Basically I'm looking at 2 different situations:
Method calls within the same class:
public class MyClass
{
public Bar GetDefaultBar(Foo foo)
{
Contract.Requires(foo != null);
return GetSpecificBar(foo, String.Empty);
}
public Bar GetSpecificBar(Foo foo, string name)
{
Contract.Requires(foo != null);
Contract.Requires(name != null);
...
}
}
Method calls within different classes:
public class MyClass
{
private MyBarProvider { get; set; }
public Bar GetDefaultBar(Foo foo)
{
Contract.Requires(foo != null);
return BarProvider.GetSpecificBar(foo, String.Empty);
}
//Object-Invariant ensures that MyBarProvider is never null...
}
public class MyBarProvider
{
public Bar GetSpecificBar(Foo foo, string name)
{
Contract.Requires(foo != null);
Contract.Requires(name != null);
...
}
}
I'm wondering if it is necessary to have duplicate contracts for either of these situations? I'm guessing that there might be a way to avoid it in the first example (all within the same class), but not in the second example (different classes). Also, should I avoid duplicating or should it be in there?
I assume that the duplication you're talking about is Contract.Requires(foo != null);.
You need to have that line in both methods, in both cases. If you don't include it in the caller, you'll get a "Requires unproven" at the call site, because the calling method's caller might pass a null value. If you don't include it in the callee, the callee's contract won't include the non-null requirement, and the contract analyzer will consider foo to be possibly null. That's because another call site would be free to pass in a null value.
EDIT
As Ɖiamond ǤeezeƦ points out, you can use the ContractAbbreviatorAttribute to refactor repetitive contract calls into a separate method. The attribute is not part of .NET Framework 4.0, but you can define it yourself. For more information, see Terje Sandstrom's blog post on reconciling code contracts null checks with FXCop: http://geekswithblogs.net/terje/archive/2010/10/14.aspx
Related
As question asked Here 8 years ago but I think there should be a way(New Patterns , New Designs , New Architectures or anything else.) to enforce method don't return null.
As you know there are some implications with returning null in a method one important for me is:
Handling null in Consuming-Side and understandable semantics like:
Method:
public ClassName Do()
{
...
return null;
}
And calling Do() like (Attention Comments also):
var objVal = Do();
//Accessing property of ClassName raised exception
var pnVal = objVal.PropName;//Exception id objVal is null
//But I should handle if it is not null then do anything I want
if(objVal!= null)
{
//Do something
}
after many problem on product by above way I came to this conclusion to generalize all method to follow a pattern to be readable,clean and preventing ambiguous semantic.
so a very basic Way is using Struct type because structure can't be null , if a return type of methods be structure then they can't return null and We know this in compile time not in runtime.
So I implement that above method like:
1- Make DTO out and in for method, in this case just out:
public struct Do_DTO_Out
{
public ClassName Prop1 { get; set; }
public bool IsEmpty
{
get
{
return Prop1 == null;
}
}
public static Do_DTO_Out Empty
{
get
{
return new Do_DTO_Out() { Prop1 = null };
}
}
}
2- And Do method should be:
public Do_DTO_Out Do()
{
try
{
return manipulatedObj;
}
catch (Exception exp)
{
}
return Do_DTO_Out.Empty;
}
3- In consuming side:
var objVal = Do();
if (!objVal.IsEmpty)
//Do something
Is struct is best way ? is it worth to change all method and create DTO in and out for each of them (I think so).
Is there better way to do that , any idea,help,answer would be truly appreciated.
Your 'reference type' to 'struct with property check' conversion seems useless to me. It also requires intimate knowledge of your intention, while the reference type null check is very obvious to anyone reading it later.
I think code contracts could work for you. It provides you with compile time static analysis and runtime checks. Just make sure you have the appropriate contract as post condition:
public ClassName Do()
{
...
object returnValue = null;
Contract.Ensures(returnValue != null);
return returnValue;
}
Assuming that value can never be null otherwise the if is unavoidable (but for a single method call you can now write Do()?.DoSomething()).
If you can introduce code contracts (see Patrick's answer) then I completely agree with Patrick and you should go with them. If it's not viable (because your codebase is already too big or you're targeting an environment where they aren't supported) then I'd first use assertions:
var obj = Do();
Debug.Assert(obj != null);
// Use obj...
