C# lock object inside instance object - c#

i faced ith situation that force me to lock a lock object that is inside of instance object i want to know is it true or not?
for clarify :
public class classA
{
object objLock = new object();
public void MethodA(object objClassA)
{
classA cls = (classA)objClassA;
lock(cls.objLock)
{
Do something with cls
}
}
}
is it allowed to do it?

The object you lock on is in the same class, but a different instance. In that sense you are not breaking encapsulation, but you should still prefer extracting that code so you can prevent locking on an external object. Here's an example:
public class classA
{
private readonly object objLock = new object();
public void MethodA(object objClassA)
{
classA cls = (classA)objClassA;
cls.DoSomething();
}
private void DoSomething()
{
lock (this.objLock)
{
Do something with cls
}
}
}

This is perfectly fine. It is legal C#. In fact this is the preferred way instead of locking this. Because this can be locked from outside the class whereas objLock being private can only be locked within the class, giving you better control and avoiding some deadlock conditions
However the casting could potentially throw an exception. You might want to handle that scenario

Related

Is it good practice to lock on a threaded instance of an object being used throughout an application?

Every example I've ever seen of locking uses a private object to lock specific blocks of code, and Thread Synchronization (C#) gives the same kind of example, but also says "Strictly speaking, the object provided is used solely to uniquely identify the resource being shared among multiple threads, so it can be an arbitrary class instance. In practice, however, this object usually represents the resource for which thread synchronization is necessary." (Emphasis mine.) In my example here, and in my code, there is only one instance of "MyClass", which is running on its own thread, and a reference to it is passed around to various other classes.
Is it OK to lock on the MyClass reference and then call Ready(), or should I instead put a private object() within MyClass and lock on that, as shown in the LockedReady() method? Thank you for your answer, in advance.
namespace ConsoleApplication1
{
class Program
{
static void Main(string[] args)
{
var uc = new UserClass();
uc.DoThings();
}
}
public class MyClass
{
public bool Ready()
{
//determine if the class is ready to perform its function
//assumes that the instance of MyClass is locked,
//as shown in UserClass.DoThings
}
private object _readyLock = new object();
public bool LockedReady()
{
lock (_readyLock)
{
//determine if the class is ready to perform its function
//no assumption made that the object is locked, as
//shown in AnotherClass.DoAnotherThing()
}
}
}
public class UserClass
{
private MyClass _myc;
public UserClass()
{
var t = new Thread(SetupMyClass);
t.Start();
}
private void SetupMyClass()
{
_myc = new MyClass();
}
public void DoThings()
{
lock(_myc)
{
if (_myc.Ready())
{
//Do things
}
}
}
public void DoOtherThings()
{
var ac = new AnotherClass(_myc);
ac.DoAnotherThing();
}
}
public class AnotherClass
{
private MyClass _myc;
public AnotherClass(MyClass myClass)
{
_myc = myClass;
}
public void DoAnotherThing()
{
if (_myc.LockedReady())
{
//do another thing
}
}
}
}
Functionally, it doesn't matter, one object doesn't perform better than the other, unless there is shared use of that object by other locking concerns.
With C#, it isn't uncommon to lock on the actual domain object, rather than a surrogate object for the lock. It is also common to see a member object used, and a common legacy example is the SyncRoot object on the early System.Collections. Either way works, as long as you use a reference type.
However, the argument to be made for using an internal surrogate lock object is one of encapsulation. It eliminates the possibility of external interference if a user of your class decides to use your class as a lock. Using an internal lock object protects your locks from external interference, so one could argue that locking is an implementation detail that should be hidden.
The important thing is to ensure it is correct and appropriate. Make sure your locking is done at an appropriate granularity. (For example, using a static lock object probably isn't the best approach for a non-singleton, and probably not even most singletons). In cases where your class has multiple mutually exclusive threaded operations, you don't want to lock on "this" or you have unnecessary contention. That is like having one red light for 2 non-overlapping intersections.

