I'm rethinking a current WCF service we're using right now. We do A LOT of loading XML to various databases. In some cases, we can store it as XML data, and in others, we need to store it as rowsets.
So I'm redesigning this service to accept different providers. My first thought, classic abstract factory, but now I'm having my doubts. Essentially, the service class has one operation contract method, Load. But to me, it seems silly to new-up provider instances every time Load is called.
Currently:
// Obviously incomplete example:
public class XmlLoaderService : IXmlLoaderService
{
readonly IXmlLoaderFactory _xmlLoaderFactory;
readonly IXmlLoader _xmlLoader;
public XmlLoaderService()
{
_xmlLoader = _xmlLoaderFactory(ProviderConfiguration configuration);
}
public void Load(Request request)
{
_xmlLoader.Load(request);
}
}
I'm thinking about changing to:
public class XmlLoaderService : IXmlLoaderService
{
static readonly IDictionary<int, IXmlLoader> _providerDictionary;
static public XmlLoaderService()
{
_providerDictionary = PopulateDictionaryFromConfig();
}
public void Load(Request request)
{
// Request will always supply an int that identifies the
// request type, can be used as key in provider dictionary
var xmlLoader = _providerDictionary[request.RequestType];
xmlLoader.Load(request);
}
}
Is this a good approach? I like the idea of caching the providers, seems more efficient to me... though, I tend to overlook the obvious sometimes. Let me know your thoughts!
Why can't you use both? Pass in your dependency into the Load method and if the type is already cached use the cached instance.
public void Load(Request request)
{
// Request will always supply an int that identifies the
// request type, can be used as key in provider dictionary
IXmlLoader xmlLoader;
if(_providerDictionary.ContainsKey(request.RequestType))
{
xmlLoader = _providerDictionary[request.RequestType];
}
else
{
xmlLoader = //acquire from factory
_providerDictionary.Add(request.RequestType, xmlLoader);
}
xmlLoader.Load(request);
}
Related
I have a WCF Service with the following operation contract:
[OperationContract]
Response SearchEntities(Query query);
This operation takes a request that contains a specified Entity like so:
[DataContract]
public class Query
{
[DataMember]
public string SearchTerm { get; set; }
[DataMember]
public string Entity { get; set; }
[DataMember]
public bool ExactMatch { get; set; }
}
Based on the value contained within the Entity property, one the following properties is populated within this response:
[DataContract]
public class Response
{
[DataMember]
public List<Asset> Assets { get; set; }
[DataMember]
public List<Stage> Stages { get; set; }
[DataMember]
public List<Sector> Sectors { get; set; }
}
Terrible design, I know! However. I am using Autofac.Wcf as my service factory to inject dependencies. Normally I would use a common Interface and Generics to determine a service to use based on the Entity value like so:
public interface IEntitySearch<T>
{
Response Search(Query query);
}
The above interface would have several implementations for each of the Lists within the response. Using a design pattern such as a service location I could determine which service to use (all of which inherit from IEntitySearch<T>, something like:
public IEntitySearch ResolveSearcher(Query query)
{
switch(query.Entity)
{
case "Assets":
return _container.Resolve<AssetSearch>();
case "Stages":
return _container.Resolve<StageSearch>();
default:
throw new NotSupportedException();
}
}
While this works, a more elegant solution (I believe) would be to customize the Autofac container per request for this particular operation, depending on the data contained within the request.
IE: Before the WCF pipe line sends the request to the service implementation, is it possible to examine the request data and customize how the container resolves dependencies. That way I can avoid exposing dependency resolution within my service layer.
Is this possible?
If another DI library other than Autofac has a solution for this, I will happily change our DI framework.
Thanks.
I haven't personally tried this but I think a direction you can go down is to combine:
Using OperationContext.Current to get the current request message data.
Specifying a custom IServiceImplementationDataProvider for Autofac that tells Autofac which WCF interface to host for that request.
Using a lambda registration for your service implementation to switch the backing service based on OperationContext.Current.
