How to convert negative number to positive by |= Operator in C#? - c#

We all know that the highest bit of an Int32 defines its sign. 1 indicates that it's negative and 0 that it's positive (possibly reversed). Can I convert a negative number to a positive one by changing its highest bit?
I tried to do that using the following code:
i |= Int32.MaxValue;
But it doesn't work.

Why don't you just use the Math.Abs(yourInt) method? I don't see the necessity to use bitwise operations here.

If you are just looking for a bitwise way to do this (like an interview question, etc), you need to negate the number (bitwise) and add 1:
int x = -13;
int positiveX = ~x + 1;
This will flip the sign if it's positive or negative. As a small caveat, this will NOT work if x is int.MinValue, though, since the negative range is one more than the positive range.
Of course, in real world code I'd just use Math.Abs() as already mentioned...

The most-significant bit defines it's sign, true. But that's not everything:
To convert a positive number to a negative one, you have to:
Negate the number (for example, +1, which is 0000 0001 in binary, turns into 1111 1110)
Add 1 (1111 1110 turns into 1111 1111, which is -1)
That process is known as Two's complement.
Inverting the process is equally simple:
Substract 1 (for example, -1, 1111 1111 turns into 1111 1110)
Negate the number (1111 1110 turns into 0000 0001, which is +1 again).
As you can see, this operation is impossible to implement using the binary or-operator. You need the bitwise-not and add/substract.
The above examples use 8-bit integers, but the process works exactly the same for all integers. Floating-point numbers, however, use only a sign bit.

If you're talking about using bitwise operations, it won't work like that. I'm assuming you were thinking you'd flip the highest bit (the sign flag) to get the negative, but it won't work as you expect.
The number 6 is represented as 00000000 00000000 00000000 00000110 in a 32-bit signed integer. If you flip the highest bit (the signing bit) to 1, you'll get 10000000 00000000 00000000 00000110, which is -2147483642 in decimal. Not exactly what you expected, I should imagine. This is because negative numbers are stored in "negative logic", which means that 11111111 11111111 11111111 11111111 is -1.
If you flip every bit in a positive value x, you get -(x+1). For example:
00000000 00000000 00000000 00000110 = 6
11111111 11111111 11111111 11111001 = -7
You've still got to use an addition (or subtraction) to produce the correct result, though.

I just solved this by doing:
Int a = IntToSolve; //Whatever int you want
b = a < 0 ? a*-1 : a*1 ;
Doing this will output only positive ints.
The other way around would be:
Int a = IntToSolve; //Same but from positive to negative
b = a < 0 ? a*1 : a*-1 ;

Whats wrong with Math.Abs(i) if you want to go from -ve to +ve, or -1*i if you want to go both ways?

It's impossible with the |= operator. It cannot unset bits. And since the sign bit is set on negative numbers you can't unset it.

Your quest is, sadly, futile. The bitwise OR operator will not be able to arbitrarily flip a bit. You can set a bit, but if that bit is already set, OR will not be able to clear it.

You absolutely cannot since the negative is the two's complements of the original one. So even if it is true that in a negative number the MSB is 1 is not enought to put a 1 that bit to obtain the negative. You must negate all the bits and add one.

You can give a try simpler way changeTime = changeTime >= 0 ? changeTime : -(changeTime);

Related

How is it possible to add 32 bit number and a 64 bit number(int and long) [duplicate]

