static int _maxServiceId = ALLBASESERVICES.Max( s => s.Id );
//only required if subclassing
protected static ServiceBase[] combineServices(ServiceBase[] array1, ServiceBase[] array2)
{
List<ServiceBase> serviceBases = new List<ServiceBase>();
serviceBases.AddRange( array1 );
serviceBases.AddRange( array2 );
return serviceBases.ToArray();
}
}
/// <summary>
/// Generic Design for implementing inheritable enum
/// </summary>
public class ServiceJobs : ServiceBase
{
//constructor
private ServiceJobs(int id, string name)
: base( id, name )
{
_id = id;
_name = name;
}
//only required if subclassing
protected ServiceJobs(int id, string name, bool isSubClass = true )
: base( id, name )
{
if( id <= _maxServiceId )
throw new InvalidProgramException("Bad Id in ServiceJobs" );
_id = id;
_name = name;
}
//members
public override ServiceBase getService(int serviceBaseId)
{
if (ALLSERVICES == null)
{
ALLSERVICES = combineServices(ALLBASESERVICES, ALLJOBSERVICES);
}
return ALLSERVICES.SingleOrDefault(s => s.Id == _id);
}
//static methods
public static ServiceBase getServiceOrDefault(int serviceBaseId)
{
return SERVICE3.getService(serviceBaseId);
}
//sub class services here
public static ServiceBase SERVICE3 = new ServiceJobs( 3, "Third Service" );
public static ServiceBase SERVICE4 = new ServiceJobs( 4, "Forth Service" );
private static int _maxServiceId = ALLJOBSERVICES.Max( s => s.Id );
private static ServiceBase[] ALLJOBSERVICES =
{
//subclass service list
SERVICE3,
SERVICE4
};
//all services including superclass items
private static ServiceBase[] ALLSERVICES = null;
}
Note that you can use an enum instead of an int as the id, though the subclass will need a separate enum.
The enum class itself can be decorated with all kinds of flags, messages, functions etc.
A generic implementation would reduce a great deal of the code.
Depending on your situation you may NOT need derived Enums as they're based off System.Enum.
Take this code, you can pass in any Enum you like and get its selected value:
public CommonError FromErrorCode(Enum code)
{
Code = (int)Enum.Parse(code.GetType(), code.ToString());
You can perform inheritance in enum, however it's limited to following types only .
int, uint, byte, sbyte, short, ushort, long, ulong
E.g.
public enum Car:int{
Toyota,
Benz,
}
As part of a testing library, I would like to define an interface which says 'this object knows how to initialize itself randomly'. If members of the randomly filled object are references, the random initialization should be capable of assigning null to these members.
If I was doing this for one class, the code could look like this
public class QWorker
{
double mxVal = 0;
public void fillRandomly(System.Random xRng)
{
mxVal = xRng.NextDouble();
}
}
public class QBoss
{
public QWorker mxWorker;
void fillRandomly(System.Random xRng)
{
if (xRng.Next() % 2 == 1)
x1 = null;
else
{
x1 = new QWorker();
x1.fillRandomly(xRng);
}
}
}
Now if QBoss had mulitple reference-type members, if/else would have to be done for every member. It would look ugly and could be cumbersome to maintain. To cimrcumvent, I came up with the following sample code:
public interface QIRandomizable<T> where T : new()
{
static void fillRandomly(this System.Random xThis, ref T xRef); // XXX
}
class QWorker : QIRandomizable<QWorker>
{
public double mxDouble;
}
public static class QWorkerExtensions
{
public static void fillRandomly(this System.Random xThis, ref QWorker xRef)
{
if ((xThis.Next() % 2) == 1)
xRef = null;
else
{
xRef = new QWorker();
xRef.mxDouble = xThis.NextDouble();
}
}
}
public class QBoss : QIRandomizable<QBoss>
{
public QWorker mx1;
public QWorker mx2;
public static void fillRandomly(this System.Random xThis, ref QBoss xRef)
{
xRef = new QBoss();
xThis.fillRandomly(ref xRef.mxMember1); // can be null
xThis.fillRandomly(ref xRef.mxMember2); // can be null
}
}
However this does not compile and the first problem is on line marked XXX - the static keyword does not belong there.
As a result, I would like to ask the following:
Is it possible to declare an interface with an extension inside?
If yes, what should I change?
If not, is there a different way how to accomplish what I want?
Any help is much appreciated,
Daniel
No, you cannot. That's because you can only declare instance-methods on an interface, and extension methods must be static.
