What's the use of declaring an interface as a class member? - c#

I cant really understand what happens and what's the use of declaring a class member as an interface. MSDN says that interface cannot be instantiated, so you can't say:
IMovable i = new IMovable();
The reason you can't do this is pretty straight forward. But what's the use of declaring, for example:
protected static IMovable i;
What does i represent in this case? What's the use of it?
Thanks

Because you will write your code so that it can use any implementation of IMovable, rather than just that one.
This allows you to build loosely coupled code.

You want to store a reference to an object implementing that interface, but you don't care what kind of object it is, only that it implements that interface.

The member i can represent any object the implements IMovable, that's why it's useful. You can assign different objects to i and have specific behavior depending on the object.

That interface member will be assigned to an instance of a class implementing the interface by someone - either a DI framework or by custom code. Otherwise, yes, would be no point.

Interface is kind of Abstraction (Contract) and cannot be instantiate. But if you implement your in your class then your:
interface IMovable {
void DoStuff();
}
class ImplementinIMovableClass : IMovable {
void DoStuff() { .. }
}
protected static IMovable i = new ImplementinIMovableClass();
Variable i only has property/method defined in that interface. In that case it is method DoStuff();
With Interface approach you can think of use DependencyInjection to reduce your code cupling.

As many other answers have already pointed out, the i member variable can point to any implementation of IMovable.
This is not only a great benefit in terms of flexibility, but it is one way to realize the OO principle of Polymorphism.
Thomas

Interfaces and abstract classes are very similar, though abstract classes may be easier to understand in the real world.
Something like "vehicle" would be an abstract class; something like "2010 Toyota Prius Hatchback" would be a concrete class. It is possible to have, or to drive, either of the above. On the other hand, one wouldn't buy a "vehicle" as such--one would buy a particular type of vehicle. In real life, a person might hypothetically ask someone to buy him a vehicle, without specifying any particular kind, but in most programming languages a compiler in such a situation would want to know what sort.
The code which actually creates an object will have to know what type of object it's creating, but in many cases code will be given objects which have been created by other code. Code which uses an abstract class or interface to specify what it's expecting from other code will be usable with other code that creates any class which derives from that abstract class or implements that interface.

Related

Is there any difference between interfaces and abstract classes that have abstract methods only C#? [duplicate]