I'm in a computer systems course and have been struggling, in part, with two's complement. I want to understand it, but everything I've read hasn't brought the picture together for me. I've read the Wikipedia article and various other articles, including my text book.
What is two's complement, how can we use it and how can it affect numbers during operations like casts (from signed to unsigned and vice versa), bit-wise operations and bit-shift operations?
Two's complement is a clever way of storing integers so that common math problems are very simple to implement.
To understand, you have to think of the numbers in binary.
It basically says,
for zero, use all 0's.
for positive integers, start counting up, with a maximum of 2(number of bits - 1)-1.
for negative integers, do exactly the same thing, but switch the role of 0's and 1's and count down (so instead of starting with 0000, start with 1111 - that's the "complement" part).
Let's try it with a mini-byte of 4 bits (we'll call it a nibble - 1/2 a byte).
0000 - zero
0001 - one
0010 - two
0011 - three
0100 to 0111 - four to seven
That's as far as we can go in positives. 23-1 = 7.
For negatives:
1111 - negative one
1110 - negative two
1101 - negative three
1100 to 1000 - negative four to negative eight
Note that you get one extra value for negatives (1000 = -8) that you don't for positives. This is because 0000 is used for zero. This can be considered as Number Line of computers.
Distinguishing between positive and negative numbers
Doing this, the first bit gets the role of the "sign" bit, as it can be used to distinguish between nonnegative and negative decimal values. If the most significant bit is 1, then the binary can be said to be negative, where as if the most significant bit (the leftmost) is 0, you can say the decimal value is nonnegative.
"Sign-magnitude" negative numbers just have the sign bit flipped of their positive counterparts, but this approach has to deal with interpreting 1000 (one 1 followed by all 0s) as "negative zero" which is confusing.
"Ones' complement" negative numbers are just the bit-complement of their positive counterparts, which also leads to a confusing "negative zero" with 1111 (all ones).
You will likely not have to deal with Ones' Complement or Sign-Magnitude integer representations unless you are working very close to the hardware.
I wonder if it could be explained any better than the Wikipedia article.
The basic problem that you are trying to solve with two's complement representation is the problem of storing negative integers.
First, consider an unsigned integer stored in 4 bits. You can have the following
0000 = 0
0001 = 1
0010 = 2
...
1111 = 15
These are unsigned because there is no indication of whether they are negative or positive.
Sign Magnitude and Excess Notation
To store negative numbers you can try a number of things. First, you can use sign magnitude notation which assigns the first bit as a sign bit to represent +/- and the remaining bits to represent the magnitude. So using 4 bits again and assuming that 1 means - and 0 means + then you have
0000 = +0
0001 = +1
0010 = +2
...
1000 = -0
1001 = -1
1111 = -7
So, you see the problem there? We have positive and negative 0. The bigger problem is adding and subtracting binary numbers. The circuits to add and subtract using sign magnitude will be very complex.
What is
0010
1001 +
----
?
Another system is excess notation. You can store negative numbers, you get rid of the two zeros problem but addition and subtraction remains difficult.
So along comes two's complement. Now you can store positive and negative integers and perform arithmetic with relative ease. There are a number of methods to convert a number into two's complement. Here's one.
Convert Decimal to Two's Complement
Convert the number to binary (ignore the sign for now)
e.g. 5 is 0101 and -5 is 0101
If the number is a positive number then you are done.
e.g. 5 is 0101 in binary using two's complement notation.
If the number is negative then
3.1 find the complement (invert 0's and 1's)
e.g. -5 is 0101 so finding the complement is 1010
3.2 Add 1 to the complement 1010 + 1 = 1011.
Therefore, -5 in two's complement is 1011.
So, what if you wanted to do 2 + (-3) in binary? 2 + (-3) is -1.
What would you have to do if you were using sign magnitude to add these numbers? 0010 + 1101 = ?
Using two's complement consider how easy it would be.
2 = 0010
-3 = 1101 +
-------------
-1 = 1111
Converting Two's Complement to Decimal
Converting 1111 to decimal:
The number starts with 1, so it's negative, so we find the complement of 1111, which is 0000.
Add 1 to 0000, and we obtain 0001.
Convert 0001 to decimal, which is 1.
Apply the sign = -1.
Tada!
Like most explanations I've seen, the ones above are clear about how to work with 2's complement, but don't really explain what they are mathematically. I'll try to do that, for integers at least, and I'll cover some background that's probably familiar first.
Recall how it works for decimal: 2345 is a way of writing 2 × 103 + 3 × 102 + 4 × 101 + 5 × 100.
In the same way, binary is a way of writing numbers using just 0 and 1 following the same general idea, but replacing those 10s above with 2s. Then in binary, 1111is a way of writing 1 × 23 + 1 × 22 + 1 × 21 + 1 × 20and if you work it out, that turns out to equal 15 (base 10). That's because it is 8+4+2+1 = 15.
This is all well and good for positive numbers. It even works for negative numbers if you're willing to just stick a minus sign in front of them, as humans do with decimal numbers. That can even be done in computers, sort of, but I haven't seen such a computer since the early 1970's. I'll leave the reasons for a different discussion.
For computers it turns out to be more efficient to use a complement representation for negative numbers. And here's something that is often overlooked. Complement notations involve some kind of reversal of the digits of the number, even the implied zeroes that come before a normal positive number. That's awkward, because the question arises: all of them? That could be an infinite number of digits to be considered.