We're however moving this responsibility to calling point and it may be tedious. If you want to make this interface explicit then you can use something a struct as you thought but throwing an exception at calling point (where the error is):
public NotNullable<SomeClass> Do() { }
Where NotNullable<T> is defined as:
public struct NotNullable<T> where T : class
{
public NotNullable(T value)
{
Value = value ?? throw new ArgumentNullException(nameof(value));
}
public T Value { get; }
}
However I do not like to explicitly access .Value at calling point then I'd make it transparent adding:
public static implicit operator T(NotNullable<T> rhs)
=> rhs.Value;
Now caller can be:
MyClass obj = Do();
obj.DoSomthing();
And the proper exception is thrown (at run-time, unfortunately) when object is created. Playing with [Conditional("DEBUG")] you may exclude that check for release builds having then a behavior similar to Debug.Assert() and a minimal (but still present) overhead.
Note that this makes sense only if you want to document interface method about this constraint directly in its signature. If you're not interested in this then keep it as simple as possible:
public SomeClass Do()
{
MyClass somevalue = ...
// ...
return NotNull(somevalue);
}
Where NotNull() is a static method define somewhere and imported with using static or even an extension method for object called as return somevalue.NotNull().
I don't especially like this approach because I think Debug.Assert() is enough in these cases but it's just my opinion. Of course maybe someday we will have Nullable Reference Types in C# then we'll get compile-time enforcement (as object? or the other way round object!).
Returning null is a bad practice - better to implement
NullObject Design Pattern
I am looking for contract classes that I see some code examples. I wonder what is it. So there is a sample code like this.
[ContractClass(typeof(ICaseConverterContracts))]
public interface ICaseConverter
{
string Convert(string text);
}
[ContractClassFor(typeof(ICaseConverter))]
internal class ICaseConverterContracts : ICaseConverter
{
string ICaseConverter.Convert(string text)
{
Contract.Requires(text != null);
Contract.Ensures(Contract.Result<string>() != null);
return default(string);
}
private ICaseConverterContracts() {}
}
public class InvariantUpperCaseFormatter : ICaseConverter
{
public string Convert(string text)
{
return text.ToUpperInvariant();
}
}
What does contracts here?
I have created a new instance of InvariantUpperCaseFormatter.
class Program
{
static void Main(string[] args)
{
InvariantUpperCaseFormatter formatter = new InvariantUpperCaseFormatter();
Console.Write(formatter.Convert(string.Empty));
}
}
and I put the breakpoint to method ICaseConverter.Convert(string text) in ICaseConverterContracts class but it does not break. what does it? Automatically check if name is not null?
The code you see is a piece of code that utilizes Code contracts (here) (and here). Some of the facilities provided by code contracts are usable by default but others rely on the IL rewriter that modifies your code when you build it. So until you install code contracts and activate it by directive some code won't be used.
I suppose that your question is a little bit too broad. If you're interested surf the links I provided above. The contract in the code you posted checks two things: first, it checks that the input is not null, then it checks the output for also not being null.
I got this class
public class fooBase
{
public List<MethodsWithCustAttribute> MethodsList;
public bool fooMethod([CallerMemberName]string membername =""))
{
//This returns a value depending of type and method
}
public void GetMethods()
{
// Here populate MethodsList using reflection
}
}
And This Attribue Class
// This attribute get from a database some things, then fooMethod check this attribute members
public class CustomAttribute
{
public string fullMethodPath;
public bool someThing ;
public bool CustomAttribute([CallerMemberName]string membername ="")
{
fullMethodPath = **DerivedType** + membername
// I need here to get the type of membername parent.
// Here I want to get CustClass, not fooBase
}
}
Then I have this
public class CustClass : fooBase
{
[CustomAttribute()]
public string method1()
{
if (fooMethod())
{
....
}
}
}
I need the Type name of the CallerMember, there is something like [CallerMemberName] to get the Type of class owner of the Caller ?
It isn't foolproof, but the convention with .NET is to have one type per file and to name the file the same as the type. Our tooling also tends to enforces this convention i.e. Resharper & Visual Studio.
Therefore it should be reasonable to infer the type name from the file path.
public class MyClass
{
public void MyMethod([CallerFilePath]string callerFilePath = null, [CallerMemberName]string callerMemberName = null)
{
var callerTypeName = Path.GetFileNameWithoutExtension(callerFilePath);
Console.WriteLine(callerTypeName);
Console.WriteLine(callerMemberName);
}
}
Caller member
Granted, getting the caller member name is not "natural" in the object model.