You can see two examples of the IServiceImplementationDataProvider by looking at the DefaultServiceImplementationProvider - the one that works in Autofac WCF hosting by default; andMultitenantServiceImplementationDataProvider, which is more about generating a proxy to enable multitenant WCF hosting.
While neither of these use OperationContext.Current to determine the actual backing service, you can build on the ideas:
Look at the Autofac.Multitenant.Wcf implementation. You may be able to use it as-is. The point of the instance data provider there is that WCF grabs on to the concrete type of the service being hosted and if you try to swap types out from under it, you get errors. The multitenant support fools WCF by creating a proxy type and your implementation type can be swapped out under the proxy. Note the MultitenantServiceImplementationDataProvider doesn't actually tie anything to a tenant or tenant ID; it's only about that proxy.
In your .svc file specify a service interface rather than any individual concrete implementation since you'll be swapping out the implementation.
Use a lambda registration to figure out your implementation.
Make sure your service is InstanceContextMode.PerCall to ensure things get swapped out on a per request basis.
The registration might look something like this:
builder.Register(ctx => {
var context = OperationContext.Current;
var type = DetermineTypeFromContext(context);
return ctx.Resolve(type);
}).As<IMyServiceInterface>();
The Autofac WCF and Autofac Multitenant section on WCF may also help.
In my opinion you're trying to move your problem just to another place. Why would making decision based on request at low-level WCF is better than switch in SearchEntities method? It's much worse ;-)
I would consider to use IEntitySearch factory/provider e.q.IEntitySearchProvider (it's not so much better but always).
public interface IEntitySearch
{
bool IsMatchQuery(Query query);
Response Search(Query query);
}
// without service locator
public class EntitySearchProvider : IEntitySearchProvider
{
private readonly IEnumerable<IEntitySearch> _searchers;
public EntitySearchProvider(IEnumerable<IEntitySearch> searchers)
{
_searchers = searchers;
}
public IEntitySearch GetSearcher(Query query)
{
// last registered
return _searchers.LastOrDefault(i=>i.IsMatchQuery(query))
?? throw new NotSupportedException();
}
}
or
public interface IEntitySearchProvider
{
IEntitySearch GetSearcher(Query query);
}
public class EntitySearchProvider : IEntitySearchProvider
{
private readonly IComponentContext _container;
public EntitySearchProvider(IComponentContext container)
{
_container = container;
}
public IEntitySearch GetSearcher(Query query)
{
switch(query.Entity)
{
case "Assets":
return _container.Resolve<AssetSearch>();
case "Stages":
return _container.Resolve<StageSearch>();
default:
throw new NotSupportedException();
}
}
}
with
public class WcfService
{
private readonly IEntitySearchProvider _provider;
public WcfService(IEntitySearchProvider provider)
{
_provider = provider;
}
public Response SearchEntities(Query query)
{
var searcher = _provider.GetSearcher(query);
return searcher.Search(query);
}
}
Our existing database deployment has a single 'master' and a read-only replica. Using ASP.NET's Web API2 and an IoC container I want to create controller actions whose attribute (or lack there of) indicate which database connection is to be used for that request (See Controller and Services usage below)...
public MyController : ApiController
{
public MyController(IService1 service1, IService2 service2) { ... }
// this action just needs the read only connection
// so no special attribute is present
public Foo GetFoo(int id)
{
var foo = this.service1.GetFoo(id);
this.service2.GetSubFoo(foo);
return foo;
}
// This attribute indicates a readwrite db connection is needed
[ReadWrteNeeded]
public Foo PostFoo(Foo foo)
{
var newFoo = this.service1.CreateFoo(foo);
return newFoo;
}
}
public Service1 : IService1
{
// The dbSession instance injected here will be
// based off of the action invoked for this request
public Service1(IDbSession dbSession) { ... }
public Foo GetFoo(int id)
{
return this.dbSession.Query<Foo>(...);
}
public Foo CreateFoo(Foo newFoo)
{
this.dbSession.Insert<Foo>(newFoo);
return newFoo;
}
}
I know how to setup my IoC (structuremap or Autofac) to handle per request IDbSession instances.
