I have this code,
void Generate(List<string> comb, string prefix, string remaining)
{
int currentDigit = Int32.Parse(remaining.Substring(0, 1));
if (remaining.Length == 1)
{
for (int i = 0; i < dictionary[currentDigit].Length; i++)
{
comb.Add(prefix + dictionary[currentDigit][i]);
}
}
else
{
for (int i = 0; i < dictionary[currentDigit].Length; i++)
{
Generate(comb, prefix + dictionary[currentDigit][i], remaining.Substring(1));
}
}
}
What is the time complexity of the above code?
Is it Generate is O(n) and that itself is being executed n times so O(n^2)?
dictionary is len = 10 and has phone keypads stored it in. 2 = "abc" etc.
The initial call to this code will be like
Generate(new List(), "", "12345");
Thanks.
Assume dictionary size is m and input string size is n (remaining) this will be:
T(1) = m + constant;
T(n) = m T(n-1) + O(n) ==> T(n) = O(m^n)
In fact in each running of else part, you will run m times, function of O(n).
Related
explanation
I have been staring at the problem for a few of minutes.
And i did some research before i ask this quest , but it were in different cases and they didn't included what i really need.
I found this piece of code in SO.
static int GetLargestSum(int[] array, int n, int sum)
{
int largestSum = 0;
int previousSum = 0;
for (int i = 0; i <= array.Length - n; i++)
{
if (i == 0)
{
for (int j = 0; j < n; j++)
{
largestSum += array[j];
}
previousSum = largestSum;
}
else
{
int currentSum = previousSum - array[i - 1] + array[i + n - 1];
if (currentSum > largestSum)
{
largestSum = currentSum;
}
previousSum = currentSum;
}
}
return largestSum;
}
And yes this works but if works for only the largest sum.
I tried to modify it to add the sum var into the code but that didn't actually went that well.
So i would really appreciate if someone helps me, bcs i am stuck in this algorithm.
Thank you!
The way to solve it would be to iterate over each segment of the array and evaluate its sum. A crude first draft would look something like this
public static int ConsecutiveSumArrangements(int[] vals, int count, int sum)
{
var number = 0;
for (int i = 0; i < (vals.Length - count); i++)
{
var segSum = vals.Skip(i).Take(count).Sum();
if (segSum == sum)
{
number++;
}
}
return number;
}
Maybe it is easier think in another way than try to correct this code. An idea is using slide window. Pseudo code look like
sum = 0
sol = 0
start = 0
end = 0
// sum of the first m elements
while end < m
sum = sum + s[end]
end = end + 1
If sum == d
sol = sol + 1
while end < n
sum = sum + s[end]
sum = sum - s[start]
end = end + 1
start = start + 1
if sum == d
sol = sol + 1
// in the loop we add the next element and subtract the first element
//so, we keep the length of m elements
I've looked at previous posts and none have the answer that I'm looking for.
I'm new to C# and trying to get this little application to work.
I have a file named "hours.txt" with 30 numbers in it and I want to read the file and output the Average and the Highest Number, but I can't seem to get it to work. I've tried changing the array to a string but I'm just really stuck on how to get this to work. Any help or tips would be greatly appreciated.
int[] hoursArray = new int[30];
StreamReader fileSR = new StreamReader("hours.txt");
int counter = 0;
string line = "";
line = fileSR.ReadLine();
while (line != null)
{
hoursArray[counter] = line;
counter = counter + 1;
line = fileSR.ReadLine();
}
fileSR.Close();
int total = 0;
double average = 0;
for (int index = 0; index < hoursArray.Length; index++)
{
total = total + hoursArray[index];
}
average = (double)total / hoursArray.Length;
int high = hoursArray[0];
for (int index = 1; index < hoursArray.Length; index++)
{
if (hoursArray[index] > high)
{
high = hoursArray[index];
}
}
Console.WriteLine("Highest number is: " + high);
Console.WriteLine("The average is: " + average);
Console.ReadLine();
This is wrong since your are putting a string into a int place.
hoursArray[counter] = line;
Parse string to int first.
hoursArray[counter] = int.Parse(line);
As an alternative method, using LINQ, the code could be replaced with the more concise:
string[] lines = System.IO.File.ReadAllLines("hours.txt");
int[] values = lines.Select((l) => int.Parse(l)).ToArray();
double average = values.Average();
int peak = values.Max();
For a string that may have zero or more hyphens in it, I need to extract all the different possibilities with and without hyphens.