That's why the C# engineers introduced CallerMemberName in the compiler.
The real enemy is duplication, and stack-based workarounds are inefficient.
[CallerMemberName] allows to get the information without duplication and without ill-effect.
Caller type
But getting the caller member type is natural and easy to get without duplication.
How to do it
Add a "caller" parameter to fooMethod, no special attribute needed.
public bool fooMethod(object caller, [CallerMemberName]string membername = "")
{
Type callerType = caller.GetType();
//This returns a value depending of type and method
return true;
}
And call it like this:
fooMethod(this);
This answer the question
You stated
// Here I want to get CustClass, not fooBase
and that's exactly what you'll get.
Other situations where it would not work, with solutions.
While this exactly answers your requirements, there are other, different, cases where it wouldn't work.
Case 1: When caller is a static methods (there is no "this").
Case 2: When one wants the type of the caller method itself, and not the type of the caller itself (which may be a subclass of the first).
In those cases, a [CallerMemberType] might make sense, but there are simpler solutions.
Notice that the static caller case is simpler: there is no object so no discrepancy between it and the type of the calling method. No fooBase, only CustClass.
Case 1: When caller is a static methods (there is no "this")
If at least one caller is a static method, then don't do the GetType() inside the method but on call site, so don't pass "this" to the method but the type:
public bool fooMethodForStaticCaller(Type callerType, [CallerMemberName]string membername = "")
Static caller will do:
public class MyClassWithAStaticMethod // can be CustClass, too
{
public static string method1static()
{
fooMethodForStaticCaller(typeof(MyClassWithAStaticMethod));
}
}
To keep compatibility with object callers, either keep the other fooMethod that takes the this pointer, or you can remove it and object callers will do:
fooMethod(this.GetType());
You can notice that the typeof(MyClassWithAStaticMethod) above repeats the class name and it's true. It would be nicer to not repeat the class name, but it's not such a big deal because this repeats only once, as a typed item (not a string) and inside the same class. It's not as serious a problem as the original problem that the [CallerMemberName] solves, which was a problem of repeating the caller name in all call sites.
Case 2: When one wants the type of the caller method, not the type of the caller
For example, in class fooBase you want to call anotherFooMethod from object context but want the type being passed to always be fooBase, not the actual type of the object (e.g. CustClass).
In this case there is a this pointer but you don't want to use it. So, just use actually the same solution:
public class fooBase
{
[CustomAttribute()]
public string method1()
{
if (anotherFooMethod(typeof(fooBase)))
{
....
}
}
}
Just like in case 1, there is one repetition, not one per call site, unless you have an pre-existing problem of rampant code duplication, in which case the problem being addressed here is not the one you should worry about.
Conclusion
[CallerMemberType] might still make sense to avoid duplication at all, but:
anything added to the compiler is a complexity burden with maintenance cost
given the existing solutions I'm not surprised there are items with higher priority in the C# development team list.
See Edit 2 for the better solution.
The information that CompilerServices provides is too little in my opinion to get the type from the calling method.
What you could do is use StackTrace (see) to find the calling method (using GetMethod()) and get the type using Reflection from there.
Consider the following:
using System.Runtime.CompilerServices;
public class Foo {
public void Main() {
what();
}
public void what() {
Bar.GetCallersType();
}
public static class Bar {
[MethodImpl(MethodImplOptions.NoInlining)] //This will prevent inlining by the complier.
public static void GetCallersType() {
StackTrace stackTrace = new StackTrace(1, false); //Captures 1 frame, false for not collecting information about the file
var type = stackTrace.GetFrame(1).GetMethod().DeclaringType;
//this will provide you typeof(Foo);
}
}
}
Notice - As #Jay said in the comments, it might be pretty expensive but it does the work well.
Edit:
I found couple of arcticles comparing the performance, and it is indeed horrbily expensive comparing to Reflection which is also considered not the best. See: [1] [2]
Edit 2:
So after a look in depth on StackTrace, it is indeed not safe to use it and even expensive.