Fortunately, computers don't represent infinities. Numbers are constrained to a particular length (or width, if you prefer). So let's return to positive binary numbers, but with a particular size. I'll use 8 digits ("bits") for these examples. So our binary number would really be 00001111or 0 × 27 + 0 × 26 + 0 × 25 + 0 × 24 + 1 × 23 + 1 × 22 + 1 × 21 + 1 × 20
To form the 2's complement negative, we first complement all the (binary) digits to form 11110000and add 1 to form 11110001but how are we to understand that to mean -15?
The answer is that we change the meaning of the high-order bit (the leftmost one). This bit will be a 1 for all negative numbers. The change will be to change the sign of its contribution to the value of the number it appears in. So now our 11110001 is understood to represent -1 × 27 + 1 × 26 + 1 × 25 + 1 × 24 + 0 × 23 + 0 × 22 + 0 × 21 + 1 × 20Notice that "-" in front of that expression? It means that the sign bit carries the weight -27, that is -128 (base 10). All the other positions retain the same weight they had in unsigned binary numbers.
Working out our -15, it is -128 + 64 + 32 + 16 + 1 Try it on your calculator. it's -15.
Of the three main ways that I've seen negative numbers represented in computers, 2's complement wins hands down for convenience in general use. It has an oddity, though. Since it's binary, there have to be an even number of possible bit combinations. Each positive number can be paired with its negative, but there's only one zero. Negating a zero gets you zero. So there's one more combination, the number with 1 in the sign bit and 0 everywhere else. The corresponding positive number would not fit in the number of bits being used.
What's even more odd about this number is that if you try to form its positive by complementing and adding one, you get the same negative number back. It seems natural that zero would do this, but this is unexpected and not at all the behavior we're used to because computers aside, we generally think of an unlimited supply of digits, not this fixed-length arithmetic.
This is like the tip of an iceberg of oddities. There's more lying in wait below the surface, but that's enough for this discussion. You could probably find more if you research "overflow" for fixed-point arithmetic. If you really want to get into it, you might also research "modular arithmetic".
2's complement is very useful for finding the value of a binary, however I thought of a much more concise way of solving such a problem(never seen anyone else publish it):
take a binary, for example: 1101 which is [assuming that space "1" is the sign] equal to -3.
using 2's complement we would do this...flip 1101 to 0010...add 0001 + 0010 ===> gives us 0011. 0011 in positive binary = 3. therefore 1101 = -3!
What I realized:
instead of all the flipping and adding, you can just do the basic method for solving for a positive binary(lets say 0101) is (23 * 0) + (22 * 1) + (21 * 0) + (20 * 1) = 5.
Do exactly the same concept with a negative!(with a small twist)
take 1101, for example:
for the first number instead of 23 * 1 = 8 , do -(23 * 1) = -8.
then continue as usual, doing -8 + (22 * 1) + (21 * 0) + (20 * 1) = -3
Imagine that you have a finite number of bits/trits/digits/whatever. You define 0 as all digits being 0, and count upwards naturally:
00
01
02
..
Eventually you will overflow.
98
99
00
We have two digits and can represent all numbers from 0 to 100. All those numbers are positive! Suppose we want to represent negative numbers too?
What we really have is a cycle. The number before 2 is 1. The number before 1 is 0. The number before 0 is... 99.
So, for simplicity, let's say that any number over 50 is negative. "0" through "49" represent 0 through 49. "99" is -1, "98" is -2, ... "50" is -50.
This representation is ten's complement. Computers typically use two's complement, which is the same except using bits instead of digits.
The nice thing about ten's complement is that addition just works. You do not need to do anything special to add positive and negative numbers!
I read a fantastic explanation on Reddit by jng, using the odometer as an analogy.
It is a useful convention. The same circuits and logic operations that
add / subtract positive numbers in binary still work on both positive
and negative numbers if using the convention, that's why it's so
useful and omnipresent.
Imagine the odometer of a car, it rolls around at (say) 99999. If you
increment 00000 you get 00001. If you decrement 00000, you get 99999
(due to the roll-around). If you add one back to 99999 it goes back to
00000. So it's useful to decide that 99999 represents -1. Likewise, it is very useful to decide that 99998 represents -2, and so on. You have
to stop somewhere, and also by convention, the top half of the numbers
are deemed to be negative (50000-99999), and the bottom half positive
just stand for themselves (00000-49999). As a result, the top digit
being 5-9 means the represented number is negative, and it being 0-4
means the represented is positive - exactly the same as the top bit
representing sign in a two's complement binary number.
Understanding this was hard for me too. Once I got it and went back to
re-read the books articles and explanations (there was no internet
back then), it turned out a lot of those describing it didn't really
understand it. I did write a book teaching assembly language after
that (which did sell quite well for 10 years).
Two complement is found out by adding one to 1'st complement of the given number.
Lets say we have to find out twos complement of 10101 then find its ones complement, that is, 01010 add 1 to this result, that is, 01010+1=01011, which is the final answer.
Lets get the answer 10 – 12 in binary form using 8 bits:
What we will really do is 10 + (-12)
We need to get the compliment part of 12 to subtract it from 10.
12 in binary is 00001100.
10 in binary is 00001010.
To get the compliment part of 12 we just reverse all the bits then add 1.
12 in binary reversed is 11110011. This is also the Inverse code (one's complement).
Now we need to add one, which is now 11110100.
So 11110100 is the compliment of 12! Easy when you think of it this way.
Now you can solve the above question of 10 - 12 in binary form.
00001010
11110100
-----------------
11111110
Looking at the two's complement system from a math point of view it really makes sense. In ten's complement, the idea is to essentially 'isolate' the difference.