For example, the string "A-B" would result in "A-B" and "AB" (two possibilities).
The string "A-B-C" would result in "A-B-C", "AB-C", "A-BC" and "ABC" (four possibilities).
The string "A-B-C-D" would result in "A-B-C-D", "AB-C-D", "A-BC-D", "A-B-CD", "AB-CD", "ABC-D", "A-BCD" and "ABCD" (eight possibilities).
...etc, etc.
I've experimented with some nested loops but haven't been able to get anywhere near the desired result. I suspect I need something recursive unless there is some simple solution I am overlooking.
NB. This is to build a SQL query (shame that SQL Server does't have MySQL's REGEXP pattern matching).
Here is one attempt I was working on. This might work if I do this recursively.
string keyword = "A-B-C-D";
List<int> hyphens = new List<int>();
int pos = keyword.IndexOf('-');
while (pos != -1)
{
hyphens.Add(pos);
pos = keyword.IndexOf('-', pos + 1);
}
for (int i = 0; i < hyphens.Count(); i++)
{
string result = keyword.Substring(0, hyphens[i]) + keyword.Substring(hyphens[i] + 1);
Response.Write("<p>" + result);
}
A B C D are words of varying length.
Take a look at your sample cases. Have you noticed a pattern?
With 1 hyphen there are 2 possibilities.
With 2 hyphens there are 4 possibilities.
With 3 hyphens there are 8 possibilities.
The number of possibilities is 2n.
This is literally exponential growth, so if there are too many hyphens in the string, it will quickly become infeasible to print them all. (With just 30 hyphens there are over a billion combinations!)
That said, for smaller numbers of hyphens it might be interesting to generate a list. To do this, you can think of each hyphen as a bit in a binary number. If the bit is 1, the hyphen is present, otherwise it is not. So this suggests a fairly straightforward solution:
Split the original string on the hyphens
Let n = the number of hyphens
Count from 2n - 1 down to 0. Treat this counter as a bitmask.
For each count begin building a string starting with the first part.
Concatenate each of the remaining parts to the string in order, preceded by a hyphen only if the corresponding bit in the bitmask is set.
Add the resulting string to the output and continue until the counter is exhausted.
Translated to code we have:
public static IEnumerable<string> EnumerateHyphenatedStrings(string s)
{
string[] parts = s.Split('-');
int n = parts.Length - 1;
if (n > 30) throw new Exception("too many hyphens");
for (int m = (1 << n) - 1; m >= 0; m--)
{
StringBuilder sb = new StringBuilder(parts[0]);
for (int i = 1; i <= n; i++)
{
if ((m & (1 << (i - 1))) > 0) sb.Append('-');
sb.Append(parts[i]);
}
yield return sb.ToString();
}
}
Fiddle: https://dotnetfiddle.net/ne3N8f
You should be able to track each hyphen position, and basically say its either there or not there. Loop through all the combinations, and you got all your strings. I found the easiest way to track it was using a binary, since its easy to add those with Convert.ToInt32
I came up with this:
string keyword = "A-B-C-D";
string[] keywordSplit = keyword.Split('-');
int combinations = Convert.ToInt32(Math.Pow(2.0, keywordSplit.Length - 1.0));
List<string> results = new List<string>();
for (int j = 0; j < combinations; j++)
{
string result = "";
string hyphenAdded = Convert.ToString(j, 2).PadLeft(keywordSplit.Length - 1, '0');
// Generate string
for (int i = 0; i < keywordSplit.Length; i++)
{
result += keywordSplit[i] +
((i < keywordSplit.Length - 1) && (hyphenAdded[i].Equals('1')) ? "-" : "");
}
results.Add(result);
}
This works for me:
Func<IEnumerable<string>, IEnumerable<string>> expand = null;
expand = xs =>
{
if (xs != null && xs.Any())
{
var head = xs.First();
if (xs.Skip(1).Any())
{
return expand(xs.Skip(1)).SelectMany(tail => new []
{
head + tail,
head + "-" + tail
});
}
else
{
return new [] { head };
}
}
else
{
return Enumerable.Empty<string>();
}
};
var keyword = "A-B-C-D";
var parts = keyword.Split('-');
var results = expand(parts);
I get:
ABCD
A-BCD
AB-CD
A-B-CD
ABC-D
A-BC-D
AB-C-D
A-B-C-D
I've tested this code and it is working as specified in the question. I stored the strings in a List<string>.