how to prevent a deadlock when you need to lock multiple objects

Image this code:
You have 2 arrays, and you need to lock both of them in same moment (for any reason - you just need to keep locked both of them because they are somehow depending on each other) - you could nest the lock
lock (array1)
{
lock (array2)
{
... do your code
}
}
but this may result in a deadlock in case that someone in other part of your code would do
lock (array2)
{
lock (array1)
{
... do your code
}
}
and array 1 was locked - execution context switched - then array 2 was locked by second thread.
Is there a way to atomically lock them? such as
lock_array(array1, array2)
{
....
}
I know I could just create some extra "lock object" and lock that instead of both arrays everywhere in my code, but that just doesn't seem correct to me...
In general you should avoid locking on publicly accessible members (the arrays in your case). You'd rather have a private static object you'd lock on.
You should never allow locking on publicly accessible variable as Darin said. For example
public class Foo
{
public object Locker = new object();
}
public class Bar
{
public void DoStuff()
{
var foo = new Foo();
lock(foo.Locker)
{
// doing something here
}
}
}
rather do something like this.
public class Foo
{
private List<int> toBeProtected = new List<int>();
private object locker = new object();
public void Add(int value)
{
lock(locker)
{
toBeProtected.Add(value);
}
}
}
The reason for this is if you have multiple threads accessing multiple public synchronization constructs then run the very real possiblity of deadlock. Then you have to be very careful about how you code. If you are making your library available to others can you be sure that you can grab the lock? Perhaps someone using your library has also grabbed the lock and between the two of you have worked your way into a deadlock scenario. This is the reason Microsoft recommend not using SyncRoot.
I am not sure what you mean by lock to arrays.
You can easily perform operation on both arrays in single lock.
static readonly object a = new object();
lock(a){
//Perform operation on both arrays
}

Multithreading, generic locks

I have a singleton class which looks a lot like this,
public class CfgHandler
{
private static readonly string ConfigDir = "Config";
public T Get<T>() where T : class, new()
{
string cfgFile = Path.Combine(ConfigDir, typeof(T).FullName + ".json");
if (File.Exists(cfgFile))
{
var reader = new JsonReader();
return reader.Read<T>(File.ReadAllText(cfgFile));
}
return null;
}
public void Set<T>(T instance) where T : class, new()
{
string cfgFile = Path.Combine(ConfigDir, typeof(T).FullName + ".json");
var writer = new JsonWriter();
string json = writer.Write(instance);
File.WriteAllText(cfgFile, json);
}
}
The class is used in a multithreaded environment and I want to add locks. But not one lock for the whole class, since I don't want a race condition between cfg.Set<Foo>(); and cfg.Set<Bar>() as they work with different data.
I've thought about adding the following class to CfgHandler,
private static class Locks<T>
{
private static object _lock = new object();
public static object Lock { get { return _lock; } }
}
and then lock like this (both for Get and Set),
public void Set<T>(T instance) where T : class, new()
{
lock(Locks<T>.Lock)
{
// save to disk
}
}
Am I missing something trivial? Is there a better way of achieving my goal?
Lock per instance or lock per type?
The way you are doing it (with a static Locks<T>.Lock) means that every call to Set<Foo> even on a different instance of CfgHandler will share the same lock. Is that what you want? I'm guessing you may be better off just locking per instance - it will save you the complexity of Locks<T>. Just declare a private instance member (private object _lock = new object();) and use it (lock(this._lock))
EDIT If you're using a singleton instance of CfgHandler and want to lock per type, then I guess your approach is perfectly fine. If you're not using a single instance, but still want to lock per type then just make sure to use an instance of Locks<T> instead of making it static.
Please see my question here for more details: Are static members of generic classes shared between types
The implementation you have is simple but effective, it will prevent concurrent access to the Set<T>(T Instance) call correctly. My only advice is that the lock duration should be limited if you are making many concurrent calls to this API. For instance you could do all the work, but then only lock the call to the writer.write(instance) call, which is the only non-threadsafe work you appear to be doing in the call.
As an aside you have the potential to improve your code on the Get call, please see my answer here Is there a way to check if a file is in use? regarding your check for the file existing.