You can try something like this:
public interface IDoesSomething
{
void fillRandomly(Random r);
}
public class QBoss
{
public double mx1 { get; set; }
public double mx2 { get; set; }
public int mx3 { get; set; }
public object refType { get; set; }
public void fillRandomly(Random r)
{
FillRandom(GetProps(this), this, r);
}
}
public static IEnumerable<PropertyInfo> GetProps(object blah)
{
return blah.GetType().GetProperties();
}
public static void FillRandom(IEnumerable<PropertyInfo> obj, object onObj, Random r)
{
Action<PropertyInfo, object> setVal = (prop, val) => { prop.SetValue(onObj, val); };
foreach (var o in obj)
{
if (!o.PropertyType.IsValueType)
{
if (r.Next() % 2 != 1)
{
var v = Activator.CreateInstance(o.PropertyType);
setVal(o, v);
var id = v as IDoesSomething;
if (id != null)
id.fillRandomly(r);
}
}
if (o.PropertyType == typeof(double))
setVal(o, r.NextDouble());
if (o.PropertyType == typeof(int))
setVal(o, (int)(r.NextDouble() * 100));
//etc, etc
}
}
Here, you decide what to do once, and set the properties. This currently only works for properties, not fields, so you might want to refactor it a little to take both FieldInfo and PropertyInfo
Testing it yields:
mx1 0.786868741170908
mx2 0.434705327001729
mx3 51
refType Object
I have say 3 classes, Animal, Cat & Dog.
// calling code
var x = new Animal("Rex"); // would like this to return a dog type
var x = new Animal("Mittens"); // would like this to return a cat type
if(x.GetType() == typeof(Dog))
{
x.Bark();
}
else
{
x.Meow();
}
class Animal
{
public Animal(string name)
{
// check against some list of dog names ... find rex
// return Animal of type Dog.
// if not...
// check against some list of cat names ... find mittens
// return Animal of type Cat.
}
}
Is this possible somehow? If not is there something similar I can do?
What you are looking for is either a 'virtual constructor' (not possibe in C#) or the Factory pattern.
class Animal
{
// Factory method
public static Animal Create(string name)
{
Animal animal = null;
... // some logic based on 'name'
animal = new Zebra();
return animal;
}
}
The Factory method can also be placed in another (Factory) class. That gives better decoupling etc.
No. Basically the right fix is to use a static method which can create an instance of the right type:
var x = Animal.ForName("Rex");
var x = Animal.ForName("Mittens");
...
public abstract class Animal
{
public static Animal ForName(string name)
{
if (dogNames.Contains(name))
{
return new Dog(name);
}
else
{
return new Cat(name);
}
}
}
Or this could be an instance method in an AnimalFactory type (or whatever). That would be a more extensible approach - the factory could implement an interface, for example, and could be injected into the class which needed to create the instances. It really depends on the context though - sometimes that approach is overkill.
Basically, a new Foo(...) call always creates an instance of exactly Foo. Whereas a static method declared with a return type of Foo can return a reference to any type which is compatible with Foo.
No I dont think it is possible in the way that you want.
You could create a static class that has a method that returns an animal based on a name e.g.
static Animal CreateAnimal(string name)
{
if(catList.Contains(name))
return new Cat(name");
else if(dogList.Contains(name))
return new Dog(name);
return null;
}
The other answers show that you need to use a factory pattern but I wanted to give you a more "practical" example of how you would do it. I did exactly what you where doing, however I was working with the EPL2 printer language. When I saw X I needed to create a instance of class Rectangle, when I saw A I needed to create a instance of class Text.
(I wrote this a long time ago so I am sure some of the things I did could be improved upon).
public partial class Epl2CommandFactory
{
#region Singelton pattern
private static volatile Epl2CommandFactory m_instance;
private static object m_syncRoot = new object();
public static Epl2CommandFactory Instance
{
get
{
if (m_instance == null)
{
lock (m_syncRoot)
{
if (m_instance == null)
{
m_instance = new Epl2CommandFactory();
}
}
}
return m_instance;
}
}
#endregion
#region Constructor
private Epl2CommandFactory()
{
m_generalCommands = new Dictionary<string, Type>();
Initialize();
}
#endregion
#region Variables
private Dictionary<string, Type> m_generalCommands;
private Assembly m_asm;
#endregion
#region Helpers
private void Initialize()
{
Assembly asm = Assembly.GetAssembly(GetType());
Type[] allTypes = asm.GetTypes();
foreach (Type type in allTypes)
{
// Only scan classes that are not abstract
if (type.IsClass && !type.IsAbstract)
{
// If a class implements the IEpl2FactoryProduct interface,
// which allows retrieval of the product class key...