Example: 63 - 24 = x
We add the complement of 24 which is really just (100 - 24). So really, all we are doing is adding 100 on both sides of the equation.
Now the equation is: 100 + 63 - 24 = x + 100, that is why we remove the 100 (or 10 or 1000 or whatever).
Due to the inconvenient situation of having to subtract one number from a long chain of zeroes, we use a 'diminished radix complement' system, in the decimal system, nine's complement.
When we are presented with a number subtracted from a big chain of nines, we just need to reverse the numbers.
Example: 99999 - 03275 = 96724
That is the reason, after nine's complement, we add 1. As you probably know from childhood math, 9 becomes 10 by 'stealing' 1. So basically it's just ten's complement that takes 1 from the difference.
In Binary, two's complement is equatable to ten's complement, while one's complement to nine's complement. The primary difference is that instead of trying to isolate the difference with powers of ten (adding 10, 100, etc. into the equation) we are trying to isolate the difference with powers of two.
It is for this reason that we invert the bits. Just like how our minuend is a chain of nines in decimal, our minuend is a chain of ones in binary.
Example: 111111 - 101001 = 010110
Because chains of ones are 1 below a nice power of two, they 'steal' 1 from the difference like nine's do in decimal.
When we are using negative binary number's, we are really just saying:
0000 - 0101 = x
1111 - 0101 = 1010
1111 + 0000 - 0101 = x + 1111
In order to 'isolate' x, we need to add 1 because 1111 is one away from 10000 and we remove the leading 1 because we just added it to the original difference.
1111 + 1 + 0000 - 0101 = x + 1111 + 1
10000 + 0000 - 0101 = x + 10000
Just remove 10000 from both sides to get x, it's basic algebra.
The word complement derives from completeness. In the decimal world the numerals 0 through 9 provide a complement (complete set) of numerals or numeric symbols to express all decimal numbers. In the binary world the numerals 0 and 1 provide a complement of numerals to express all binary numbers. In fact The symbols 0 and 1 must be used to represent everything (text, images, etc) as well as positive (0) and negative (1).
In our world the blank space to the left of number is considered as zero:
35=035=000000035.
In a computer storage location there is no blank space. All bits (binary digits) must be either 0 or 1. To efficiently use memory numbers may be stored as 8 bit, 16 bit, 32 bit, 64 bit, 128 bit representations. When a number that is stored as an 8 bit number is transferred to a 16 bit location the sign and magnitude (absolute value) must remain the same. Both 1's complement and 2's complement representations facilitate this.
As a noun:
Both 1's complement and 2's complement are binary representations of signed quantities where the most significant bit (the one on the left) is the sign bit. 0 is for positive and 1 is for negative.
2s complement does not mean negative. It means a signed quantity. As in decimal the magnitude is represented as the positive quantity. The structure uses sign extension to preserve the quantity when promoting to a register [] with more bits:
[0101]=[00101]=[00000000000101]=5 (base 10)
[1011]=[11011]=[11111111111011]=-5(base 10)
As a verb:
2's complement means to negate. It does not mean make negative. It means if negative make positive; if positive make negative. The magnitude is the absolute value:
if a >= 0 then |a| = a
if a < 0 then |a| = -a = 2scomplement of a
This ability allows efficient binary subtraction using negate then add.
a - b = a + (-b)
The official way to take the 1's complement is for each digit subtract its value from 1.
1'scomp(0101) = 1010.
This is the same as flipping or inverting each bit individually. This results in a negative zero which is not well loved so adding one to te 1's complement gets rid of the problem.
To negate or take the 2s complement first take the 1s complement then add 1.
Example 1 Example 2
0101 --original number 1101
1's comp 1010 0010
add 1 0001 0001
2's comp 1011 --negated number 0011
In the examples the negation works as well with sign extended numbers.
Adding:
1110 Carry 111110 Carry
0110 is the same as 000110
1111 111111
sum 0101 sum 000101
SUbtracting:
1110 Carry 00000 Carry
0110 is the same as 00110
-0111 +11001
---------- ----------
sum 0101 sum 11111
Notice that when working with 2's complement, blank space to the left of the number is filled with zeros for positive numbers butis filled with ones for negative numbers. The carry is always added and must be either a 1 or 0.
Cheers
2's complement is essentially a way of coming up with the additive inverse of a binary number. Ask yourself this: Given a number in binary form (present at a fixed length memory location), what bit pattern, when added to the original number (at the fixed length memory location), would make the result all zeros ? (at the same fixed length memory location). If we could come up with this bit pattern then that bit pattern would be the -ve representation (additive inverse) of the original number; as by definition adding a number to its additive inverse always results in zero. Example: take 5 which is 101 present inside a single 8 bit byte. Now the task is to come up with a bit pattern which when added to the given bit pattern (00000101) would result in all zeros at the memory location which is used to hold this 5 i.e. all 8 bits of the byte should be zero. To do that, start from the right most bit of 101 and for each individual bit, again ask the same question: What bit should I add to the current bit to make the result zero ? continue doing that taking in account the usual carry over. After we are done with the 3 right most places (the digits that define the original number without regard to the leading zeros) the last carry goes in the bit pattern of the additive inverse. Furthermore, since we are holding in the original number in a single 8 bit byte, all other leading bits in the additive inverse should also be 1's so that (and this is important) when the computer adds "the number" (represented using the 8 bit pattern) and its additive inverse using "that" storage type (a byte) the result in that byte would be all zeros.