I have recently had two telephone interviews where I've been asked about the differences between an Interface and an Abstract class. I have explained every aspect of them I could think of, but it seems they are waiting for me to mention something specific, and I don't know what it is.
From my experience I think the following is true. If I am missing a major point please let me know.
Interface:
Every single Method declared in an Interface will have to be implemented in the subclass.
Only Events, Delegates, Properties (C#) and Methods can exist in an Interface. A class can implement multiple Interfaces.
Abstract Class:
Only Abstract methods have to be implemented by the subclass. An Abstract class can have normal methods with implementations. An Abstract class can also have class variables besides Events, Delegates, Properties and Methods. A class can implement one abstract class only due to the non-existence of Multi-inheritance in C#.
After all that, the interviewer came up with the question "What if you had an Abstract class with only abstract methods? How would that be different from an interface?" I didn't know the answer but I think it's the inheritance as mentioned above right?
Another interviewer asked me, "What if you had a Public variable inside the interface, how would that be different than in a Abstract Class?" I insisted you can't have a public variable inside an interface. I didn't know what he wanted to hear but he wasn't satisfied either.
See Also:
When to use an interface instead of an abstract class and vice versa
Interfaces vs. Abstract Classes
How do you decide between using an Abstract Class and an Interface?
What is the difference between an interface and abstract class?
How about an analogy: when I was in the Air Force, I went to pilot training and became a USAF (US Air Force) pilot. At that point I wasn't qualified to fly anything, and had to attend aircraft type training. Once I qualified, I was a pilot (Abstract class) and a C-141 pilot (concrete class). At one of my assignments, I was given an additional duty: Safety Officer. Now I was still a pilot and a C-141 pilot, but I also performed Safety Officer duties (I implemented ISafetyOfficer, so to speak). A pilot wasn't required to be a safety officer, other people could have done it as well.
All USAF pilots have to follow certain Air Force-wide regulations, and all C-141 (or F-16, or T-38) pilots 'are' USAF pilots. Anyone can be a safety officer. So, to summarize:
Pilot: abstract class
C-141 Pilot: concrete class
ISafety Officer: interface
added note: this was meant to be an analogy to help explain the concept, not a coding recommendation. See the various comments below, the discussion is interesting.
While your question indicates it's for "general OO", it really seems to be focusing on .NET use of these terms.
In .NET (similar for Java):
interfaces can have no state or implementation
a class that implements an interface must provide an implementation of all the methods of that interface
abstract classes may contain state (data members) and/or implementation (methods)
abstract classes can be inherited without implementing the abstract methods (though such a derived class is abstract itself)
interfaces may be multiple-inherited, abstract classes may not (this is probably the key concrete reason for interfaces to exist separately from abtract classes - they permit an implementation of multiple inheritance that removes many of the problems of general MI).
As general OO terms, the differences are not necessarily well-defined. For example, there are C++ programmers who may hold similar rigid definitions (interfaces are a strict subset of abstract classes that cannot contain implementation), while some may say that an abstract class with some default implementations is still an interface or that a non-abstract class can still define an interface.
Indeed, there is a C++ idiom called the Non-Virtual Interface (NVI) where the public methods are non-virtual methods that 'thunk' to private virtual methods:
http://www.gotw.ca/publications/mill18.htm
http://en.wikibooks.org/wiki/More_C%2B%2B_Idioms/Non-Virtual_Interface
I think the answer they are looking for is the fundamental or OPPS philosophical difference.
The abstract class inheritance is used when the derived class shares the core properties and behaviour of the abstract class. The kind of behaviour that actually defines the class.
On the other hand interface inheritance is used when the classes share peripheral behaviour, ones which do not necessarily define the derived class.
For eg. A Car and a Truck share a lot of core properties and behaviour of an Automobile abstract class, but they also share some peripheral behaviour like Generate exhaust which even non automobile classes like Drillers or PowerGenerators share and doesn't necessarily defines a Car or a Truck, so Car, Truck, Driller and PowerGenerator can all share the same interface IExhaust.
Short: Abstract classes are used for Modelling a class hierarchy of similar looking classes (For example Animal can be abstract class and Human , Lion, Tiger can be concrete derived classes)
AND
Interface is used for Communication between 2 similar / non similar classes which does not care about type of the class implementing Interface(e.g. Height can be interface property and it can be implemented by Human , Building , Tree. It does not matter if you can eat , you can swim you can die or anything.. it matters only a thing that you need to have Height (implementation in you class) ).
There are a couple of other differences -
Interfaces can't have any concrete implementations. Abstract base classes can. This allows you to provide concrete implementations there. This can allow an abstract base class to actually provide a more rigorous contract, wheras an interface really only describes how a class is used. (The abstract base class can have non-virtual members defining the behavior, which gives more control to the base class author.)
More than one interface can be implemented on a class. A class can only derive from a single abstract base class. This allows for polymorphic hierarchy using interfaces, but not abstract base classes. This also allows for a pseudo-multi-inheritance using interfaces.
Abstract base classes can be modified in v2+ without breaking the API. Changes to interfaces are breaking changes.
[C#/.NET Specific] Interfaces, unlike abstract base classes, can be applied to value types (structs). Structs cannot inherit from abstract base classes. This allows behavioral contracts/usage guidelines to be applied on value types.
Inheritance
Consider a car and a bus. They are two different vehicles. But still, they share some common properties like they have a steering, brakes, gears, engine etc.
So with the inheritance concept, this can be represented as following ...
public class Vehicle {
private Driver driver;
private Seat[] seatArray; //In java and most of the Object Oriented Programming(OOP) languages, square brackets are used to denote arrays(Collections).
//You can define as many properties as you want here ...
}
Now a Bicycle ...
public class Bicycle extends Vehicle {
//You define properties which are unique to bicycles here ...
private Pedal pedal;
}
And a Car ...
public class Car extends Vehicle {
private Engine engine;
private Door[] doors;
}
That's all about Inheritance. We use them to classify objects into simpler Base forms and their children as we saw above.
Abstract Classes
Abstract classes are incomplete objects. To understand it further, let's consider the vehicle analogy once again.
A vehicle can be driven. Right? But different vehicles are driven in different ways ... For example, You cannot drive a car just as you drive a Bicycle.
So how to represent the drive function of a vehicle? It is harder to check what type of vehicle it is and drive it with its own function; you would have to change the Driver class again and again when adding a new type of vehicle.
Here comes the role of abstract classes and methods. You can define the drive method as abstract to tell that every inheriting children must implement this function.
So if you modify the vehicle class ...
//......Code of Vehicle Class
abstract public void drive();
//.....Code continues
The Bicycle and Car must also specify how to drive it. Otherwise, the code won't compile and an error is thrown.