Type iEpl2FactoryProduct = type.GetInterface("IEpl2GeneralFactoryProduct");
if (iEpl2FactoryProduct != null)
{
// Create a temporary instance of that class...
object inst = asm.CreateInstance(type.FullName);
if (inst != null)
{
// And generate the product classes key
IEpl2GeneralFactoryProduct keyDesc = (IEpl2GeneralFactoryProduct)inst;
string key = keyDesc.GetFactoryKey();
m_generalCommands.Add(key, type);
inst = null;
}
}
}
}
m_asm = asm;
}
#endregion
#region Methods
public IEpl2Command CreateEpl2Command(string command)
{
if (command == null)
throw new NullReferenceException("Invalid command supplied, must be " +
"non-null.");
Type type;
if (!m_generalCommands.TryGetValue(command.Substring(0, 2), out type))
m_generalCommands.TryGetValue(command.Substring(0, 1), out type);
if (type != default(Type))
{
object inst = m_asm.CreateInstance(type.FullName, true,
BindingFlags.CreateInstance,
null, null, null, null);
if (inst == null)
throw new NullReferenceException("Null product instance. " +
"Unable to create necessary product class.");
IEpl2Command prod = (IEpl2Command)inst;
prod.CommandString = command;
return prod;
}
else
{
return null;
}
}
#endregion
}
The way the code works is I use the singleton pattern to create a factory class so people can call var command = Epl2CommandFactory.Instance.CreateEpl2Command("..."); passing in the EPL2 command string and it returns a instance of the class that represents that specific class.
During initialization I use reflection to find classes that support the IEpl2GeneralFactoryProduct interface, if the class supports the interface the factory stores the one or two letter code representing the printer command in a dictionary of types.
When you try to create the command the factory looks up the printer command in the dictionary and creates the correct class, it then passes the full command string on to that class for further processing.
Here is a copy of a command class and it's parents if you wanted to see it
Rectangle:
[XmlInclude(typeof(Rectangle))]
public abstract partial class Epl2CommandBase { }
/// <summary>
/// Use this command to draw a box shape.
/// </summary>
public class Rectangle : DrawableItemBase, IEpl2GeneralFactoryProduct
{
#region Constructors
public Rectangle() : base() { }
public Rectangle(Point startingLocation, int horozontalEndPosition, int verticalEndPosition)
: base(startingLocation)
{
HorizontalEndPosition = horozontalEndPosition;
VerticalEndPosition = verticalEndPosition;
}
public Rectangle(int x, int y, int lineThickness, int horozontalEndPosition, int verticalEndPosition)
: base(x, y)
{
LineThickness = lineThickness;
HorizontalEndPosition = horozontalEndPosition;
VerticalEndPosition = verticalEndPosition;
}
#endregion
#region Properties
[XmlIgnore]
public int LineThickness { get; set; }
[XmlIgnore]
public int HorizontalEndPosition {get; set;}
[XmlIgnore]
public int VerticalEndPosition { get; set; }
public override string CommandString
{
get
{
return String.Format("X{0},{1},{2},{3},{4}", X, Y, LineThickness, HorizontalEndPosition, VerticalEndPosition);
}
set
{
GenerateCommandFromText(value);
}
}
#endregion
#region Helpers
private void GenerateCommandFromText(string command)
{
if (!command.StartsWith(GetFactoryKey()))
throw new ArgumentException("Command must begin with " + GetFactoryKey());
string[] commands = command.Substring(1).Split(',');
this.X = int.Parse(commands[0]);
this.Y = int.Parse(commands[1]);
this.LineThickness = int.Parse(commands[2]);
this.HorizontalEndPosition = int.Parse(commands[3]);
this.VerticalEndPosition = int.Parse(commands[4]);
}
#endregion
#region Members
public override void Paint(Graphics g, Image buffer)
{
using (Pen p = new Pen(Color.Black, LineThickness))
{
g.DrawRectangle(p, new System.Drawing.Rectangle(X, Y, HorizontalEndPosition - X, VerticalEndPosition - Y));
}
}
public string GetFactoryKey()
{
return "X";
}
#endregion
}
DrawableItemBase:
public abstract class DrawableItemBase : Epl2CommandBase, IDrawableCommand
{
protected DrawableItemBase()
{
Location = new Point();
}
protected DrawableItemBase(Point location)
{
Location = location;
}
protected DrawableItemBase(int x, int y)
{
Location = new Point();
X = x;
Y = y;
}
private Point _Location;
[XmlIgnore]
public virtual Point Location
{
get { return _Location; }
set { _Location = value; }
}
[XmlIgnore]
public int X
{
get { return _Location.X; }
set { _Location.X = value; }
}
[XmlIgnore]
public int Y
{
get { return _Location.Y; }
set { _Location.Y = value; }
}
abstract public void Paint(Graphics g, Image buffer);
}
Epl2CommandBase:
public abstract partial class Epl2CommandBase : IEpl2Command
{
protected Epl2CommandBase() { }
public virtual byte[] GenerateByteCommand()
{
return Encoding.ASCII.GetBytes(CommandString + '\n');
}
public abstract string CommandString { get; set; }
}
Various Interfaces:
public interface IEpl2GeneralFactoryProduct
{
string GetFactoryKey();
}
public interface IEpl2Command
{
string CommandString { get; set; }
}
public interface IDrawableCommand : IEpl2Command
{
void Paint(System.Drawing.Graphics g, System.Drawing.Image buffer);
}
I have an enum in a low level namespace. I'd like to provide a class or enum in a mid level namespace that "inherits" the low level enum.
namespace low
{
public enum base
{
x, y, z
}
}
namespace mid
{
public enum consume : low.base
{
}
}
I'm hoping that this is possible, or perhaps some kind of class that can take the place of the enum consume which will provide a layer of abstraction for the enum, but still let an instance of that class access the enum.
Thoughts?
EDIT:
One of the reasons I haven't just switched this to consts in classes is that the low level enum is needed by a service that I must consume. I have been given the WSDLs and the XSDs, which define the structure as an enum. The service cannot be changed.
This is not possible. Enums cannot inherit from other enums. In fact all enums must actually inherit from System.Enum. C# allows syntax to change the underlying representation of the enum values which looks like inheritance, but in actuality they still inherit from System.enum.
See section 8.5.2 of the CLI spec for the full details. Relevant information from the spec
All enums must derive from System.Enum
Because of the above, all enums are value types and hence sealed
You can achieve what you want with classes:
public class Base
{
public const int A = 1;
public const int B = 2;
public const int C = 3;
}
public class Consume : Base
{
public const int D = 4;
public const int E = 5;
}
Now you can use these classes similar as when they were enums:
int i = Consume.B;
Update (after your update of the question):
If you assign the same int values to the constants as defined in the existing enum, then you can cast between the enum and the constants, e.g:
public enum SomeEnum // this is the existing enum (from WSDL)
{
A = 1,
B = 2,
...
}
public class Base
{
public const int A = (int)SomeEnum.A;
//...
}
public class Consume : Base
{
public const int D = 4;
public const int E = 5;
}
// where you have to use the enum, use a cast:
SomeEnum e = (SomeEnum)Consume.B;
The short answer is no. You can play a bit, if you want:
You can always do something like this:
private enum Base
{
A,
B,
C
}
private enum Consume
{
A = Base.A,
B = Base.B,
C = Base.C,
D,
E
}
But, it doesn't work all that great because Base.A != Consume.A
You can always do something like this, though:
public static class Extensions
{
public static T As<T>(this Consume c) where T : struct
{
return (T)System.Enum.Parse(typeof(T), c.ToString(), false);
}
}
In order to cross between Base and Consume...
You could also cast the values of the enums as ints, and compare them as ints instead of enum, but that kind of sucks too.
The extension method return should type cast it type T.
The solutions above using classes with int constants lack type-safety. I.e. you could invent new values actually not defined in the class.
Furthermore it is not possible for example to write a method taking one of these classes as input.
You would need to write
public void DoSomethingMeaningFull(int consumeValue) ...
However, there is a class based solution of the old days of Java, when there were no enums available. This provides an almost enum-like behaviour. The only caveat is that these constants cannot be used within a switch-statement.
public class MyBaseEnum
{
public static readonly MyBaseEnum A = new MyBaseEnum( 1 );
public static readonly MyBaseEnum B = new MyBaseEnum( 2 );
public static readonly MyBaseEnum C = new MyBaseEnum( 3 );
public int InternalValue { get; protected set; }
protected MyBaseEnum( int internalValue )
{
this.InternalValue = internalValue;
}
}
public class MyEnum : MyBaseEnum
{
public static readonly MyEnum D = new MyEnum( 4 );
public static readonly MyEnum E = new MyEnum( 5 );
protected MyEnum( int internalValue ) : base( internalValue )
{
// Nothing
}
}
[TestMethod]
public void EnumTest()
{
this.DoSomethingMeaningful( MyEnum.A );
}
private void DoSomethingMeaningful( MyBaseEnum enumValue )
{
// ...
if( enumValue == MyEnum.A ) { /* ... */ }
else if (enumValue == MyEnum.B) { /* ... */ }
// ...