string str = "AB-C-D-EF-G-HI";
string[] splitted = str.Split('-');
List<string> finalList = new List<string>();
string temp = "";
for (int i = 0; i < splitted.Length; i++)
{
temp += splitted[i];
}
finalList.Add(temp);
temp = "";
for (int diff = 0; diff < splitted.Length-1; diff++)
{
for (int start = 1, limit = start + diff; limit < splitted.Length; start++, limit++)
{
int i = 0;
while (i < start)
{
temp += splitted[i++];
}
while (i <= limit)
{
temp += "-";
temp += splitted[i++];
}
while (i < splitted.Length)
{
temp += splitted[i++];
}
finalList.Add(temp);
temp = "";
}
}
I'm not sure your question is entirely well defined (i.e. could you have something like A-BCD-EF-G-H?). For "fully" hyphenated strings (A-B-C-D-...-Z), something like this should do:
string toParse = "A-B-C-D";
char[] toParseChars = toPase.toCharArray();
string result = "";
string binary;
for(int i = 0; i < (int)Math.pow(2, toParse.Length/2); i++) { // Number of subsets of an n-elt set is 2^n
binary = Convert.ToString(i, 2);
while (binary.Length < toParse.Length/2) {
binary = "0" + binary;
}
char[] binChars = binary.ToCharArray();
for (int k = 0; k < binChars.Length; k++) {
result += toParseChars[k*2].ToString();
if (binChars[k] == '1') {
result += "-";
}
}
result += toParseChars[toParseChars.Length-1];
Console.WriteLine(result);
}
The idea here is that we want to create a binary word for each possible hyphen. So, if we have A-B-C-D (three hyphens), we create binary words 000, 001, 010, 011, 100, 101, 110, and 111. Note that if we have n hyphens, we need 2^n binary words.
Then each word maps to the output you desire by inserting the hyphen where we have a '1' in our word (000 -> ABCD, 001 -> ABC-D, 010 -> AB-CD, etc). I didn't test the code above, but this is at least one way to solve the problem for fully hyphenated words.
Disclaimer: I didn't actually test the code
Instead of looping through each character to see if it's the one you want then adding the index your on to a list like so:
var foundIndexes = new List<int>();
for (int i = 0; i < myStr.Length; i++)
{
if (myStr[i] == 'a')
foundIndexes.Add(i);
}
You can use String.IndexOf, see example below:
string s = "abcabcabcabcabc";
var foundIndexes = new List<int>();
long t1 = DateTime.Now.Ticks;
for (int i = s.IndexOf('a'); i > -1; i = s.IndexOf('a', i + 1))
{
// for loop end when i=-1 ('a' not found)
foundIndexes.Add(i);
}
long t2 = DateTime.Now.Ticks - t1; // read this value to see the run time
I use the following extension method to yield all results:
public static IEnumerable<int> AllIndexesOf(this string str, string searchstring)
{
int minIndex = str.IndexOf(searchstring);
while (minIndex != -1)
{
yield return minIndex;
minIndex = str.IndexOf(searchstring, minIndex + searchstring.Length);
}
}
usage:
IEnumerable<int> result = "foobar".AllIndexesOf("o"); // [1,2]
Side note to a edge case: This is a string approach which works for one or more characters. In case of "fooo".AllIndexesOf("oo") the result is just 1 https://dotnetfiddle.net/CPC7D2
How about
string xx = "The quick brown fox jumps over the lazy dog";
char search = 'f';
var result = xx.Select((b, i) => b.Equals(search) ? i : -1).Where(i => i != -1);
The raw iteration is always better & most optimized.
Unless it's a bit complex task, you never really need to seek for a better optimized solution...
So I would suggest to continue with :
var foundIndexes = new List<int>();
for (int i = 0; i < myStr.Length; i++)
if (myStr[i] == 'a') foundIndexes.Add(i);
If the string is short, it may be more efficient to search the string once and count up the number of times the character appears, then allocate an array of that size and search the string a second time, recording the indexes in the array. This will skip any list re-allocations.
What it comes down to is how long the string is and how many times the character appears. If the string is long and the character appears few times, searching it once and appending indicies to a List<int> will be faster. If the character appears many times, then searching the string twice (once to count, and once to fill an array) may be faster. Exactly where the tipping point is depends on many factors that can't be deduced from your question.