In short.. an abstract class is a partially incomplete class with some incomplete functions, which the inheriting children must specify their own.
Interfaces
Interfaces are totally incomplete. They do not have any properties. They just indicate that the inheriting children are capable of doing something ...
Suppose you have different types of mobile phones with you. Each of them has different ways to do different functions; Ex: call a person. The maker of the phone specifies how to do it. Here the mobile phones can dial a number - that is, it is dial-able. Let's represent this as an interface.
public interface Dialable {
public void dial(Number n);
}
Here the maker of the Dialable defines how to dial a number. You just need to give it a number to dial.
// Makers define how exactly dialable work inside.
Dialable PHONE1 = new Dialable() {
public void dial(Number n) {
//Do the phone1's own way to dial a number
}
}
Dialable PHONE2 = new Dialable() {
public void dial(Number n) {
//Do the phone2's own way to dial a number
}
}
//Suppose there is a function written by someone else, which expects a Dialable
......
public static void main(String[] args) {
Dialable myDialable = SomeLibrary.PHONE1;
SomeOtherLibrary.doSomethingUsingADialable(myDialable);
}
.....
Hereby using interfaces instead of abstract classes, the writer of the function which uses a Dialable need not worry about its properties. Ex: Does it have a touch-screen or dial pad, Is it a fixed landline phone or mobile phone. You just need to know if it is dialable; does it inherit(or implement) the Dialable interface.
And more importantly, if someday you switch the Dialable with a different one
......
public static void main(String[] args) {
Dialable myDialable = SomeLibrary.PHONE2; // <-- changed from PHONE1 to PHONE2
SomeOtherLibrary.doSomethingUsingADialable(myDialable);
}
.....
You can be sure that the code still works perfectly because the function which uses the dialable does not (and cannot) depend on the details other than those specified in the Dialable interface. They both implement a Dialable interface and that's the only thing the function cares about.
Interfaces are commonly used by developers to ensure interoperability(use interchangeably) between objects, as far as they share a common function (just like you may change to a landline or mobile phone, as far as you just need to dial a number). In short, interfaces are a much simpler version of abstract classes, without any properties.
Also, note that you may implement(inherit) as many interfaces as you want but you may only extend(inherit) a single parent class.
More Info
Abstract classes vs Interfaces
If you consider java as OOP language to answer this question, Java 8 release causes some of the content in above answers as obsolete. Now java interface can have default methods with concrete implementation.
Oracle website provides key differences between interface and abstract class.
Consider using abstract classes if :
You want to share code among several closely related classes.
You expect that classes that extend your abstract class have many common methods or fields, or require access modifiers other than public (such as protected and private).
You want to declare non-static or non-final fields.
Consider using interfaces if :
You expect that unrelated classes would implement your interface. For example,many unrelated objects can implement Serializable interface.
You want to specify the behaviour of a particular data type, but not concerned about who implements its behaviour.
You want to take advantage of multiple inheritance of type.
In simple terms, I would like to use
interface: To implement a contract by multiple unrelated objects
abstract class: To implement the same or different behaviour among multiple related objects
Have a look at code example to understand things in clear way : How should I have explained the difference between an Interface and an Abstract class?
The interviewers are barking up an odd tree. For languages like C# and Java, there is a difference, but in other languages like C++ there is not. OO theory doesn't differentiate the two, merely the syntax of language.
An abstract class is a class with both implementation and interface (pure virtual methods) that will be inherited. Interfaces generally do not have any implementation but only pure virtual functions.
In C# or Java an abstract class without any implementation differs from an interface only in the syntax used to inherit from it and the fact you can only inherit from one.
By implementing interfaces you are achieving composition ("has-a" relationships) instead of inheritance ("is-a" relationships). That is an important principle to remember when it comes to things like design patterns where you need to use interfaces to achieve a composition of behaviors instead of an inheritance.
These answers are all too long.
Interfaces are for defining behaviors.
Abstract classes are for defining a thing itself, including its behaviors. That's why we sometimes create an abstract class with some extra properties inheriting an interface.
This also explains why Java only supports single inheritance for classes but puts no restriction on interfaces. Because a concrete object can not be different things, but it can have different behaviors.
Conceptually speaking, keeping the language specific implementation, rules, benefits and achieving any programming goal by using anyone or both, can or cant have code/data/property, blah blah, single or multiple inheritances, all aside
1- Abstract (or pure abstract) Class is meant to implement hierarchy. If your business objects look somewhat structurally similar, representing a parent-child (hierarchy) kind of relationship only then inheritance/Abstract classes will be used. If your business model does not have a hierarchy then inheritance should not be used (here I am not talking about programming logic e.g. some design patterns require inheritance). Conceptually, abstract class is a method to implement hierarchy of a business model in OOP, it has nothing to do with Interfaces, actually comparing Abstract class with Interface is meaningless because both are conceptually totally different things, it is asked in interviews just to check the concepts because it looks both provide somewhat same functionality when implementation is concerned and we programmers usually emphasize more on coding. [Keep this in mind as well that Abstraction is different than Abstract Class].
2- an Interface is a contract, a complete business functionality represented by one or more set of functions. That is why it is implemented and not inherited. A business object (part of a hierarchy or not) can have any number of complete business functionality. It has nothing to do with abstract classes means inheritance in general. For example, a human can RUN, an elephant can RUN, a bird can RUN, and so on, all these objects of different hierarchy would implement the RUN interface or EAT or SPEAK interface. Don't go into implementation as you might implement it as having abstract classes for each type implementing these interfaces. An object of any hierarchy can have a functionality(interface) which has nothing to do with its hierarchy.
I believe, Interfaces were not invented to achieve multiple inheritances or to expose public behavior, and similarly, pure abstract classes are not to overrule interfaces but Interface is a functionality that an object can do (via functions of that interface) and Abstract Class represents a parent of a hierarchy to produce children having core structure (property+functionality) of the parent
When you are asked about the difference, it is actually conceptual difference not the difference in language-specific implementation unless asked explicitly.
I believe, both interviewers were expecting one line straightforward difference between these two and when you failed they tried to drove you towards this difference by implementing ONE as the OTHER
What if you had an Abstract class with only abstract methods?
i will explain Depth Details of interface and Abstract class.if you know overview about interface and abstract class, then first question arrive in your mind when we should use Interface and when we should use Abstract class.
So please check below explanation of Interface and Abstract class.