}
Ignoring the fact that base is a reserved word you cannot do inheritance of enum.
The best thing you could do is something like that:
public enum Baseenum
{
x, y, z
}
public enum Consume
{
x = Baseenum.x,
y = Baseenum.y,
z = Baseenum.z
}
public void Test()
{
Baseenum a = Baseenum.x;
Consume newA = (Consume) a;
if ((Int32) a == (Int32) newA)
{
MessageBox.Show(newA.ToString());
}
}
Since they're all the same base type (ie: int) you could assign the value from an instance of one type to the other which a cast. Not ideal but it work.
This is what I did. What I've done differently is use the same name and the new keyword on the "consuming" enum. Since the name of the enum is the same, you can just mindlessly use it and it will be right. Plus you get intellisense. You just have to manually take care when setting it up that the values are copied over from the base and keep them sync'ed. You can help that along with code comments. This is another reason why in the database when storing enum values I always store the string, not the value. Because if you are using automatically assigned increasing integer values those can change over time.
// Base Class for balls
public class Ball
{
// keep synced with subclasses!
public enum Sizes
{
Small,
Medium,
Large
}
}
public class VolleyBall : Ball
{
// keep synced with base class!
public new enum Sizes
{
Small = Ball.Sizes.Small,
Medium = Ball.Sizes.Medium,
Large = Ball.Sizes.Large,
SmallMedium,
MediumLarge,
Ginormous
}
}
I know this answer is kind of late but this is what I ended up doing:
public class BaseAnimal : IEquatable<BaseAnimal>
{
public string Name { private set; get; }
public int Value { private set; get; }
public BaseAnimal(int value, String name)
{
this.Name = name;
this.Value = value;
}
public override String ToString()
{
return Name;
}
public bool Equals(BaseAnimal other)
{
return other.Name == this.Name && other.Value == this.Value;
}
}
public class AnimalType : BaseAnimal
{
public static readonly BaseAnimal Invertebrate = new BaseAnimal(1, "Invertebrate");
public static readonly BaseAnimal Amphibians = new BaseAnimal(2, "Amphibians");
// etc
}
public class DogType : AnimalType
{
public static readonly BaseAnimal Golden_Retriever = new BaseAnimal(3, "Golden_Retriever");
public static readonly BaseAnimal Great_Dane = new BaseAnimal(4, "Great_Dane");
// etc
}
Then I am able to do things like:
public void SomeMethod()
{
var a = AnimalType.Amphibians;
var b = AnimalType.Amphibians;
if (a == b)
{
// should be equal
}
// call method as
Foo(a);
// using ifs
if (a == AnimalType.Amphibians)
{
}
else if (a == AnimalType.Invertebrate)
{
}
else if (a == DogType.Golden_Retriever)
{
}
// etc
}
public void Foo(BaseAnimal typeOfAnimal)
{
}
Alternative solution
In my company, we avoid "jumping over projects" to get to non-common lower level projects. For instance, our presentation/API layer can only reference our domain layer, and the domain layer can only reference the data layer.
However, this is a problem when there are enums that need to be referenced by both the presentation and the domain layers.
Here is the solution that we have implemented (so far). It is a pretty good solution and works well for us. The other answers were hitting all around this.
The basic premise is that enums cannot be inherited - but classes can. So...
// In the lower level project (or DLL)...
public abstract class BaseEnums
{
public enum ImportanceType
{
None = 0,
Success = 1,
Warning = 2,
Information = 3,
Exclamation = 4
}
[Flags]
public enum StatusType : Int32
{
None = 0,
Pending = 1,
Approved = 2,
Canceled = 4,
Accepted = (8 | Approved),
Rejected = 16,
Shipped = (32 | Accepted),
Reconciled = (64 | Shipped)
}
public enum Conveyance
{
None = 0,
Feet = 1,
Automobile = 2,
Bicycle = 3,
Motorcycle = 4,
TukTuk = 5,
Horse = 6,
Yak = 7,
Segue = 8
}
Then, to "inherit" the enums in another higher level project...