However, I'm not sure how I would go about making the type of IDbSession instance for the request to key off the indicator attribute (or lack there of) on the matching controller's action. I assume I will need to create an ActionFilter that will look for the indicator attribute and with that information identify, or create, the correct type of IDbSession (read-only or read-write). But how do I make sure that the created IDbSession's lifecycle is managed by the container? You don't inject instances into the container at runtime, that would be silly. I know Filters are created once at startup (making them singleton-ish) so I can't inject a value into the Filter's ctor.
I thought about creating an IDbSessionFactory that would have 'CreateReadOnlyDbSession' and 'CreateReadWriteDbSession' interfaces, but don't I need the IoC container (and its framework) to create the instance otherwise it can't manage its lifecycle (call dispose when the http request is complete).
Thoughts?
PS During development, I have just been creating a ReadWrite connection for every action, but I really want to avoid that long-term. I could also split out the Services methods into separate read-only and read-write classes, but I'd like to avoid that as well as placing GetFoo and WriteFoo in two different Service implementations just seems a bit wonky.
UPDATE:
I started to use Steven's suggestion of making a DbSessionProxy. That worked, but I was really looking for a pure IoC solution. Having to use HttpContext and/or (in my case) Request.Properties just felt a bit dirty to me. So, if I had to get dirty, I might as well go all the way, right?
For IoC I used Structuremap and WebApi.Structuremap. The latter package sets up a nested container per Http Request plus it allows you to inject the current HttpRequestMessage into a Service (this is important). Here's what I did...
IoC Container Setup:
For<IDbSession>().Use(() => DbSession.ReadOnly()).Named("ReadOnly");
For<IDbSession>().Use(() => DbSession.ReadWrite()).Named("ReadWrite");
For<ISampleService>().Use<SampleService>();
DbAccessAttribute (ActionFilter):
public class DbAccessAttribute : ActionFilterAttribute
{
private readonly DbSessionType dbType;
public DbAccessAttribute(DbSessionType dbType)
{
this.dbType = dbType;
}
public override bool AllowMultiple => false;
public override void OnActionExecuting(HttpActionContext actionContext)
{
var container = (IContainer)actionContext.GetService<IContainer>();
var dbSession = this.dbType == DbSessionType.ReadOnly ?
container.GetInstance<IDbSession>("ReadOnly") :
container.GetInstance<IDbSession>("ReadWrite");
// if this is a ReadWrite HttpRequest start an Request long
// database transaction
if (this.dbType == DbSessionType.ReadWrite)
{
dbSession.Begin();
}
actionContext.Request.Properties["DbSession"] = dbSession;
}
public override void OnActionExecuted(HttpActionExecutedContext actionExecutedContext)
{
var dbSession = (IDbSession)actionExecutedContext.Request.Properties["DbSession"];
if (this.dbType == DbSessionType.ReadWrite)
{
// if we are responding with 'success' commit otherwise rollback
if (actionExecutedContext.Response != null &&
actionExecutedContext.Response.IsSuccessStatusCode &&
actionExecutedContext.Exception == null)
{
dbSession.Commit();
}
else
{
dbSession.Rollback();
}
}
}
}
Updated Service1:
public class Service1: IService1
{
private readonly HttpRequestMessage request;
private IDbSession dbSession;
public SampleService(HttpRequestMessage request)
{
// WARNING: Never attempt to access request.Properties[Constants.RequestProperty.DbSession]
// in the ctor, it won't be set yet.
this.request = request;
}
private IDbSession Db => (IDbSession)request.Properties["DbSession"];
public Foo GetFoo(int id)
{
return this.Db.Query<Foo>(...);
}
public Foo CreateFoo(Foo newFoo)
{
this.Db.Insert<Foo>(newFoo);
return newFoo;
}
}
I assume I will need to create an ActionFilter that will look for the indicator attribute and with that information identify, or create, the correct type of IDbSession (read-only or read-write).