If you need to search the string for multiple different characters and get a list of indexes for those characters separately, it may be faster to search through the string once and build a Dictionary<char, List<int>> (or a List<List<int>> using character offsets from \0 as the indicies into the outer array).
Ultimately, you should benchmark your application to find bottlenecks. Often the code that we think will perform slowly is actually very fast, and we spend most of our time blocking on I/O or user input.
public static List<int> GetSubstringLocations(string text, string searchsequence)
{
try
{
List<int> foundIndexes = new List<int> { };
int i = 0;
while (i < text.Length)
{
int cindex = text.IndexOf(searchsequence, i);
if (cindex >= 0)
{
foundIndexes.Add(cindex);
i = cindex;
}
i++;
}
return foundIndexes;
}
catch (Exception ex) { }
return new List<int> { };
}
public static String[] Split(this string s,char c = '\t')
{
if (s == null) return null;
var a = new List<int>();
int i = s.IndexOf(c);
if (i < 0) return new string[] { s };
a.Add(i);
for (i = i+1; i < s.Length; i++) if (s[i] == c) a.Add(i);
var result = new string[a.Count +1];
int startIndex = 0;
result[0] = s.Remove(a[0]);
for(i=0;i<a.Count-1;i++)
{
result[i + 1] = s.Substring(a[i] + 1, a[i + 1] - a[i] - 1);
}
result[a.Count] = s.Substring(a[a.Count - 1] + 1);
return result;
}
I am creating a forecasting application that will run simulations for various "modes" that a production plant is able to run. The plant can run in one mode per day, so I am writing a function that will add up the different modes chosen each day that best maximize the plant’s output and best aligns with the sales forecast numbers provided. This data will be loaded into an array of mode objects that will then be used to calculate the forecast output of the plant.
I have created the functions to do this, however, I need to make them recursive so that I am able to handle any number (within reason) of modes and work days (which varies based on production needs). Listed below is my code using for loops to simulate what I want to do. Can someone point me in the right direction in order to create a recursive function to replace the need for multiple for loops?
Where the method GetNumbers4 would be when there were four modes, and GetNumbers5 would be 5 modes. Int start would be the number of work days.
private static void GetNumber4(int start)
{
int count = 0;
int count1 = 0;
for (int i = 0; 0 <= start; i++)
{
for (int j = 0; j <= i; j++)
{
for (int k = 0; k <= j; k++)
{
count++;
for (int l = 0; l <= i; l++)
{
count1 = l;
}
Console.WriteLine(start + " " + (count1 - j) + " " + (j - k) + " " + k);
count1 = 0;
}
}
start--;
}
Console.WriteLine(count);
}
private static void GetNumber5(int start)
{
int count = 0;
int count1 = 0;
for (int i = 0; 0 <= start; i++)
{
for (int j = 0; j <= i; j++)
{
for (int k = 0; k <= j; k++)
{
for (int l = 0; l <= k; l++)
{
count++;
for (int m = 0; m <= i; m++)
{
count1 = m;
}
Console.WriteLine(start + " " + (count1 - j) + " " + (j - k) + " " + (k - l) + " " + l);
count1 = 0;
}
}
}
start--;
}
Console.WriteLine(count);
}
EDITED:
I think that it would be more helpful if I gave an example of what I was trying to do. For example, if a plant could run in three modes "A", "B", "C" and there were three work days, then the code will return the following results.
3 0 0
2 1 0
2 0 0
1 2 0
1 1 1
1 0 2
0 3 0
0 2 1
0 1 2
0 0 3
The series of numbers represent the three modes A B C. I will load these results into a Modes object that has the corresponding production rates. Doing it this way allows me to shortcut creating a list of every possible combination; it instead gives me a frequency of occurrence.
Building on one of the solutions already offered, I would like to do something like this.
//Where Modes is a custom classs
private static Modes GetNumberRecur(int start, int numberOfModes)
{
if (start < 0)
{
return Modes;
}
//Do work here
GetNumberRecur(start - 1);
}
Thanks to everyone who have already provided input.