When we should use Interface?
if you don't know about implementation just we have requirement specification then we go with Interface
When we should use Abstract Class?
if you know implementation but not completely (partially implementation) then we go with Abstract class.
Interface
every method by default public abstract means interface is 100% pure abstract.
Abstract
can have Concrete method and Abstract method, what is Concrete method, which have implementation in Abstract class,
An abstract class is a class that is declared abstract—it may or may not include abstract methods.
Interface
We cannot declared interface as a private, protected
Q. Why we are not declaring Interface a private and protected?
Because by default interface method is public abstract so and so that reason that we are not declaring the interface as private and protected.
Interface method
also we cannot declared interface as private,protected,final,static,synchronized,native.....
i will give the reason:
why we are not declaring synchronized method because we cannot create object of interface and synchronize are work on object so and son reason that we are not declaring the synchronized method
Transient concept are also not applicable because transient work with synchronized.
Abstract
we are happily use with public,private final static.... means no restriction are applicable in abstract.
Interface
Variables are declared in Interface as a by default public static final so we are also not declared variable as a private, protected.
Volatile modifier is also not applicable in interface because interface variable is by default public static final and final variable you cannot change the value once it assign the value into variable and once you declared variable into interface you must to assign the variable.
And volatile variable is keep on changes so it is opp. to final that is reason we are not use volatile variable in interface.
Abstract
Abstract variable no need to declared public static final.
i hope this article is useful.
For .Net,
Your answer to The second interviewer is also the answer to the first one... Abstract classes can have implementation, AND state, interfaces cannot...
EDIT: On another note, I wouldn't even use the phrase 'subclass' (or the 'inheritance' phrase) to describe classes that are 'defined to implement' an interface. To me, an interface is a definition of a contract that a class must conform to if it has been defined to 'implement' that interface. It does not inherit anything... You have to add everything yourself, explicitly.
Interface : should be used if you want to imply a rule on the components which may or may not be
related to each other
Pros:
Allows multiple inheritance
Provides abstraction by not exposing what exact kind of object is being used in the context
provides consistency by a specific signature of the contract
Cons:
Must implement all the contracts defined
Cannot have variables or delegates
Once defined cannot be changed without breaking all the classes
Abstract Class : should be used where you want to have some basic or default behaviour or implementation for components related to each other
Pros:
Faster than interface
Has flexibility in the implementation (you can implement it fully or partially)
Can be easily changed without breaking the derived classes
Cons:
Cannot be instantiated
Does not support multiple inheritance
I think they didn't like your response because you gave the technical differences instead of design ones. The question is like a troll question for me. In fact, interfaces and abstract classes have a completely different nature so you cannot really compare them. I will give you my vision of what is the role of an interface and what is the role of an abstract class.
interface: is used to ensure a contract and make a low coupling between classes in order to have a more maintainable, scalable and testable application.
abstract class: is only used to factorize some code between classes of the same responsability. Note that this is the main reason why multiple-inheritance is a bad thing in OOP, because a class shouldn't handle many responsabilities (use composition instead).
So interfaces have a real architectural role whereas abstract classes are almost only a detail of implementation (if you use it correctly of course).
Interface:
We do not implement (or define) methods, we do that in derived classes.
We do not declare member variables in interfaces.
Interfaces express the HAS-A relationship. That means they are a mask of objects.
Abstract class:
We can declare and define methods in abstract class.
We hide constructors of it. That means there is no object created from it directly.
Abstract class can hold member variables.
Derived classes inherit to abstract class that mean objects from derived classes are not masked, it inherit to abstract class. The relationship in this case is IS-A.
This is my opinion.
After all that, the interviewer came up with the question "What if you had an
Abstract class with only abstract methods? How would that be different
from an interface?"
Docs clearly say that if an abstract class contains only abstract method declarations, it should be declared as an interface instead.
An another interviewer asked me what if you had a Public variable inside
the interface, how would that be different than in Abstract Class?
Variables in Interfaces are by default public static and final. Question could be framed like what if all variables in abstract class are public? Well they can still be non static and non final unlike the variables in interfaces.
Finally I would add one more point to those mentioned above - abstract classes are still classes and fall in a single inheritance tree whereas interfaces can be present in multiple inheritance.
Copied from CLR via C# by Jeffrey Richter...
I often hear the question, “Should I design a base type or an interface?” The answer isn’t always clearcut.
Here are some guidelines that might help you:
■■ IS-A vs. CAN-DO relationship A type can inherit only one implementation. If the derived
type can’t claim an IS-A relationship with the base type, don’t use a base type; use an interface.
Interfaces imply a CAN-DO relationship. If the CAN-DO functionality appears to belong
with various object types, use an interface. For example, a type can convert instances of itself
to another type (IConvertible), a type can serialize an instance of itself (ISerializable),
etc. Note that value types must be derived from System.ValueType, and therefore, they cannot
be derived from an arbitrary base class. In this case, you must use a CAN-DO relationship
and define an interface.
■■ Ease of use It’s generally easier for you as a developer to define a new type derived from a
base type than to implement all of the methods of an interface. The base type can provide a
lot of functionality, so the derived type probably needs only relatively small modifications to its behavior. If you supply an interface, the new type must implement all of the members.
■■ Consistent implementation No matter how well an interface contract is documented, it’s
very unlikely that everyone will implement the contract 100 percent correctly. In fact, COM
suffers from this very problem, which is why some COM objects work correctly only with
Microsoft
Word or with Windows Internet Explorer. By providing a base type with a good
default implementation, you start off using a type that works and is well tested; you can then
modify parts that need modification.
■■ Versioning If you add a method to the base type, the derived type inherits the new method,
you start off using a type that works, and the user’s source code doesn’t even have to be recompiled.
Adding a new member to an interface forces the inheritor of the interface to change
its source code and recompile.
tl;dr; When you see “Is A” relationship use inheritance/abstract class. when you see “has a” relationship create member variables. When you see “relies on external provider” implement (not inherit) an interface.
Interview Question: What is the difference between an interface and an abstract class? And how do you decide when to use what? I mostly get one or all of the below answers: Answer 1: You cannot create an object of abstract class and interfaces.