With your current design, I would say an ActionFilter is the way to go. I do think however that a different design would serve you better, which is one where business operations are more explicitly modelled behind a generic abstraction, since you can in that case place the attribute in the business operation, and when you explicitly separate read operations from write operations (CQS/CQRS), you might not even need this attribute at all. But I'll consider this out of scope of your question right now, so that means an ActionFilter is the the way to go for you.
But how do I make sure that the created IDbSession's lifecycle is managed by the container?
The trick is let the ActionFilter store information about which database to use in a request-global value. This allows you to create a proxy implementation for IDbSession that is able to switch between a readable and writable implementation internally, based on this setting.
For instance:
public class ReadWriteSwitchableDbSessionProxy : IDbSession
{
private readonly IDbSession reader;
private readonly IDbSession writer;
public ReadWriteSwitchableDbSessionProxy(
IDbSession reader, IDbSession writer) { ... }
// Session operations
public IQueryable<T> Set<T>() => this.CurrentSession.Set<T>();
private IDbSession CurrentSession
{
get
{
var write = (bool)HttpContext.Current.Items["WritableSession"];
return write ? this.writer : this.reader;
}
}
}
The Situation
I'm building a C# web application and I want to model my app configuration as an explicit dependency to be handed in through the constructor of a service instead of relying on System.Configuration.ConfigurationManager directly in each of the classes. This did bite my quite often in the past so I want the dependency to be explicit so that the next maintainer of the project (probably future me) doesn't have to guess where my services get their configuration settings - on top of that it is more TDD friendly. Furthermore I'm currently reading Eric Evan's Domain Driven Design and I really want to embrace his DDD approach.
I started modeling the configuration class and corresponding value objects to avoid Primitive Obsession but I hit some bumps on the way and I'm not sure how to handle them appropriately. Here is my current approach:
// Role interface that can be requested via constructor injection
interface IAppConnectionStringsConfig
{
OleDbConnectionString AuthenticationConnectionString { get; }
}
// A base class for handling common functionality like
// parsing comma separated lists or default values
class abstract AppConfigBase
{
protected string GetStringAppSetting(string key)
{
// Get the appropriate string or a default value from
// System.Configuration.ConfigurationManager
return theSettingFromSomeConfigSource;
}
}
// A value object for OLEDB connection strings that also has a
// convenient implicit conversion to string
class OleDbConnectionString
{
public readonly string Value;
public OleDbConnectionString(string connectionString)
{
Contract.Requires(connectionString != null);
this.VerifyStructure(connectionString);
this.Value = connectionString;
}
private void VerifyStructure(string text)
{
Contract.Requires(text != null);
// Verify that the given string fulfills the special
// needs of an OleDbConnectionString (including Provider=...)
if (!/* isValidOleDbConnectionString */)
{
throw new FormatException();
}
}
public implicit operator string(ConnectionString conn)
{
return conn.Value;
}
}
// The actual app config that implements our role interface
class AppConfig : AppConfigBase, IAppConnectionStringsConfig
{
public OleDbConnectionString AuthenticationConnectionString
{
get
{
return new OleDbConnectionString(this.GetStringAppSetting("authconn"));
}
}
}
The Problem
I know that constructor logic should be minimal and that is not a good idea to call virtual methods from the constructor. My questions are as follows:
1) Where should I put the validation logic for the OleDbConnectionString? I really want to prevent the creation of value objects in an invalid state - that's excrutiatingly usefull at a day to day basis :-)
I have the feeling that this is domain logic that should be owned by the class itself but on the other hand the constructor should do as little as possible - wouldn't the string parsing be too much or is this ok?
I could create a validator but I most certainly had to hand that in through the constructor for being able to test that thing properly and then I have to wire that manually or use a factory (I'm definitely not using a Service Locator). On top of that the validation now would be hidden in a separate service; I wouldn't have the temporal coupling since the constructor requires the validator but still that doesn't look right.