What's the use of the SyncRoot pattern?

I'm reading a c# book that describes the SyncRoot pattern. It shows
void doThis()
{
lock(this){ ... }
}
void doThat()
{
lock(this){ ... }
}
and compares to the SyncRoot pattern:
object syncRoot = new object();
void doThis()
{
lock(syncRoot ){ ... }
}
void doThat()
{
lock(syncRoot){ ... }
}
However, I don't really understand the difference here; it seems that in both cases both methods can only be accessed by one thread at a time.
The book describes ... because the object of the instance can also be used for synchronized access from the outside and you can't control this form the class itself, you can use the SyncRoot pattern Eh? 'object of the instance'?
Can anyone tell me the difference between the two approaches above?
If you have an internal data structure that you want to prevent simultaneous access to by multiple threads, you should always make sure the object you're locking on is not public.
The reasoning behind this is that a public object can be locked by anyone, and thus you can create deadlocks because you're not in total control of the locking pattern.
This means that locking on this is not an option, since anyone can lock on that object. Likewise, you should not lock on something you expose to the outside world.
Which means that the best solution is to use an internal object, and thus the tip is to just use Object.
Locking data structures is something you really need to have full control over, otherwise you risk setting up a scenario for deadlocking, which can be very problematic to handle.
The actual purpose of this pattern is implementing correct synchronization with wrappers hierarchy.
For example, if class WrapperA wraps an instance of ClassThanNeedsToBeSynced, and class WrapperB wraps the same instance of ClassThanNeedsToBeSynced, you can't lock on WrapperA or WrapperB, since if you lock on WrapperA, lock on WrappedB won't wait.
For this reason you must lock on wrapperAInst.SyncRoot and wrapperBInst.SyncRoot, which delegate lock to ClassThanNeedsToBeSynced's one.
Example:
public interface ISynchronized
{
object SyncRoot { get; }
}
public class SynchronizationCriticalClass : ISynchronized
{
public object SyncRoot
{
// you can return this, because this class wraps nothing.
get { return this; }
}
}
public class WrapperA : ISynchronized
{
ISynchronized subClass;
public WrapperA(ISynchronized subClass)
{
this.subClass = subClass;
}
public object SyncRoot
{
// you should return SyncRoot of underlying class.
get { return subClass.SyncRoot; }
}
}
public class WrapperB : ISynchronized
{
ISynchronized subClass;
public WrapperB(ISynchronized subClass)
{
this.subClass = subClass;
}
public object SyncRoot
{
// you should return SyncRoot of underlying class.
get { return subClass.SyncRoot; }
}
}
// Run
class MainClass
{
delegate void DoSomethingAsyncDelegate(ISynchronized obj);
public static void Main(string[] args)
{
SynchronizationCriticalClass rootClass = new SynchronizationCriticalClass();
WrapperA wrapperA = new WrapperA(rootClass);
WrapperB wrapperB = new WrapperB(rootClass);
// Do some async work with them to test synchronization.
//Works good.
DoSomethingAsyncDelegate work = new DoSomethingAsyncDelegate(DoSomethingAsyncCorrectly);
work.BeginInvoke(wrapperA, null, null);
work.BeginInvoke(wrapperB, null, null);
// Works wrong.
work = new DoSomethingAsyncDelegate(DoSomethingAsyncIncorrectly);
work.BeginInvoke(wrapperA, null, null);
work.BeginInvoke(wrapperB, null, null);
}
static void DoSomethingAsyncCorrectly(ISynchronized obj)
{
lock (obj.SyncRoot)
{
// Do something with obj
}
}
// This works wrong! obj is locked but not the underlaying object!
static void DoSomethingAsyncIncorrectly(ISynchronized obj)
{
lock (obj)
{
// Do something with obj
}
}
}
Here is an example :
class ILockMySelf
{
public void doThat()
{
lock (this)
{
// Don't actually need anything here.
// In this example this will never be reached.
}
}
}
class WeveGotAProblem
{
ILockMySelf anObjectIShouldntUseToLock = new ILockMySelf();
public void doThis()
{
lock (anObjectIShouldntUseToLock)
{
// doThat will wait for the lock to be released to finish the thread
var thread = new Thread(x => anObjectIShouldntUseToLock.doThat());
thread.Start();
// doThis will wait for the thread to finish to release the lock
thread.Join();
}
}
}
You see that the second class can use an instance of the first one in a lock statement. This leads to a deadlock in the example.