ZK (That’s my initials): You cannot create an object of either. So this is not a difference. This is a similarity between an interface and an abstract class. Counter Question: Why can’t you create an object of abstract class or interface?
Answer 2: Abstract classes can have a function body as partial/default implementation.
ZK: Counter Question: So if I change it to a pure abstract class, marking all the virtual functions as abstract and provide no default implementation for any virtual function. Would that make abstract classes and interfaces the same? And could they be used interchangeably after that?
Answer 3: Interfaces allow multi-inheritance and abstract classes don’t.
ZK: Counter Question: Do you really inherit from an interface? or do you just implement an interface and, inherit from an abstract class? What’s the difference between implementing and inheriting? These counter questions throw candidates off and make most scratch their heads or just pass to the next question. That makes me think people need help with these basic building blocks of Object-Oriented Programming. The answer to the original question and all the counter questions is found in the English language and the UML. You must know at least below to understand these two constructs better.
Common Noun: A common noun is a name given “in common” to things of the same class or kind. For e.g. fruits, animals, city, car etc.
Proper Noun: A proper noun is the name of an object, place or thing. Apple, Cat, New York, Honda Accord etc.
Car is a Common Noun. And Honda Accord is a Proper Noun, and probably a Composit Proper noun, a proper noun made using two nouns.
Coming to the UML Part. You should be familiar with below relationships:
Is A
Has A
Uses
Let’s consider the below two sentences. - HondaAccord Is A Car? - HondaAccord Has A Car?
Which one sounds correct? Plain English and comprehension. HondaAccord and Cars share an “Is A” relationship. Honda accord doesn’t have a car in it. It “is a” car. Honda Accord “has a” music player in it.
When two entities share the “Is A” relationship it’s a better candidate for inheritance. And Has a relationship is a better candidate for creating member variables. With this established our code looks like this:
abstract class Car
{
string color;
int speed;
}
class HondaAccord : Car
{
MusicPlayer musicPlayer;
}
Now Honda doesn't manufacture music players. Or at least it’s not their main business.
So they reach out to other companies and sign a contract. If you receive power here and the output signal on these two wires it’ll play just fine on these speakers.
This makes Music Player a perfect candidate for an interface. You don’t care who provides support for it as long as the connections work just fine.
You can replace the MusicPlayer of LG with Sony or the other way. And it won’t change a thing in Honda Accord.
Why can’t you create an object of abstract classes?
Because you can’t walk into a showroom and say give me a car. You’ll have to provide a proper noun. What car? Probably a honda accord. And that’s when a sales agent could get you something.
Why can’t you create an object of an interface? Because you can’t walk into a showroom and say give me a contract of music player. It won’t help. Interfaces sit between consumers and providers just to facilitate an agreement. What will you do with a copy of the agreement? It won’t play music.
Why do interfaces allow multiple inheritance?
Interfaces are not inherited. Interfaces are implemented. The interface is a candidate for interaction with the external world. Honda Accord has an interface for refueling. It has interfaces for inflating tires. And the same hose that is used to inflate a football. So the new code will look like below:
abstract class Car
{
string color;
int speed;
}
class HondaAccord : Car, IInflateAir, IRefueling
{
MusicPlayer musicPlayer;
}
And the English will read like this “Honda Accord is a Car that supports inflating tire and refueling”.
An interface defines a contract for a service or set of services. They provide polymorphism in a horizontal manner in that two completely unrelated classes can implement the same interface but be used interchangeably as a parameter of the type of interface they implement, as both classes have promised to satisfy the set of services defined by the interface. Interfaces provide no implementation details.
An abstract class defines a base structure for its sublcasses, and optionally partial implementation. Abstract classes provide polymorphism in a vertical, but directional manner, in that any class that inherits the abstract class can be treated as an instance of that abstract class but not the other way around. Abstract classes can and often do contain implementation details, but cannot be instantiated on their own- only their subclasses can be "newed up".
C# does allow for interface inheritance as well, mind you.
Most answers focus on the technical difference between Abstract Class and Interface, but since technically, an interface is basically a kind of abstract class (one without any data or implementation), I think the conceptual difference is far more interesting, and that might be what the interviewers are after.
An Interface is an agreement. It specifies: "this is how we're going to talk to each other". It can't have any implementation because it's not supposed to have any implementation. It's a contract. It's like the .h header files in C.
An Abstract Class is an incomplete implementation. A class may or may not implement an interface, and an abstract class doesn't have to implement it completely. An abstract class without any implementation is kind of useless, but totally legal.
Basically any class, abstract or not, is about what it is, whereas an interface is about how you use it. For example: Animal might be an abstract class implementing some basic metabolic functions, and specifying abstract methods for breathing and locomotion without giving an implementation, because it has no idea whether it should breathe through gills or lungs, and whether it flies, swims, walks or crawls. Mount, on the other hand, might be an Interface, which specifies that you can ride the animal, without knowing what kind of animal it is (or whether it's an animal at all!).
The fact that behind the scenes, an interface is basically an abstract class with only abstract methods, doesn't matter. Conceptually, they fill totally different roles.
Interfaces are light weight way to enforce a particular behavior. That is one way to think of.
As you might have got the theoretical knowledge from the experts, I am not spending much words in repeating all those here, rather let me explain with a simple example where we can use/cannot use Interface and Abstract class.
Consider you are designing an application to list all the features of Cars. In various points you need inheritance in common, as some of the properties like DigitalFuelMeter, Air Conditioning, Seat adjustment, etc are common for all the cars. Likewise, we need inheritance for some classes only as some of the properties like the Braking system (ABS,EBD) are applicable only for some cars.
The below class acts as a base class for all the cars:
public class Cars
{
public string DigitalFuelMeter()
{
return "I have DigitalFuelMeter";
}
public string AirCondition()
{
return "I have AC";
}
public string SeatAdjust()
{
return "I can Adjust seat";
}
}
Consider we have a separate class for each Cars.
public class Alto : Cars
{
// Have all the features of Car class
}
public class Verna : Cars
{
// Have all the features of Car class + Car need to inherit ABS as the Braking technology feature which is not in Cars
}
public class Cruze : Cars
{
// Have all the features of Car class + Car need to inherit EBD as the Braking technology feature which is not in Cars
}
Consider we need a method for inheriting the Braking technology for the cars Verna and Cruze (not applicable for Alto). Though both uses braking technology, the "technology" is different. So we are creating an abstract class in which the method will be declared as Abstract and it should be implemented in its child classes.
public abstract class Brake
{
public abstract string GetBrakeTechnology();
}
Now we are trying to inherit from this abstract class and the type of braking system is implemented in Verna and Cruze:
public class Verna : Cars,Brake
{
public override string GetBrakeTechnology()
{
return "I use ABS system for braking";