2) I wonder if it would be appropriate to make DDD value objects structs? They - like the name suggests - represent a single value and this value is immutable. But they would contain business logic in the form of validation
3) Is it OK to use a property for retrieving the connection string? It could throw an exception if the format for the string isn't valid. Furthermore it's perfectly possible that the implementation will be changed from reading from an xml config file to querying a database.
4) Any other comments on the design are welcome!
As a side note, I'm already using Code Contracts and there is a way to specify object invariants but I don't know whether this is really a good idea since these contracts are opt-in and in the case that they are inactive the invariants are no longer actively protected. I'm not sure about this, for development purposes to catch errors early it might be fine but for production it seems off.
Thx!
I never really thought about general settings as a DDD problem - are you modelling a domain that is about settings and how they are saved, or just allowing settings to be saved and used in an application that has some inner parts modeled as DDD?
You can split this out by separating concerns of getting settings away from the things that use the settings.
Is it OK to use a property for retrieving the connection string? It could throw an exception if the format for the string isn't valid.
I don't think its a good idea to throw an exception if a setting cannot be retrieved so you can return defaults which would allow the program to continue.
But also remember that the default returned value (i.e. a password, or network address) will probably cause the thing that depends on that setting to throw an exception.
I would look at allowing the construction to happen OK but when coming to use the service i.e. Sender.Send() or Sender.Connect() is when you would throw an exception.
Where should I put the validation logic for the OleDbConnectionString? I really want to prevent the creation of value objects in an invalid state
I create objects that can never return an invalid result, but they do return a default settings value:
public class ApplicationSettings : IIdentityAppSettings, IEventStoreSettings
{
/* snip */
static readonly object KeyLock = new object();
public byte[] StsSigningKey
{
get
{
byte[] key = null;
lock (KeyLock)
{
var configManager = WebConfigurationManager.OpenWebConfiguration("/");
var configElement = configManager.AppSettings.Settings["StsSigningKey"];
if (configElement == null)
{
key = CryptoRandom.CreateRandomKey(32);
configManager.AppSettings.Settings.Add("StsSigningKey", Convert.ToBase64String(key));
configManager.Save(ConfigurationSaveMode.Modified); // save to config file
}
else
{
key = Convert.FromBase64String(configElement.Value);
}
}
return key;
}
/* snip */
}
}
What I generally do
I have the settings interfaces for each bounded context defined in the domain model as part of the infrastructure - this allows a number of known interfaces which I can reference and trust to provide some form of settings.
ApplicationSettings is defined in the code that hosts my bounded context(s) be it a Console app or WebAPI or MVC etc, I may have multiple bounded contexts hosted under the same process, or may split them out as separate processes, either way it is the job of the hosting application to provide the relevant application settings and wiring can be done via the IoC container.
public class ApplicationSettings : IIdentityAppSettings, IEventStoreSettings
{
// implement interfaces here
}
public interface IEventStoreSettings
{
string EventStoreUsername { get; }
string EventStorePassword { get; }
string EventStoreAddress { get; }
int EventStorePort { get; }
}
public interface IIdentityAppSettings
{
byte[] StsSigningKey { get; }
}
I use SimpleInjector .NET IoC container to wire up my applications. I then register all the application interfaces with SimpleInjector (so i can query based on any of the application interfaces and have the settings class object returned):
resolver.RegisterAsImplementedInterfaces<ApplicationSettings>();
I can then have the specific interface injected in, an example is a command handler that uses an IRepository, which in turn the EventStoreRepository (which is wired up as an implementation of IRepository) uses IEventStoreSettings (which is wired up as the ApplicationSettings instance):
public class HandleUserStats : ICommandHandler<UserStats>
{
protected IRepository repository;
public HandleUserStats(IRepository repository)
{
this.repository = repository;
}
public void Handle(UserStats stats)
{
// do something
}
}
And my repository would in turn be wired up:
public class EventStoreRepository : IRepository
{
IEventStoreSettings eventStoreSettings;
public EventStoreRepository(IEventStoreSettings eventStoreSettings)
{
this.eventStoreSettings = eventStoreSettings;
}
public void Write(object obj)
{
// just some mockup code to show how to access setting
var eventStoreClient = new EventStoreClient(
this.eventStoreSettings.EventStoreUsername,
this.eventStoreSettings.EventStorePassword,
this.eventStoreSettings.EventStoreAddress,
this.eventStoreSettings.Port
);
// if ever there was an exception either during setup of the connection, or
// exception (if you don't return a default value) accessing settings, it
// could be caught and bubbled up as an InfrastructureException
// now do something with the event store! ....