// Class in another project
public sealed class SubEnums: BaseEnums
{
private SubEnums()
{}
}
This has three real advantages...
The enum definitions are automatically the same in both projects - by
definition.
Any changes to the enum definitions are automatically
echoed in the second without having to make any modifications to the
second class.
The enums are based on the same code - so the values can easily be compared (with some caveats).
To reference the enums in the first project, you can use the prefix of the class: BaseEnums.StatusType.Pending or add a "using static BaseEnums;" statement to your usings.
In the second project when dealing with the inherited class however, I could not get the "using static ..." approach to work, so all references to the "inherited enums" would be prefixed with the class, e.g. SubEnums.StatusType.Pending. If anyone comes up with a way to allow the "using static" approach to be used in the second project, let me know.
I am sure that this can be tweaked to make it even better - but this actually works and I have used this approach in working projects.
I also wanted to overload Enums and created a mix of the answer of 'Seven' on this page and the answer of 'Merlyn Morgan-Graham' on a duplicate post of this, plus a couple of improvements.
Main advantages of my solution over the others:
automatic increment of the underlying int value
automatic naming
This is an out-of-the-box solution and may be directly inserted into your project. It is designed to my needs, so if you don't like some parts of it, just replace them with your own code.
First, there is the base class CEnum that all custom enums should inherit from. It has the basic functionality, similar to the .net Enum type:
public class CEnum
{
protected static readonly int msc_iUpdateNames = int.MinValue;
protected static int ms_iAutoValue = -1;
protected static List<int> ms_listiValue = new List<int>();
public int Value
{
get;
protected set;
}
public string Name
{
get;
protected set;
}
protected CEnum ()
{
CommonConstructor (-1);
}
protected CEnum (int i_iValue)
{
CommonConstructor (i_iValue);
}
public static string[] GetNames (IList<CEnum> i_listoValue)
{
if (i_listoValue == null)
return null;
string[] asName = new string[i_listoValue.Count];
for (int ixCnt = 0; ixCnt < asName.Length; ixCnt++)
asName[ixCnt] = i_listoValue[ixCnt]?.Name;
return asName;
}
public static CEnum[] GetValues ()
{
return new CEnum[0];
}
protected virtual void CommonConstructor (int i_iValue)
{
if (i_iValue == msc_iUpdateNames)
{
UpdateNames (this.GetType ());
return;
}
else if (i_iValue > ms_iAutoValue)
ms_iAutoValue = i_iValue;
else
i_iValue = ++ms_iAutoValue;
if (ms_listiValue.Contains (i_iValue))
throw new ArgumentException ("duplicate value " + i_iValue.ToString ());
Value = i_iValue;
ms_listiValue.Add (i_iValue);
}
private static void UpdateNames (Type i_oType)
{
if (i_oType == null)
return;
FieldInfo[] aoFieldInfo = i_oType.GetFields (BindingFlags.Public | BindingFlags.Static);
foreach (FieldInfo oFieldInfo in aoFieldInfo)
{
CEnum oEnumResult = oFieldInfo.GetValue (null) as CEnum;
if (oEnumResult == null)
continue;
oEnumResult.Name = oFieldInfo.Name;
}
}
}
Secondly, here are 2 derived Enum classes. All derived classes need some basic methods in order to work as expected. It's always the same boilerplate code; I haven't found a way yet to outsource it to the base class. The code of the first level of inheritance differs slightly from all subsequent levels.