The correct SyncRoot implementation is:
object syncRoot = new object();
void doThis()
{
lock(syncRoot ){ ... }
}
void doThat()
{
lock(syncRoot ){ ... }
}
as syncRoot is a private field, you don't have to worry about external use of this object.
Here's one other interesting thing related to this topic:
Questionable value of SyncRoot on Collections (by Brad Adams):
You’ll notice a SyncRoot property on many of the Collections in System.Collections. In retrospeced (sic), I think this property was a mistake. Krzysztof Cwalina, a Program Manger on my team, just sent me some thoughts on why that is – I agree with him:
We found the SyncRoot-based synchronization APIs to be insufficiently flexible for most scenarios. The APIs allow for thread safe access to a single member of a collection. The problem is that there are numerous scenarios where you need to lock on multiple operations (for example remove one item and add another). In other words, it’s usually the code that uses a collection that wants to choose (and can actually implement) the right synchronization policy, not the collection itself. We found that SyncRoot is actually used very rarely and in cases where it is used, it actually does not add much value. In cases where it’s not used, it is just an annoyance to implementers of ICollection.
Rest assured we will not make the same mistake as we build the generic versions of these collections.
See this Jeff Richter's article. More specifically, this example which demonstrates that locking on "this" can cause a deadlock:
using System;
using System.Threading;
class App {
static void Main() {
// Construct an instance of the App object
App a = new App();
// This malicious code enters a lock on
// the object but never exits the lock
Monitor.Enter(a);
// For demonstration purposes, let's release the
// root to this object and force a garbage collection
a = null;
GC.Collect();
// For demonstration purposes, wait until all Finalize
// methods have completed their execution - deadlock!
GC.WaitForPendingFinalizers();
// We never get to the line of code below!
Console.WriteLine("Leaving Main");
}
// This is the App type's Finalize method
~App() {
// For demonstration purposes, have the CLR's
// Finalizer thread attempt to lock the object.
// NOTE: Since the Main thread owns the lock,
// the Finalizer thread is deadlocked!
lock (this) {
// Pretend to do something in here...
}
}
}
Another concrete example:
class Program
{
public class Test
{
public string DoThis()
{
lock (this)
{
return "got it!";
}
}
}
public delegate string Something();
static void Main(string[] args)
{
var test = new Test();
Something call = test.DoThis;
//Holding lock from _outside_ the class
IAsyncResult async;
lock (test)
{
//Calling method on another thread.
async = call.BeginInvoke(null, null);
}
async.AsyncWaitHandle.WaitOne();
string result = call.EndInvoke(async);
lock (test)
{
async = call.BeginInvoke(null, null);
async.AsyncWaitHandle.WaitOne();
}
result = call.EndInvoke(async);
}
}
In this example, the first call will succeed, but if you trace in the debugger the call to DoSomething will block until the lock is release. The second call will deadlock, since the Main thread is holding the monitor lock on test.
The issue is that Main can lock the object instance, which means that it can keep the instance from doing anything that the object thinks should be synchronized. The point being that the object itself knows what requires locking, and outside interference is just asking for trouble. That's why the pattern of having a private member variable that you can use exclusively for synchronization without having to worry about outside interference.
The same goes for the equivalent static pattern:
class Program
{
public static class Test
{
public static string DoThis()
{
lock (typeof(Test))
{
return "got it!";
}
}
}
public delegate string Something();
static void Main(string[] args)
{
Something call =Test.DoThis;
//Holding lock from _outside_ the class
IAsyncResult async;
lock (typeof(Test))
{
//Calling method on another thread.
async = call.BeginInvoke(null, null);
}
async.AsyncWaitHandle.WaitOne();
string result = call.EndInvoke(async);
lock (typeof(Test))
{
async = call.BeginInvoke(null, null);
async.AsyncWaitHandle.WaitOne();
}
result = call.EndInvoke(async);
}
}
Use a private static object to synchronize on, not the Type.