}
}
I allow settings to be passed in from some external source (like a WCF receive, or MVC controller action) and wired up by getting resolver.GetInstance<CommandHandler<UserStats>>(); which wires up all the settings for me all the way down to the implementation level.
Consider the following example:
public class CommunicationClient : IClient
{
public CommunicationClient(IServerSettings settings) { ... }
// Code
}
public class SettingsManager : ISettingsManager
{
SettingsManager(IDbSettingManager manager)
// Code
public IDictionary<string, string> GetSettings() { ... }
}
Problem:
While performing registrations (using SimpleInjector), I need to provide values that are obtained from an instance of SetingsManager and fill ServerSettings instance (concrete type for IServerSettings) but if I call GetInstance<ISettingsManager> before registering CommunicationClient, it gives me an error that I cannot do that
Error:
The container can't be changed after the first call to GetInstance, GetAllInstances and Verify.)
One solution could be to inject ISettingsManager as a dependency to CommunicationClient but I really don't want to pass it as it would provide more than required information to it.
EDIT: Container Registration
container.Register(typeof(ICommunicationClient), typeof(CommunicationClient));
ISettingsManager settingsManager = container.GetInstance<ISettingsManager>();
string url = settingsManager.GetSetting("url");
string userName = settingsManager.GetSetting("username");
string password = settingsManager.GetSetting("password");
container.Register(typeof(IServerConfiguration), () =>
new ServerConfiguration(url, userName, password);
Any suggestions/alternative solutions on how to achieve above in a cleaner way? Thanks.
Simple Injector locks the container for further changes after its first use. This is an explicit design choice, which is described here. This means that you can't call Register after you called GetInstance, but there should never be a reason to do this. Or in other words, your configuration can always be rewritten in a way that you don't need this. In your case your configuration will probably look something like this:
var settingsManager = new SettingsManager(new SqlSettingManager("connStr"));
container.RegisterSingle<ISettingsManager>(settingsManager);
container.Register<ICommunicationClient, CommunicationClient>();
string url = settingsManager.GetSetting("url");
string userName = settingsManager.GetSetting("username");
string password = settingsManager.GetSetting("password");
container.Register<IServerConfiguration>(() =>
new ServerConfiguration(url, userName, password));
There you see that SettingsManager is not built-up by the container. When using a DI container, you are not required to let the DI container build up every instance for you. Letting the container auto-wire instances for you is done to lower the maintenance burden of your Composition Root and makes it easier to apply cross-cutting concerns (using decorators for instance) to groups of related classes. In the case of the SettingsManager and SqlSettingsManager classes, it is very unlikely that their constructor will change that often that it will increase the maintenance burden of your Composition Root. It's therefore perfectly fine to manually create those instances once.
If I understand correctly, to create your CommunicationClient class, you need to pass information that are retrieved by calling a method on an instance of your ISettingsManager, but you don't want to pass the ISettingsManager as a dependency to your CommunicationClient?
One solution for that would be to create, and register, a factory that would have a dependency on ISettingsManager and that would have a CreateClient method that would return the configured client.
public class CommunicationClientFactory : ICommunicationClientFactory
{
public CommunicationClientFactory(ISettingsManager settingsManager) {...}
public CreateClient() {...}
}
This way your CommunicationClient is not dependent on the ISettingsManager and you have just this factory that does the work of creating your instance.