Since every method that will be called is going to be marked with a [CustomAttribute()], it is possible to collect all methods that contains it in a static list.
public class CustomAttribute : Attribute {
public static List<MethodInfo> MethodsList = new List<MethodInfo>();
static CustomAttribute() {
var methods = Assembly.GetExecutingAssembly() //Use .GetCallingAssembly() if this method is in a library, or even both
.GetTypes()
.SelectMany(t => t.GetMethods())
.Where(m => m.GetCustomAttributes(typeof(CustomAttribute), false).Length > 0)
.ToList();
MethodsList = methods;
}
public string fullMethodPath;
public bool someThing;
public CustomAttribute([CallerMemberName] string membername = "") {
var method = MethodsList.FirstOrDefault(m=>m.Name == membername);
if (method == null || method.DeclaringType == null) return; //Not suppose to happen, but safety comes first
fullMethodPath = method.DeclaringType.Name + membername; //Work it around any way you want it
// I need here to get the type of membername parent.
// Here I want to get CustClass, not fooBase
}
}
Play around with this approach to fit your precise need.
Why not just use public void MyMethod<T>(params) { string myName = typeof(T).Name }
then call it Logger.MyMethod<Form1>(...);
You avoid the performance hit of reflection, if you just need basic info.
I need to examine in "parent" object is there an acceptable at a definite moment to call some method in the "child". For example, parent object (component) includes child objects (or component parts in other words) and parent is disposing now, so all (or particlar) child activities must be prohibited (i.e. starting new service threads, enqueueing new client requests, ...).
public class Parent
{
public bool IsMethodCallAcceptable(reference_to_method) {...}
}
public class Child
{
public int SomeMethod(int intArg, string stringArg)
{
if(!_parent.IsMethodCallAcceptable(reference_to_SomeMethod_with_actual_args))
throw new ...
...
}
private void AnotherMethod(string param = null) {...}
{
if(!_parent.IsMethodCallAcceptable(reference_to_AnotherMethod_with_actual_args))
throw new ...
...
}
private Guid ThirdMethod()
{
if(!_parent.IsMethodCallAcceptable(reference_to_ThirdMethod))
throw new ...
...
}
}
Is there any way to do it?
Note: I am answering your question, not your title. Others have answered the title.
Some objects have an isDisposed property, if your parent implements that and that is the only time you don't want to call methods, then yes. Otherwise no. If you control the source for the parent, you could add a property that does what you want.
If you don't control the source and you want to check more than isDisposed or the parent doesn't implement isDisposed, you might be able to check publicly exposed properties, but generally you should assume that if a method is exposed to the public, that it is acceptable to call it at any time. If you're calling private methods via reflection, then you're taking chances.
Edit in response to comment:
Given your description, delegates won't give you any additional capability that you can't do easier by adding properties and methods to the parent (if you don't control the source, they won't help at all). The best method for dealing with your described scenario (CAR.ENGINE.START when out of gas, is for the Start method to either throw an exception or return a value indicationg the result of the attempt to start the engine).
Use delegates?
http://msdn.microsoft.com/en-us/library/ms173171%28v=vs.80%29.aspx
The easiest way is to pass an URI instead of a reference:
"NS.Child.ThirdMethod" for example.
Otherwise, a delegate is what is the closest to a function reference. You can pass that if you want.
However, this method is not compliant with OOP conception rules: Base class should know nothing about its children classes.
It's better to use some kind of locking mechanism to tell the children that they can't have access to the resources.
use func Func<T, TResult>
link
If these methods are native to the child class, the parent can't know anything about them for sure. Rice's Theorem will cause you all kinds of problems, if you could even see the code. Same problem (but to a lesser degree) if they're native to the parent class and are being overridden in the child, since you can't really guarantee that the child class will be doing everything (and only those things) that the parent class does; in fact, you can all but guarantee it will do something different. (If it didn't, why override?)
If they're native to the parent class and not overridable in the child, then just check whether the object is in a valid state for doing such a thing and throw an exception if it isn't.
As far as the actual validity check, for your example you can have a method like bool IsDisposing(); for other cases, you might keep track of the state in some other way. A private method like CanDoThisThing() might help, for example. Having a method that takes a generic operation name (not an operation; we already established the infeasibility of that) seems kinda broken to me.