C# thread safety of global configuration settings

In a C# app, suppose I have a single global class that contains some configuration items, like so :
public class Options
{
int myConfigInt;
string myConfigString;
..etc.
}
static Options GlobalOptions;
the members of this class will be uses across different threads :
Thread1: GlobalOptions.myConfigString = blah;
while
Thread2: string thingie = GlobalOptions.myConfigString;
Using a lock for access to the GlobalOptions object would also unnecessary block when 2 threads are accessing different members, but on the other hand creating a sync-object for every member seems a bit over the top too.
Also, using a lock on the global options would make my code less nice I think;
if I have to write
string stringiwanttouse;
lock(GlobalOptions)
{
stringiwanttouse = GlobalOptions.myConfigString;
}
everywhere (and is this thread-safe or is stringiwanttouse now just a pointer to myConfigString ? Yeah, I'm new to C#....) instead of
string stringiwanttouse = GlobalOptions.myConfigString;
it makes the code look horrible.
So...
What is the best (and simplest!) way to ensure thread-safety ?
You could wrap the field in question (myConfigString in this case) in a Property, and have code in the Get/Set that uses either a Monitor.Lock or a Mutex. Then, accessing the property only locks that single field, and doesn't lock the whole class.
Edit: adding code
private static object obj = new object(); // only used for locking
public static string MyConfigString {
get {
lock(obj)
{
return myConfigstring;
}
}
set {
lock(obj)
{
myConfigstring = value;
}
}
}
The following was written before the OP's edit:
public static class Options
{
private static int _myConfigInt;
private static string _myConfigString;
private static bool _initialized = false;
private static object _locker = new object();
private static void InitializeIfNeeded()
{
if (!_initialized) {
lock (_locker) {
if (!_initialized) {
ReadConfiguration();
_initalized = true;
}
}
}
}
private static void ReadConfiguration() { // ... }
public static int MyConfigInt {
get {
InitializeIfNeeded();
return _myConfigInt;
}
}
public static string MyConfigString {
get {
InitializeIfNeeded();
return _myConfigstring;
}
}
//..etc.
}
After that edit, I can say that you should do something like the above, and only set configuration in one place - the configuration class. That way, it will be the only class modifying the configuration at runtime, and only when a configuration option is to be retrieved.
Your configurations may be 'global', but they should not be exposed as a global variable. If configurations don't change, they should be used to construct the objects that need the information - either manually or through a factory object. If they can change, then an object that watches the configuration file/database/whatever and implements the Observer pattern should be used.
Global variables (even those that happen to be a class instance) are a Bad Thing™
What do you mean by thread safety here? It's not the global object that needs to be thread safe, it is the accessing code. If two threads write to a member variable near the same instant, one of them will "win", but is that a problem? If your client code depends on the global value staying constant until it is done with some unit of processing, then you will need to create a synchronization object for each property that needs to be locked. There isn't any great way around that. You could just cache a local copy of the value to avoid problems, but the applicability of that fix will depend on your circumstances. Also, I wouldn't create a synch object for each property by default, but instead as you realize you will need it.

Categories

Resources