1 1 1
----------
1 0 1
1 0 1 1 ---> additive inverse
---------
0 0 0
Many of the answers so far nicely explain why two's complement is used to represent negative numbers, but do not tell us what two's complement number is, particularly not why a '1' is added, and in fact often added in a wrong way.
The confusion comes from a poor understanding of the definition of a complement number. A complement is the missing part that would make something complete.
The radix complement of an n digit number x in radix b is, by definition, b^n-x.
In binary 4 is represented by 100, which has 3 digits (n=3) and a radix of 2 (b=2). So its radix complement is b^n-x = 2^3-4=8-4=4 (or 100 in binary).
However, in binary obtaining a radix's complement is not as easy as getting its diminished radix complement, which is defined as (b^n-1)-y, just 1 less than that of radix complement. To get a diminished radix complement, you simply flip all the digits.
100 -> 011 (diminished (one's) radix complement)
to obtain the radix (two's) complement, we simply add 1, as the definition defined.
011 +1 ->100 (two's complement).
Now with this new understanding, let's take a look of the example given by Vincent Ramdhanie (see above second response):
Converting 1111 to decimal:
The number starts with 1, so it's negative, so we find the complement of 1111, which is 0000.
Add 1 to 0000, and we obtain 0001.
Convert 0001 to decimal, which is 1.
Apply the sign = -1.
Tada!
Should be understood as:
The number starts with 1, so it's negative. So we know it is a two's complement of some value x. To find the x represented by its two's complement, we first need find its 1's complement.
two's complement of x: 1111
one's complement of x: 1111-1 ->1110;
x = 0001, (flip all digits)
Apply the sign -, and the answer =-x =-1.
I liked lavinio's answer, but shifting bits adds some complexity. Often there's a choice of moving bits while respecting the sign bit or while not respecting the sign bit. This is the choice between treating the numbers as signed (-8 to 7 for a nibble, -128 to 127 for bytes) or full-range unsigned numbers (0 to 15 for nibbles, 0 to 255 for bytes).
It is a clever means of encoding negative integers in such a way that approximately half of the combination of bits of a data type are reserved for negative integers, and the addition of most of the negative integers with their corresponding positive integers results in a carry overflow that leaves the result to be binary zero.
So, in 2's complement if one is 0x0001 then -1 is 0x1111, because that will result in a combined sum of 0x0000 (with an overflow of 1).
2’s Complements: When we add an extra one with the 1’s complements of a number we will get the 2’s complements. For example: 100101 it’s 1’s complement is 011010 and 2’s complement is 011010+1 = 011011 (By adding one with 1's complement) For more information
this article explain it graphically.
Two's complement is mainly used for the following reasons:
To avoid multiple representations of 0
To avoid keeping track of carry bit (as in one's complement) in case of an overflow.
Carrying out simple operations like addition and subtraction becomes easy.
Two's complement is one of the ways of expressing a negative number and most of the controllers and processors store a negative number in two's complement form.
In simple terms, two's complement is a way to store negative numbers in computer memory. Whereas positive numbers are stored as a normal binary number.
Let's consider this example,
The computer uses the binary number system to represent any number.
x = 5;
This is represented as 0101.
x = -5;
When the computer encounters the - sign, it computes its two's complement and stores it.
That is, 5 = 0101 and its two's complement is 1011.
The important rules the computer uses to process numbers are,
If the first bit is 1 then it must be a negative number.
If all the bits except first bit are 0 then it is a positive number, because there is no -0 in number system (1000 is not -0 instead it is positive 8).
If all the bits are 0 then it is 0.
Else it is a positive number.
To bitwise complement a number is to flip all the bits in it. To two’s complement it, we flip all the bits and add one.
Using 2’s complement representation for signed integers, we apply the 2’s complement operation to convert a positive number to its negative equivalent and vice versa. So using nibbles for an example, 0001 (1) becomes 1111 (-1) and applying the op again, returns to 0001.
The behaviour of the operation at zero is advantageous in giving a single representation for zero without special handling of positive and negative zeroes. 0000 complements to 1111, which when 1 is added. overflows to 0000, giving us one zero, rather than a positive and a negative one.
A key advantage of this representation is that the standard addition circuits for unsigned integers produce correct results when applied to them. For example adding 1 and -1 in nibbles: 0001 + 1111, the bits overflow out of the register, leaving behind 0000.
For a gentle introduction, the wonderful Computerphile have produced a video on the subject.
The question is 'What is “two's complement”?'
The simple answer for those wanting to understand it theoretically (and me seeking to complement the other more practical answers): 2's complement is the representation for negative integers in the dual system that does not require additional characters, such as + and -.
Two's complement of a given number is the number got by adding 1 with the ones' complement of the number.
Suppose, we have a binary number: 10111001101
Its 1's complement is: 01000110010
And its two's complement will be: 01000110011
Reference: Two's Complement (Thomas Finley)
I invert all the bits and add 1. Programmatically:
// In C++11
int _powers[] = {
1,
2,
4,
8,
16,
32,
64,
128
};
int value = 3;
int n_bits = 4;
int twos_complement = (value ^ ( _powers[n_bits]-1)) + 1;
You can also use an online calculator to calculate the two's complement binary representation of a decimal number: http://www.convertforfree.com/twos-complement-calculator/
The simplest answer:
1111 + 1 = (1)0000. So 1111 must be -1. Then -1 + 1 = 0.
It's perfect to understand these all for me.