Thank you all again, the result in the first approach is listed below
public class Component
{
public ComponentPart SomeComponentPart1 { get; private set; }
public ComponentPart SomeComponentPart2 { get; private set; }
public Component()
{
SomeComponentPart1 = new ComponentPart(this);
SomeComponentPart2 = new ComponentPart(this);
}
public bool IsMethodCallAcceptable(MethodCallExpression method, object[] parameters)
{
// collect needed information about caller
var caller = (method.Object as ConstantExpression).Value;
var methodName = method.Method.Name;
var paramsArray = new Dictionary<string, object>();
for (int i = 0; i < method.Arguments.Count; i++)
paramsArray.Add((method.Arguments[i] as MemberExpression).Member.Name, parameters[i]);
// make corresponding decisions
if (caller == SomeComponentPart2)
if (methodName == "SomeMethod")
if ((int) paramsArray["intArg"] == 0 || (string) paramsArray["stringArg"] == "")
return false;
return true;
}
}
public class ComponentPart
{
private Component Owner { get; set; }
public ComponentPart(Component owner)
{
Owner = owner;
}
public int SomeMethod(int intArg, string stringArg)
{
// check if the method call with provided parameters is acceptable
Expression<Func<int, string, int>> expr = (i, s) => SomeMethod(intArg, stringArg);
if (!Owner.IsMethodCallAcceptable(expr.Body as MethodCallExpression, new object[] { intArg, stringArg }))
throw new Exception();
// do some work
return stringArg.Length + intArg;
}
public void AnotherMethod(bool boolArg, Dictionary<Guid, DateTime> crazyArg, string stringArg, object objectArg)
{
// check if the method call with provided parameters is acceptable
Expression<Action<bool, Dictionary<Guid, DateTime>, string, object>> expr =
(b, times, arg3, arg4) => AnotherMethod(boolArg, crazyArg, stringArg, objectArg);
if (!Owner.IsMethodCallAcceptable(expr.Body as MethodCallExpression, new [] { boolArg, crazyArg, stringArg, objectArg }))
throw new Exception();
// do some work
var g = new Guid();
var d = DateTime.UtcNow;
}
}
This is variant how to check method calls, the same approach can be used in order to check properties values changes, while some ComponentPart' methods and properties can check some public Component.State property (via ComponentPart.Owner) instead of calling Component.IsMethodCallAcceptable or Component.IsPropertyChangeAcceptable.
The System.Windows.Documents namespace includes a number of classes with an Inlines property of type InlineCollection. For example, the Paragraph, Bold and Hyperlink classes all have this property.
Each of these classes is decorated with ContentPropertyAttribute ...
[ContentPropertyAttribute("Inlines")]
public class Paragraph : Block
... which means that it is easy enough, using reflection, to detect that a given object exposes this property.
However, I need to be able to access this property in a strongly-typed manner across a selection of the types that implement it.
I am a little surprised that Microsoft didn't make all these classes implement an "IInlineContainer" interface, which would have made type checking and casting very easy.
However, in the absence of such an interface, is there any way to fake this polymorphic functionality, ideally without littering my code with lots of conditions and type checking?
Many thanks for your ideas,
Tim
Edit:
Thanks for your suggestions. A number of people have suggested the idea of a wrapper class, but this is not possible in my situation, as the target objects are not created by my code, but by the other classes in the .NET framework, for example the Xaml parser or the RichTextBox control (in which the containing FlowDocument is being edited).
Edit 2:
There have been several great suggestions here and I thank everyone who shared their ideas. The solution I have chosen to implement employs extension methods, which was suggested by #qstarin, although I have refined the concept to suit my needs, as follows:
public static InlineCollection GetInlines(
this FrameworkContentElement element)
{
if (element == null) throw new ArgumentNullException("element");
if (element is Paragraph)
{
return ((Paragraph) element).Inlines;
}
else if (element is Span) // also catches Bold, Italic, Unerline, Hyperlink
{
return ((Span)element).Inlines;
}
else
{
return null;
}
}
Although this approach requires conditional logic and type casting (which I said I wanted to avoid) the use of extension methods means that it only needs to be implemented in one place, leaving my various calling methods uncluttered.
Extension methods.
public static class InlineContainerExtensions {
public static InlineContainer GetInlines(this Paragraph inlineContainer) {
return inlineContainer.Inlines;
}
public static InlineContainer GetInlines(this Bold inlineContainer) {
return inlineContainer.Inlines;
}
}
If you didn't need to access it in a strongly-typed manner, but just without reflection, you could use dynamic:
dynamic doc = new Bold()
doc.InlineCollection. ...
doc = new Paragraph()
doc.InlineCollection. ...