}
}
public class Cruze : Cars,Brake
{
public override string GetBrakeTechnology()
{
return "I use EBD system for braking";
}
}
See the problem in the above two classes? They inherit from multiple classes which C#.Net doesn't allow even though the method is implemented in the children. Here it comes the need of Interface.
interface IBrakeTechnology
{
string GetBrakeTechnology();
}
And the implementation is given below:
public class Verna : Cars, IBrakeTechnology
{
public string GetBrakeTechnology()
{
return "I use ABS system for braking";
}
}
public class Cruze : Cars, IBrakeTechnology
{
public string GetBrakeTechnology()
{
return "I use EBD system for braking";
}
}
Now Verna and Cruze can achieve multiple inheritance with its own kind of braking technologies with the help of Interface.
1) An interface can be seen as a pure Abstract Class, is the same, but despite this, is not the same to implement an interface and inheriting from an abstract class. When you inherit from this pure abstract class you are defining a hierarchy -> inheritance, if you implement the interface you are not, and you can implement as many interfaces as you want, but you can only inherit from one class.
2) You can define a property in an interface, so the class that implements that interface must have that property.
For example:
public interface IVariable
{
string name {get; set;}
}
The class that implements that interface must have a property like that.
Though this question is quite old, I would like to add one other point in favor of interfaces:
Interfaces can be injected using any Dependency Injection tools where as Abstract class injection supported by very few.
From another answer of mine, mostly dealing with when to use one versus the other:
In my experience, interfaces are best
used when you have several classes
which each need to respond to the same
method or methods so that they can be
used interchangeably by other code
which will be written against those
classes' common interface. The best
use of an interface is when the
protocol is important but the
underlying logic may be different for
each class. If you would otherwise be
duplicating logic, consider abstract
classes or standard class inheritance
instead.
Interface Types vs. Abstract Base Classes
Adapted from the Pro C# 5.0 and the .NET 4.5 Framework book.
The interface type might seem very similar to an abstract base class. Recall
that when a class is marked as abstract, it may define any number of abstract members to provide a
polymorphic interface to all derived types. However, even when a class does define a set of abstract
members, it is also free to define any number of constructors, field data, nonabstract members (with
implementation), and so on. Interfaces, on the other hand, contain only abstract member definitions.
The polymorphic interface established by an abstract parent class suffers from one major limitation
in that only derived types support the members defined by the abstract parent. However, in larger
software systems, it is very common to develop multiple class hierarchies that have no common parent
beyond System.Object. Given that abstract members in an abstract base class apply only to derived
types, we have no way to configure types in different hierarchies to support the same polymorphic
interface. By way of example, assume you have defined the following abstract class:
public abstract class CloneableType
{
// Only derived types can support this
// "polymorphic interface." Classes in other
// hierarchies have no access to this abstract
// member.
public abstract object Clone();
}
Given this definition, only members that extend CloneableType are able to support the Clone()
method. If you create a new set of classes that do not extend this base class, you can’t gain this
polymorphic interface. Also, you might recall that C# does not support multiple inheritance for classes.
Therefore, if you wanted to create a MiniVan that is-a Car and is-a CloneableType, you are unable to do so:
// Nope! Multiple inheritance is not possible in C#
// for classes.
public class MiniVan : Car, CloneableType
{
}
As you would guess, interface types come to the rescue. After an interface has been defined, it can
be implemented by any class or structure, in any hierarchy, within any namespace or any assembly
(written in any .NET programming language). As you can see, interfaces are highly polymorphic.
Consider the standard .NET interface named ICloneable, defined in the System namespace. This
interface defines a single method named Clone():
public interface ICloneable
{
object Clone();
}
Answer to the second question : public variable defined in interface is static final by default while the public variable in abstract class is an instance variable.
From Coding Perspective
An Interface can replace an Abstract Class if the Abstract Class has only abstract methods. Otherwise changing Abstract class to interface means that you will be losing out on code re-usability which Inheritance provides.
From Design Perspective
Keep it as an Abstract Class if it's an "Is a" relationship and you need a subset or all of the functionality. Keep it as Interface if it's a "Should Do" relationship.
Decide what you need: just the policy enforcement, or code re-usability AND policy.
For sure it is important to understand the behavior of interface and abstract class in OOP (and how languages handle them), but I think it is also important to understand what exactly each term means. Can you imagine the if command not working exactly as the meaning of the term? Also, actually some languages are reducing, even more, the differences between an interface and an abstract... if by chance one day the two terms operate almost identically, at least you can define yourself where (and why) should any of them be used for.
If you read through some dictionaries and other fonts you may find different meanings for the same term but having some common definitions. I think these two meanings I found in this site are really, really good and suitable.
Interface:
A thing or circumstance that enables separate and sometimes incompatible elements to coordinate effectively.
Abstract:
Something that concentrates in itself the essential qualities of anything more extensive or more general, or of several things; essence.
Example:
You bought a car and it needs fuel.
Your car model is XYZ, which is of genre ABC, so it is a concrete car, a specific instance of a car. A car is not a real object. In fact, it is an abstract set of standards (qualities) to create a specific object. In short, Car is an abstract class, it is "something that concentrates in itself the essential qualities of anything more extensive or more general".
The only fuel that matches the car manual specification should be used to fill up the car tank. In reality, there is nothing to restrict you to put any fuel but the engine will work properly only with the specified fuel, so it is better to follow its requirements. The requirements say that it accepts, as other cars of the same genre ABC, a standard set of fuel.
In an Object Oriented view, fuel for genre ABC should not be declared as a class because there is no concrete fuel for a specific genre of car out there. Although your car could accept an abstract class Fuel or VehicularFuel, you must remember that your only some of the existing vehicular fuel meet the specification, those that implement the requirements in your car manual. In short, they should implement the interface ABCGenreFuel, which "... enables separate and sometimes incompatible elements to coordinate effectively".
Addendum
In addition, I think you should keep in mind the meaning of the term class, which is (from the same site previously mentioned):
Class:
A number of persons or things regarded as forming a group by reason of common attributes, characteristics, qualities, or traits; kind;
This way, a class (or abstract class) should not represent only common attributes (like an interface), but some kind of group with common attributes. An interface doesn't need to represent a kind. It must represent common attributes. This way, I think classes and abstract classes may be used to represent things that should not change its aspects often, like a human being a Mammal, because it represents some kinds. Kinds should not change themselves that often.