Calling GetNumber(5, x) should yield the same result as GetNumber5(x):
static void GetNumber(int num, int max) {
Console.WriteLine(GetNumber(num, max, ""));
}
static int GetNumber(int num, int max, string prefix) {
if (num < 2) {
Console.WriteLine(prefix + max);
return 1;
}
else {
int count = 0;
for (int i = max; i >= 0; i--)
count += GetNumber(num - 1, max - i, prefix + i + " ");
return count;
}
}
A recursive function just needs a terminating condition. In your case, that seems to be when start is less than 0:
private static void GetNumberRec(int start)
{
if(start < 0)
return;
// Do stuff
// Recurse
GetNumberRec(start-1);
}
I've refactored your example into this:
private static void GetNumber5(int start)
{
var count = 0;
for (var i = 0; i <= start; i++)
{
for (var j = 0; j <= i; j++)
{
for (var k = 0; k <= j; k++)
{
for (var l = 0; l <= k; l++)
{
count++;
Console.WriteLine(
(start - i) + " " +
(i - j) + " " +
(j - k) + " " +
(k - l) + " " +
l);
}
}
}
}
Console.WriteLine(count);
}
Please verify this is correct.
A recursive version should then look like this:
public static void GetNumber(int start, int depth)
{
var count = GetNumber(start, depth, new Stack<int>());
Console.WriteLine(count);
}
private static int GetNumber(int start, int depth, Stack<int> counters)
{
if (depth == 0)
{
Console.WriteLine(FormatCounters(counters));
return 1;
}
else
{
var count = 0;
for (int i = 0; i <= start; i++)
{
counters.Push(i);
count += GetNumber(i, depth - 1, counters);
counters.Pop();
}
return count;
}
}
FormatCounters is left as an exercise to the reader ;)
I previously offered a simple C# recursive function here.
The top-most function ends up having a copy of every permutation, so it should be easily adapted for your needs..
I realize that everyone's beaten me to the punch at this point, but here's a dumb Java algorithm (pretty close to C# syntactically that you can try out).
import java.util.ArrayList;
import java.util.List;
/**
* The operational complexity of this is pretty poor and I'm sure you'll be able to optimize
* it, but here's something to get you started at least.
*/
public class Recurse
{
/**
* Base method to set up your recursion and get it started
*
* #param start The total number that digits from all the days will sum up to
* #param days The number of days to split the "start" value across (e.g. 5 days equals
* 5 columns of output)
*/
private static void getNumber(int start,int days)
{
//start recursing
printOrderings(start,days,new ArrayList<Integer>(start));
}
/**
* So this is a pretty dumb recursion. I stole code from a string permutation algorithm that I wrote awhile back. So the
* basic idea to begin with was if you had the string "abc", you wanted to print out all the possible permutations of doing that
* ("abc","acb","bac","bca","cab","cba"). So you could view your problem in a similar fashion...if "start" is equal to "5" and
* days is equal to "4" then that means you're looking for all the possible permutations of (0,1,2,3,4,5) that fit into 4 columns. You have
* the extra restriction that when you find a permutation that works, the digits in the permutation must add up to "start" (so for instance
* [0,0,3,2] is cool, but [0,1,3,3] is not). You can begin to see why this is a dumb algorithm because it currently just considers all
* available permutations and keeps the ones that add up to "start". If you want to optimize it more, you could keep a running "sum" of
* the current contents of the list and either break your loop when it's greater than "start".
*
* Essentially the way you get all the permutations is to have the recursion choose a new digit at each level until you have a full
* string (or a value for each "day" in your case). It's just like nesting for loops, but the for loop actually only gets written
* once because the nesting is done by each subsequent call to the recursive function.
*
* #param start The total number that digits from all the days will sum up to
* #param days The number of days to split the "start" value across (e.g. 5 days equals
* 5 columns of output)
* #param chosen The current permutation at any point in time, may contain between 0 and "days" numbers.
*/
private static void printOrderings(int start,int days,List<Integer> chosen)
{
if(chosen.size() == days)
{
int sum = 0;
for(Integer i : chosen)
{
sum += i.intValue();
}
if(sum == start)
{
System.out.println(chosen.toString());
}
return;
}
else if(chosen.size() < days)
{
for(int i=0; i < start; i++)
{
if(chosen.size() >= days)
{
break;
}
List<Integer> newChosen = new ArrayList<Integer>(chosen);
newChosen.add(i);
printOrderings(start,days,newChosen);
}
}
}
public static void main(final String[] args)
{
//your equivalent of GetNumber4(5)
getNumber(5,4);
//your equivalent of GetNumber5(5)
getNumber(5,5);
}
}