Another option is to define a wrapper, that exposes a property with the same name, and has an overloaded constructor that takes Bold, Paragraph, etc.
You could implement a wrapper class that exposes an Inlines property and delegates via reflection to the contained object.
Decide if you want to validate that the wrapped object indeed has Inlines in your constructor or when trying to reference it
Employ the Adapter Pattern, write one class for each of those classes you wish to handle, effectively wrapping them in a layer implementing a common layer.
To make the classes discoverable, I would use reflection, tag each such class with an attribute for which class they handle, ie.:
[InlineContainerAdapter(typeof(SpecificClass1))]
public class WrapSpecificClass1 : IInlineContainer
and use reflection to find them.
This would give you several benefits:
You don't have to deal with dynamic, or similar solutions
While you have to use reflection to find the classes, the code you're actually executing once you've created the adapter is 100% yours, hand-coded
You can create adapters for classes that doesn't really implement what you need in the same manner as the rest, by just writing the adapter different
If this sounds like an interesting solution, leave a comment and I'll put up a working complete example.
One way of doing this (apart from using dynamic, which is the easiest solution IMO), you can create dynamically generated methods to return the inlines:
Func<object, InlineCollection> GetInlinesFunction(Type type)
{
string propertyName = ...;
// ^ check whether type has a ContentPropertyAttribute and
// retrieve its Name here, or null if there isn't one.
if (propertyName == null)
return null;
var p = Expression.Parameter(typeof(object), "it");
// The following creates a delegate that takes an object
// as input and returns an InlineCollection (as long as
// the object was at least of runtime-type "type".
return Expression.Lambda<Func<object, InlineCollection>>(
Expression.Property(
Expression.Convert(p, type),
propertyName),
p).Compile();
}
You'd have to cache these somewhere, though. A static Dictionary<Type, Func<object, InlineCollection>> comes to mind. Anyway, when you have, you can simply make an extension method:
public static InlineCollection GetInlines(this TextElement element)
{
Func<object, InlineCollection> f = GetCachedInlinesFunction(element.GetType());
if (f != null)
return f(element);
else
return null;
}
Now, with this in place, just use
InlineCollection coll = someElement.GetInlines();
Because you can check in your GetCachedInlinesFunction whether the property really exists or not, and handle that in a neat fashion, you won't have to litter your code with try catch blocks like you have to when you're using dynamic.
So, your dream-code would be:
foreach (var control in controls) {
var ic = control as IInlineContainer;
if (ic != null) {
DoSomething(ic.Inlines);
}
}
I don't see why you don't want to create a strongly typed wrapper class that uses reflection. With this class (no error handling):
public class InlinesResolver {
private object _target;
public InlinesResolver(object target) {
_target = target;
}
public bool HasInlines {
get {
return ResolveAttribute() != null;
}
}
public InlineCollection Inlines {
get {
var propertyName = ResolveAttribute().Name;
return (InlineCollection)
_target.GetType().GetProperty(propertyName).GetGetMethod().Invoke(_target, new object[] { });
}
}
private ContentPropertyAttribute ResolveAttribute() {
var attrs = _target.GetType().GetCustomAttributes(typeof(ContentPropertyAttribute), true);
if (attrs.Length == 0) return null;
return (ContentPropertyAttribute)attrs[0];
}
}
You could almost get to your dream-code:
foreach (var control in controls) {
var ir = new InlinesResolver(control);
if (ir.HasInlines) {
DoSomething(ir.Inlines);
}
}
You could always superclass them (e.g. InlineParagraph, InlineBold, etc) and have each of your superclasses implement an IInlineContainer interface like you suggested. Not the quickest or cleanest solution, but you at least have them all descending from the same interface.
Depending on your use-case, you could create a public Api that delegated its work to a private method that takes a dynamic. This keeps the strong typing for your public Api and eliminates code duplication, even though it falls back to using dynamic internally.
public void DoSomethingwithInlines(Paragraph p) {
do(p);
}
public void DoSomethingwithInlines(Bolb b) {
do(b);
}
private void do(dynamic d) {
// access Inlines here, using c# dynamic
}