Why is ~1 in an 8-bit byte equal to -2?

I would expect that a, due to a NOT 00000001 would turn into 11111110, otherwise known as 127, or -126 if counting the far left bit as the sign, if sign&magnitude was used.
Even in the instance of 2s compliment, I would expect the answer to result in -127
Why is it that the result is -2?
In two's complement:
-x = ~x + 1
By subtracting one from both sides we can see that:
~x = -x - 1
And so in your example, if we set x = 1 we get:
~1 = -1 - 1 = -2
Consider how the numbers wrap around.
If we start with 00000010 (2) and take away one then it is:
00000010
- 00000001
---------
00000001
Which is 1. We "borrow 1" from the column to the left just as we do with decimal subtraction, except that because it's binary 10 - 1 is 1 rather than 9.
Take 1 away again and we of course get zero:
00000001
- 00000001
---------
00000000
Now, take 1 away from that, and we're borrowing 1 from the column to the left every time, and that borrowing wraps us around, so 0 - 1 = -1 is:
00000000
- 00000001
-----------
11111111
So -1 is all-ones.
This is even easier to see in the other direction, in that 11111111 plus one must be 00000000 as it keeps carrying one until it is lost to the left, so if x is 11111111 then it must be the case that x + 1 == 0, so it must be -1.
Take away another one and we have:
11111111
- 00000001
--------
11111110
So -2 is 1111110, and of course ~1 means flipping every bit of 00000001, which is also 11111110. So ~1 must be -2.
Another factor to note here though is that arithmetic and complements in C# always converts up to int for anything smaller. For a byte the value 11111110 is 254, but because ~ casts up to int first you get -2 rather than 254.
byte b = 1;
var i = ~b; // i is an int, and is -2
b = unchecked((byte)~b); // Forced back into a byte, now is 254
To convert a negative 2-compliment number to its decimal representation we have to:
start scanning the bitstring from right to left, until the first '1' is encountered
start inverting every bit to the left of that first '1'
Thus, in 11111110 we see the sign bit is 1 (negative number), and above method yields the number 000000010, which is a decimal 2. In total, we thus get -2.