Programming against an interface with only one class implementing said interface

I can understand why to program against an interface rather than an implementation. However, in an example like the following (I find this a lot):
public interface ISomething
{
void BlahOne(int foo);
void BlahTwo(string foo);
}
public class BaseSomething : ISomething
{
public void BlahOne(int foo)
{
//impl
}
public void BlahTwo(string foo)
{
//impl
}
}
public class SpecificSomethingOne : BaseSomething
{
public void SpecificOne()
{
//blah
}
}
public class SpecificSomethingTwo : BaseSomething
//and on..
The current example of this is the component based entity system in my game. (I have IComponent, Component, PosComponent, etc).
However, I cannot see a reason to have ISomething. The name may look nicer, but it doesn't seem to have a purpose. I can just return BaseSomething all the time.
Is there a reason to have an interface when you have a single base implementation everything uses? (I can see the use for, say, IComparable or IEnumerable)
EDIT: For a slightly different scenario (yet still related enough to not need a different question), if I assume I have this structure for everything, would there be much difference if I were to use ISomething for parameter types and variables compared to BaseSomething?
I prefer "lazy design" - extract the interface from BaseSomething when you need it. Until then, keep it simple and skip it.
Right now I can think of two reasons for having an interface when there is only one implementation:
There is another mock implementation for unit tests (i.e. there is a second implementation, although not in production code).
The interface and the implementation are defined in different class libraries. E.g. when using the Model-View-Presenter pattern, the view can reside in an .exe project that is dependent on the .dll where the presenter is implemented. Then an IView interface can be put in the .dll and the presenter's reference to the view supplied through dependency injection.
Correct answer to your question would be "It depends".
You can look at it in many different ways and it's all about perspective. When you have a concrete or abstract base class, it means your objects have something in common functionally. And derived objects are inter-related in some way or the other. Interfaces let you confirm to a functional contract only where each object implementing the interface will be responsible for the implementation.
Again, when you program again interfaces, you strictly know the capabilities of the object since it implements the given interface. And you need not worry about how each object functionally implements this.
It'd not be completely wrong, If I say
each of your objects are completely
independent when it comes to
implementing the interface ISomething, given that SpecificSomethingOne and SpecificSomethingTwo do not derive from BaseSomeThing and each implement their own ISomething.
You can refer to this answer on the same matter.
it is not really necessary but it is a better design if you want to extend your program later or you want to implement another Base-Class.
In your case I would not implement the Base-Class. The Interface only is just fine if you dont want to have a default-behaviour. If you want a default-behaviour then just write the Base-Class without an Interface
If your BaseSomething were abstract and you had implementing specific things that provider overloads to abstract methods, the only way to program to them at that point would be to the ISomething interface. However, in the example you showed, there is really no reason for ISomething unless you could have multiple base implementations.

Implementing an Interface but changing a member to be private

All members of an Interface are public by default. But there are some properties in my interface that I want to be used as private members of some subclasses that implement my interface. Is this something that can and is done or am I way off basis here. I'm working on using more Interfaces in my architecture these days so I'm not that well versed yet.
The point of interfaces is that they provide a contract that other objects can use to communicate with your object. If you change a member which is declared as public in an interface to private then you're not fulfilling the contract - another object may need to read that property / call that method, and you must allow them to.
An interface will never have private members as an interface is for "interfacing" between two objects. Your internal private members don't matter to it as long as you hold up your end of the contract.
Going on your question, and your use of the word "subclass", I don't think you've fully understood Interfaces yet.
I know you've probably heard this a million times but, an Interface describes what an object DOES, and a Class is HOW it does it. A Class IMPLEMENTS, an interface, it does not INHERIT from it.
So, if you want, have an Interface for you base Class, or for your SubClasses, but your question makes me think you're thinking about a base Class (Abstract Class), not an Interface.
Does that make sense?
As interface does not has an Access Modifier, if you still want your method private in the class which is implementing that interface, you can Implement that interface EXPLICITLY.
In that way your class methods will be Private.
You have to fully understand what interfaces are. In fact there are just descriptions of the expectations that outside world could have about the class members. It do not creates the member, it just informs that specified class have specified method to use in public scope. So, as you can see by interface you could only describe public members.
On the other hand if you want to declare some private members that are fixed or virtual you can use classic inheritance with the abstract base class. In this case you will make all methods that you want to implement in subclasses as abstract, and implement methods that you want to be defined in base class.
Hope this helps.. Regards
Interfaces are only good for public access. Internally, it would be strange for an object to refer to itself through an interface.
If you want to have private variables that you force an implementation of, you want to use an abstract class, and mark them as protected.
Think a little about this - and you understand that this can not be done:
Interfaces are like a contact. all the public fields of the interface are parts of the contact.
So, you can't hide them in a subclass... What would happen if someone were to upcast your class object to the interface's type ?
You'd probably want to change your design - may be split your interface in to two interfaces?
or and interface and an abstract class? we need more details to know...