public class CEnumResult : CEnum
{
private static List<CEnumResult> ms_listoValue = new List<CEnumResult>();
public static readonly CEnumResult Nothing = new CEnumResult ( 0);
public static readonly CEnumResult SUCCESS = new CEnumResult ( 1);
public static readonly CEnumResult UserAbort = new CEnumResult ( 11);
public static readonly CEnumResult InProgress = new CEnumResult (101);
public static readonly CEnumResult Pausing = new CEnumResult (201);
private static readonly CEnumResult Dummy = new CEnumResult (msc_iUpdateNames);
protected CEnumResult () : base ()
{
}
protected CEnumResult (int i_iValue) : base (i_iValue)
{
}
protected override void CommonConstructor (int i_iValue)
{
base.CommonConstructor (i_iValue);
if (i_iValue == msc_iUpdateNames)
return;
if (this.GetType () == System.Reflection.MethodBase.GetCurrentMethod ().DeclaringType)
ms_listoValue.Add (this);
}
public static new CEnumResult[] GetValues ()
{
List<CEnumResult> listoValue = new List<CEnumResult> ();
listoValue.AddRange (ms_listoValue);
return listoValue.ToArray ();
}
}
public class CEnumResultClassCommon : CEnumResult
{
private static List<CEnumResultClassCommon> ms_listoValue = new List<CEnumResultClassCommon>();
public static readonly CEnumResult Error_InternalProgramming = new CEnumResultClassCommon (1000);
public static readonly CEnumResult Error_Initialization = new CEnumResultClassCommon ();
public static readonly CEnumResult Error_ObjectNotInitialized = new CEnumResultClassCommon ();
public static readonly CEnumResult Error_DLLMissing = new CEnumResultClassCommon ();
// ... many more
private static readonly CEnumResult Dummy = new CEnumResultClassCommon (msc_iUpdateNames);
protected CEnumResultClassCommon () : base ()
{
}
protected CEnumResultClassCommon (int i_iValue) : base (i_iValue)
{
}
protected override void CommonConstructor (int i_iValue)
{
base.CommonConstructor (i_iValue);
if (i_iValue == msc_iUpdateNames)
return;
if (this.GetType () == System.Reflection.MethodBase.GetCurrentMethod ().DeclaringType)
ms_listoValue.Add (this);
}
public static new CEnumResult[] GetValues ()
{
List<CEnumResult> listoValue = new List<CEnumResult> (CEnumResult.GetValues ());
listoValue.AddRange (ms_listoValue);
return listoValue.ToArray ();
}
}
The classes have been successfully tested with follwing code:
private static void Main (string[] args)
{
CEnumResult oEnumResult = CEnumResultClassCommon.Error_Initialization;
string sName = oEnumResult.Name; // sName = "Error_Initialization"
CEnum[] aoEnumResult = CEnumResultClassCommon.GetValues (); // aoEnumResult = {testCEnumResult.Program.CEnumResult[9]}
string[] asEnumNames = CEnum.GetNames (aoEnumResult);
int ixValue = Array.IndexOf (aoEnumResult, oEnumResult); // ixValue = 6
}
I realize I'm a bit late to this party, but here's my two cents.
We're all clear that Enum inheritance is not supported by the framework. Some very interesting workarounds have been suggested in this thread, but none of them felt quite like what I was looking for, so I had a go at it myself.
Introducing: ObjectEnum
You can check the code and documentation here: https://github.com/dimi3tron/ObjectEnum.
And the package here: https://www.nuget.org/packages/ObjectEnum
Or just install it: Install-Package ObjectEnum
In short, ObjectEnum<TEnum> acts as a wrapper for any enum. By overriding the GetDefinedValues() in subclasses, one can specify which enum values are valid for this specific class.
A number of operator overloads have been added to make an ObjectEnum<TEnum> instance behave as if it were an instance of the underlying enum, keeping in mind the defined value restrictions. This means you can easily compare the instance to an int or enum value, and thus use it in a switch case or any other conditional.
I'd like to refer to the github repo mentioned above for examples and further info.
I hope you find this useful. Feel free to comment or open an issue on github for further thoughts or comments.
Here are a few short examples of what you can do with ObjectEnum<TEnum>:
var sunday = new WorkDay(DayOfWeek.Sunday); //throws exception
var monday = new WorkDay(DayOfWeek.Monday); //works fine
var label = $"{monday} is day {(int)monday}." //produces: "Monday is day 1."
var mondayIsAlwaysMonday = monday == DayOfWeek.Monday; //true, sorry...
var friday = new WorkDay(DayOfWeek.Friday);
switch((DayOfWeek)friday){
case DayOfWeek.Monday:
//do something monday related
break;
/*...*/
case DayOfWeek.Friday:
//do something friday related
break;
}
Enums are not actual classes, even if they look like it. Internally, they are treated just like their underlying type (by default Int32). Therefore, you can only do this by "copying" single values from one enum to another and casting them to their integer number to compare them for equality.
Enums cannot be derrived from other enums, but only from int, uint, short, ushort, long, ulong, byte and sbyte.
Like Pascal said, you can use other enum's values or constants to initialize an enum value, but that's about it.
another possible solution:
public enum #base
{
x,
y,
z
}
public enum consume
{
x = #base.x,
y = #base.y,
z = #base.z,
a,b,c
}
// TODO: Add a unit-test to check that if #base and consume are aligned
HTH
This is not possible (as #JaredPar already mentioned). Trying to put logic to work around this is a bad practice. In case you have a base class that have an enum, you should list of all possible enum-values there, and the implementation of class should work with the values that it knows.