Edit:
An alternative, if you don't want to create a factory for this, would be to have your CommunicationClient object be created in an "invalid" state, and have a method that would set the settings and make its state valid.
Something like:
public class CommunicationClient : IClient
{
public CommunicationClient() { ... }
// Code
CommunicationClient WithSettings(IServerSettings settings) { ... }
}
Of course, then you'd have to make sure that the user don't use it when the settings have not been passed yet, potentially sending an exception if that would be the case. I like this solution less, because it's less explicit that you NEED those settings to have your object in a correct state.
I'm using Drum which provides a generic class `UriMaker:
public class UriMaker<TController>
{
// I need use this one
public UriMaker(UriMakerContext context, HttpRequestMessage request) { }
public UriMaker(Func<MethodInfo, RouteEntry> mapper, UrlHelper urlHelper) { }
}
Used like this:
public class UserController : ApiController
{
public UserController(UriMaker<UserController> urlMaker) {}
}
I've used to register it with Unity:
container.RegisterType(typeof(UriMaker<>),
new InjectionConstructor(typeof(UriMakerContext), typeof(HttpRequestMessage)));
but now migrating to Simple Injector. I already have this:
UriMakerContext uriMaker = config.MapHttpAttributeRoutesAndUseUriMaker();
container.RegisterSingle(uriMakerContext);
So how now register UriMaker<> itself?
Although it is possible to configure Simple Injector to allow injecting an UriMaker<TController> directly into your controllers, I strongly advice against this for multiple reasons.
First of all, you should strive to minimize the dependencies your application takes on external libraries. This can easily be done by defining an application specific abstraction (conforming the ISP).
Second, injecting the UriMaker directly makes your extremely hard to test, since the UriMaker is pulled into your test code, while it assumes an active HTTP request and assumes the Web API route system to be configured correctly. These are all things you don't want your test code to be dependent upon.
Last, it makes verifying the object graph harder, since the UriMaker depends on an HttpRequestMessage, which is a runtime value. In general, runtime values should not be injected into the constructors of your services. You should build up your object graph with components (the stuff that contains the application's behavior) and you send runtime data through the object graph after construction.
So instead, I suggest the following abstraction:
public interface IUrlProvider
{
Uri UriFor<TController>(Expression<Action<TController>> action);
}
Now your controllers can depend on this IUrlProvider instead of depending on an external library:
public class UserController : ApiController
{
private readonly IUrlProvider urlProvider;
public UserController(IUrlProvider urlProvider)
{
this.urlProvider = urlProvider;
}
public string Get()
{
this.urlProvider.UriFor<HomeController>(c => c.SomeFancyAction());
}
}
Under the covers you of course still need to call Drum, and for this you need to define a proxy implementation for IUrlProvider:
public class DrumUrlProvider : IUrlProvider
{
private readonly UriMakerContext context;
private readonly Func<HttpRequestMessage> messageProvider;
public DrumUrlProvider(UriMakerContext context,
Func<HttpRequestMessage> messageProvider)
{
this.context = context;
this.messageProvider= messageProvider;
}
public Uri UriFor<TController>(Expression<Action<TController>> action)
{
HttpRequestMessage message = this.messageProvider.Invoke();
var maker = new UriMaker<TController>(this.context, message);
return maker.UriFor(action);
}
}
This implementation can be registered as singleton in the following way:
container.EnableHttpRequestMessageTracking(config);
UriMakerContext uriMakerContext =
config.MapHttpAttributeRoutesAndUseUriMaker();
IUrlProvider drumProvider = new DrumUrlProvider(uriMakerContext,
() => container.GetCurrentHttpRequestMessage());
container.RegisterSingle<IUrlProvider>(drumProvider);
This example uses the Simple Injector Web API integration package to allow retrieving the current request's HttpRequestMessage using the EnableHttpRequestMessageTracking and GetCurrentHttpRequestMessage extension methods as explained here.