C#: Specify that a function arg must inherit from one class, and implement an interface?

I'm making a game where each Actor is represented by a GameObjectController. Game Objects that can partake in combat implement ICombatant. How can I specify that arguments to a combat function must inherit from GameObjectController and implement ICombatant? Or does this indicate that my code is structured poorly?
public void ComputeAttackUpdate(ICombatant attacker, AttackType attackType, ICombatant victim)
In the above code, I want attacker and victim to inherit from GameObjectController and implement ICombatant. Is this syntactically possible?
I'd say it probably indicates you could restructure somehow, like, have a base Combatant class that attacker and victim inherit from, which inherits from GameObjectController and implements ICombatant.
however, you could do something like
ComputeAttackUpdate<T,U>(T attacker, AttackType attackType, U victim)
where T: ICombatant, GameObjectController
where U: ICombatant, GameObjectController
Although I probably wouldn't.
Presumably all ICombatants must also be GameObjectControllers? If so, you might want to make a new interface IGameObjectController and then declare:
interface IGameObjectController
{
// Interface here.
}
interface ICombatant : IGameObjectController
{
// Interface for combat stuff here.
}
class GameObjectController : IGameObjectController
{
// Implementation here.
}
class FooActor : GameObjectController, ICombatant
{
// Implementation for fighting here.
}
It is only syntactically possible if GameObjectController itself implements ICombatant; otherwise, I would say you have a design problem.
Interfaces are intended to define the operations available on some object; base classes identify what that object is. You can only pick one or the other. If accepting the ICombatant interface as an argument is not sufficient, it might indicate that ICombatant is defined too narrowly (i.e. doesn't support everything you need it to do).
I'd have to see the specifics of what you're trying to do with this object in order to go into much more depth.
What if you did this instead:
public class GameObjectControllerCombatant : GameObjectController, ICombatant
{
// ...
}
Then derive your combatant classes from this instead of directly from GameObjectController. It still feels to me like it's breaking encapsulation, and the awkwardness of the name is a strong indication that your combatant classes are violating the Single Responsibility Principle... but it would work.
Well, sort of. You can write a generic method:
public void ComputeAttackUpdate<T>(T attacker, AttackType type, T victim)
where T : GameObjectController, ICombatant
That means T has to satisfy both the constraints you need. It's pretty grim though - and if the attacker and victim could be different (somewhat unrelated) types, you'd have to make it generic in two type parameters instead.
However, I would personally try to go for a more natural solution. This isn't a situation I find myself in, certainly. If you need to regard an argument in two different ways, perhaps you actually want two different methods?
If you control all the classes in question, and if GameObjectController doesn't define any fields, the cleanest approach would be to define an IGameObjectController (whose properties and methods match those of GameObjectController) and an ICombatantGameObjectContoller (which derives from both IGameObjectController and ICombatant). Every class which is to be usable in situations that require both interfaces must be explicitly declared as implementing ICombatantGameObjectController, even though adding that declaration wouldn't require adding any extra code. If one does that, one can use parameters, fields, and variables of type ICombatantGameObjectController without difficulty.
If you can't set up your classes and interfaces as described above, the approach offered by Jon Skeet is a generally good one, but with a nasty caveat: to call a generic function like Mr. Skeet's ComputeAttackUpdate, the compiler has to be able to determine a single type which it knows is compatible with the type of the object being passed in and with all of the constraints. If there are descendants of GameObjectController which implement ICombatant but do not derive from a common base type which also implements GameObjectController, it may be difficult to store such objects in a field and later pass them to generic routines. There is a way, and if you need to I can explain it, but it's a bit tricky.

Difference in deriving from abstract and non abstract class

In OOP, I see a lot of classes which derive from parent classes, but the parent classes are not marked as abstract. When the class IS marked as abstract, what advantage does this provide?
Thanks
The difference is really pretty pragmatic: an abstract base class is one that is never intended to be instantiated, and so needn't necessarily provide complete implementations. This means the ABC can define a contract for derived classes without implementing the class.
This is convenient in two ways:
you can define abstract objects that don't have the full implementation but make assertions about the whole class. One example of this is to have a DrawItem class with a draw() method that's the base class for Circle, Rectangle, and so on. DrawItem can't know how to draw itself, because it doesn't know what it is.
you can define classes for which you can have two concrete implementations. This shows up in the Proxy pattern, and can also be used to build, for example, mock objects for testing.
It's more common these days for new languages to define interfaces or modules or mixins for these things; it turns out that using ABCs almost always fall into the use cases for those more intuitive concepts.
Paul Haahr has interesting suggestions, such as:
Don't subclass concrete classes
(read the original, I don't want to copy and paste everything;-).
Paul's writing about Java, but I found at least this part of his advice is applicable to most any OO design task (though pragmatically I still occasionally deviate from it in coding, it's alive and well in my design;-), even when I'm going to implement it in C++, Python, or whatever. If, after reading Paul's reasoning, you find yourself agreeing with him, you're going to be using a lot more abstract classes in the future (to allow subclassing;-).
To call a class "abstract" is essentially to communicate to your fellow programmers that it's incomplete: they're expected to write a bit more code to be able to make use of it.
There's actually a parallel with partial application of functions in functional programming here...
An abstract class cannot be instantiated by itself; it must be derived from to be instantiated. Essentially, the abstract definition on a class indicates that it was not intended to be instantiated as itself, and the only way to get an instance of it is to inherit from that class, and instantiate the inherited class.
The fact that the compiler will not allow you to instantiate it?
to give an example of what I think is pertinent:
public abstract class CustomSocket()
{
CustomSocket()
{
}
public abstract void PleaseOverideMe(CustomSocketConnection c)
{
}
}

Categories

Resources