Checking if a char is equal to multiple other chars, with as little branching as possible

I'm writing some performance-sensitive C# code that deals with character comparisons. I recently discovered a trick where you can tell if a char is equal to one or more others without branching, if the difference between them is a power of 2.
For example, say you want to check if a char is U+0020 (space) or U+00A0 (non-breaking space). Since the difference between the two is 0x80, you can do this:
public static bool Is20OrA0(char c) => (c | 0x80) == 0xA0;
as opposed to this naive implementation, which would add an additional branch if the character was not a space:
public static bool Is20OrA0(char c) => c == 0x20 || c == 0xA0;
How the first one works is since the difference between the two chars is a power of 2, it has exactly one bit set. So that means when you OR it with the character and it leads to a certain result, there are exactly 2 ^ 1 different characters that could have lead to that result.
Anyway, my question is, can this trick somehow be extended to characters with differences that aren't multiples of 2? For example, if I had the characters # and 0 (which have a difference of 13, by the way), is there any sort of bit-twiddling hack I could use to check if a char was equal to either of them, without branching?
Thanks for your help.
edit: For reference, here is where I first stumbled across this trick in the .NET Framework source code, in char.IsLetter. They take advantage of the fact that a - A == 97 - 65 == 32, and simply OR it with 0x20 to uppercase the char (as opposed to calling ToUpper).
If you can tolerate a multiply instead of a branch, and the values you are testing against only occupy the lower bits of the data type you are using (and therefore won't overflow when multiplied by a smallish constant, consider casting to a larger data type and using a correspondingly larger mask value if this is an issue), then you could multiply the value by a constant to force the two values to be a power of 2 apart.
For example, in the case of # and 0 (decimal values 35 and 48), the values are 13 apart. Rounding down, the nearest power of 2 to 13 is 8, which is 0.615384615 of 13. Multiplying this by 256 and rounding up, to give an 8.8 fixed point value gives 158.
Here are the binary values for 35 and 48, multiplied by 158, and their neighbours:
34 * 158 = 5372 = 0001 0100 1111 1100
35 * 158 = 5530 = 0001 0101 1001 1010
36 * 158 = 5688 = 0001 0110 0011 1000
47 * 158 = 7426 = 0001 1101 0000 0010
48 * 158 = 7548 = 0001 1101 1010 0000
49 * 158 = 7742 = 0001 1110 0011 1110
The lower 7 bits can be ignored because they aren't necessary in order to separate any of the neighbouring values from each other, and apart from that, the values 5530 and 7548 only differ in bit 11, so you can use the mask and compare technique, but using an AND instead of an OR. The mask value in binary is 1111 0111 1000 0000 (63360) and the compare value is 0001 0101 1000 0000 (5504), so you can use this code:
public static bool Is23Or30(char c) => ((c * 158) & 63360) == 5504;
I haven't profiled this, so I can't promise it's faster than a simple compare.
If you do implement something like this, be sure to write some test code that loops through every possible value that can be passed to the function, to verify that it works as expected.
You can use the same trick to compare against a set of 2^N values provided that they have all other bits equal except N bits. E.g if the set of values is 0x01, 0x03, 0x81, 0x83 then N=2 and you can use (c | 0x82) == 0x83. Note that the values in the set differ only in bits 1 and/or 7. All other bits are equal. There are not many cases where this kind of optimization can be applied, but when it can and every little bit of extra speed counts, its a good optimization.
This is the same way boolean expressions are optimized (e.g. when compiling VHDL). You may also want to look up Karnaugh maps.
That being said, it is really bad practice to do this kind of comparisons on character values especially with Unicode, unless you know what you are doing and are doing really low level stuff (such as drivers, kernel code etc). Comparing characters (as opposed to bytes) has to take into account the linguistic features (such as uppercase/lowercase, ligatures, accents, composited characters etc)
On the other hand if all you need is binary comparison (or classification) you can use lookup tables. With single byte character sets these can be reasonably small and really fast.
If not having branches is really your main concern, you can do something like this:
if ( (x-c0|c0-x) & (x-c1|c1-x) & ... & (x-cn|cn-x) & 0x80) {
// x is not equal to any ci
If x is not equal to a specific c, either x-c or c-x will be negative, so x-c|c-x will have bit 7 set. This should work for signed and unsigned chars alike. If you & it for all c's, the result will have bit 7 set only if it's set for every c (i.e. x is not equal to any of them)