E.g. Supposed you have a base class BaseCatalog, and it has an enum ProductFormats (Digital, Physical). Then you can have a MusicCatalog or BookCatalog that could contains both Digital and Physical products, But if the class is ClothingCatalog, it should only contains Physical products.
The way you do this, if warranted, is to implement your own class structure that includes the features you wanted from your concept of an inherited enum, plus you can add more.
You simply implement equality comparators and functions to look up values you simply code yourself.
You make the constructors private and declare static instances of the class and any subclasses to whatever extent you want.
Or find a simple work around for your problem and stick with the native enum implementation.
Code Heavy Implementation of Inherited Enumerations:
/// <summary>
/// Generic Design for implementing inheritable enum
/// </summary>
public class ServiceBase
{
//members
protected int _id;
protected string _name;
//constructors
private ServiceBase(int id, string name)
{
_id = id;
_name = name;
}
//onlu required if subclassing
protected ServiceBase(int id, string name, bool isSubClass = true )
{
if( id <= _maxServiceId )
throw new InvalidProgramException("Bad Id in ServiceBase" );
_id = id;
_name = name;
}
//members
public int Id => _id;
public string Name => _name;
public virtual ServiceBase getService(int serviceBaseId)
{
return ALLBASESERVICES.SingleOrDefault(s => s.Id == _id);
}
//implement iComparable if required
//static methods
public static ServiceBase getServiceOrDefault(int serviceBaseId)
{
return SERVICE1.getService(serviceBaseId);
}
//Enumerations Here
public static ServiceBase SERVICE1 = new ServiceBase( 1, "First Service" );
public static ServiceBase SERVICE2 = new ServiceBase( 2, "Second Service" );
protected static ServiceBase[] ALLBASESERVICES =
{
//Enumerations list
SERVICE1,
SERVICE2
};
private static int _maxServiceId = ALLBASESERVICES.Max( s => s.Id );
//only required if subclassing
protected static ServiceBase[] combineServices(ServiceBase[] array1, ServiceBase[] array2)
{
List<ServiceBase> serviceBases = new List<ServiceBase>();
serviceBases.AddRange( array1 );
serviceBases.AddRange( array2 );
return serviceBases.ToArray();
}
}
/// <summary>
/// Generic Design for implementing inheritable enum
/// </summary>
public class ServiceJobs : ServiceBase
{
//constructor
private ServiceJobs(int id, string name)
: base( id, name )
{
_id = id;
_name = name;
}
//only required if subclassing
protected ServiceJobs(int id, string name, bool isSubClass = true )
: base( id, name )
{
if( id <= _maxServiceId )
throw new InvalidProgramException("Bad Id in ServiceJobs" );
_id = id;
_name = name;
}
//members
public override ServiceBase getService(int serviceBaseId)
{
if (ALLSERVICES == null)
{
ALLSERVICES = combineServices(ALLBASESERVICES, ALLJOBSERVICES);
}
return ALLSERVICES.SingleOrDefault(s => s.Id == _id);
}
//static methods
public static ServiceBase getServiceOrDefault(int serviceBaseId)
{
return SERVICE3.getService(serviceBaseId);
}
//sub class services here
public static ServiceBase SERVICE3 = new ServiceJobs( 3, "Third Service" );
public static ServiceBase SERVICE4 = new ServiceJobs( 4, "Forth Service" );
private static int _maxServiceId = ALLJOBSERVICES.Max( s => s.Id );
private static ServiceBase[] ALLJOBSERVICES =
{
//subclass service list
SERVICE3,
SERVICE4
};
//all services including superclass items
private static ServiceBase[] ALLSERVICES = null;
}
Note that you can use an enum instead of an int as the id, though the subclass will need a separate enum.
The enum class itself can be decorated with all kinds of flags, messages, functions etc.
A generic implementation would reduce a great deal of the code.
Depending on your situation you may NOT need derived Enums as they're based off System.Enum.
Take this code, you can pass in any Enum you like and get its selected value:
public CommonError FromErrorCode(Enum code)
{
Code = (int)Enum.Parse(code.GetType(), code.ToString());
You can perform inheritance in enum, however it's limited to following types only .
int, uint, byte, sbyte, short, ushort, long, ulong
E.g.
public enum Car:int{
Toyota,
Benz,
}