Why is bitwise compliment of 1 in -2 [closed]

It's difficult to tell what is being asked here. This question is ambiguous, vague, incomplete, overly broad, or rhetorical and cannot be reasonably answered in its current form. For help clarifying this question so that it can be reopened, visit the help center.
Closed 9 years ago.
I am trying some bitwise operators in C#, not sure how compliment calculates output as -2 for 1
If i represent 1 in 8 bit binary
1 = 00000001
~1 =11111110 = How come this evaluates to be -2?
Sample code that i am using in C#
//Bitwise Compliment
//1 = 00000001
//~1 = 11111110 = -2
Console.WriteLine(~1);
Well... What do you hope it to be? Since we are using the two-complements representation this is simply how it is:
00000011 = 3
00000010 = 2
00000001 = 1
00000000 = 0
11111111 = -1
11111110 = -2
11111101 = -3
11111100 = -4
If we would use the one-complient representation, we would have this list, and then you would be right:
00000011 = 3
00000010 = 2
00000001 = 1
00000000 = 0
11111111 = -0 <== Watch this!!!
11111110 = -1
11111101 = -2
11111100 = -3
Since the computerbuilders decided not to have a negative zero, they created the two-complements representation.
If you do a bitwise complement, all bits are reversed. So 00000001 will result in 11111110 and that is simply -2 (when using two-complements).
Are you looking for the negate operator -?
Console.WriteLine(-1);
BTW: De complement negate operator is the same as the complement operator plus one (when using the two-compliment representation).
So:
-x == ~x + 1;
For more info: http://en.wikipedia.org/wiki/Signed_number_representations
Negative int numbers in .NET are treated as two's-complement. That means that:
1111....111111 = -1
1111....111110 = -2
1111....111101 = -3
1111....111100 = -4
etc; basically, negative x is equal to 2base-x
If you don't want negatives, use uint instead of int
.NET (and most languages) use two's complement to represent negative numbers. In the simplest explanation, this is found by taking the one's complement (which involves reversing each bit) and then adding 1.
Your inversion creates the one's complement, which is interpreted one lower than the two's complement.
If your eight bits represent a signed value then is only bits 1-7 that represent the number, bit 8 indicates whether the number is positive (0) or negative (1).
To get your desired behaviour you must use an unsigned type.
Because using Two's Complement, you invert all of the bits, and add one. So this is the entire process:
11111110 ; start
00000001 ; invert
00000010 ; add one
Source: link.
First of all, ~ operators works like
~x = -x - 1
In .NET, negative integers called with twos-complement
11111111 = -1
11111110 = -2
Signed integers in most computing contexts (including signed integers in C#: sbyte, short, int, and long) are represented using the Two's complement representation. In this, the first bit indicates the sign, and the rest indicates the number. (0..127 counts from 0000 0000..0111 1111, and -128..-1 counts from 1000 0000..1111 1111)
What you might've been expecting is what you'd get with the bitwise compliment of an unsigned int:
uint b = 1;
uint a = (uint)~b;
// a == 4294967294, which is 2^32-2, or in binary,
// 11111111 11111111 11111111 11111110

Why does the F# Bitwise Operator pad with 1's for signed types?

I was looking at F# doc on bitwise ops:
Bitwise right-shift operator. The
result is the first operand with bits
shifted right by the number of bits in
the second operand. Bits shifted off
the least significant position are not
rotated into the most significant
position. For unsigned types, the most
significant bits are padded with
zeros. For signed types, the most
significant bits are padded with ones.
The type of the second argument is
int32.
What was the motivation behind this design choice comparing to C++ language (and probably C too) where MSB are padded with zeros? E.g:
int mask = -2147483648 >> 1; // C++ code
where -2147483648 =
10000000 00000000 00000000 00000000
and mask is equal to 1073741824
where 1073741824 =
01000000 00000000 00000000 00000000
Now if you write same code in F# (or C#), this will indeed pad MSB with ones and you'll get -1073741824.
where -1073741824 =
11000000 00000000 00000000 00000000
The signed shift has the nice property that shifting x right by n corresponds to floor(x/2n).
On .NET, there are CIL opcodes for both types of operations (shr to do a signed shift and shr.un to do an unsigned shift). F# and C# choose which opcode to use based on the signedness of the type which is being shifted. This means that if you want the other behavior, you just need to perform a numeric conversion before and after shifting (which actually has no runtime impact due to how numbers are stored on the CLR - an int32 on the stack is indistinguishable from a uint32).
To answer the reformed question (in the comments):
The C and C++ standards do not define the result of right-shifting a negative value (it's either implementation-defined, or undefined, I can't remember which).
This is because the standard was defined to reflect the lowest common denominator in terms of underlying instruction set. Enforcing a true arithmetic shift, for instance, takes several instructions if the instruction set doesn't contain an asr primitive. This is further complicated by the fact that the standard mandates either one's or two's complement representation.

Categories

Resources