C# Split a string of integers into an IEnumerable<int> - c#

I need to convert a string of comma separated integers into a list of integers.
What is the best way to do this?
I can do it below but am worried about the performance - Is there a better more efficient way to do this?
public IEnumerable<int> GetListOfIds()
{
string Ids = "1,4,5,7,12"; // would be passed into method
List<int> _result = Ids.Split(',')
.ToList()
.Select(item => int.Parse(item))
.ToList();
return _result;
}

There's no need to call ToList, but otherwise your code looks fine:
public IEnumerable<int> GetListOfIds(string ids)
{
return ids.Split(',').Select(item => int.Parse(item));
}
You may also want to consider adding error handling in case the input string is invalid:
public IEnumerable<int> GetListOfIds(string ids)
{
foreach (string part in ids.Split(','))
{
int x;
if (!int.TryParse(part, out x))
{
throw new ArgumentException(
string.Format("The value {0} cannot be parsed as an integer.", part),
"ids");
}
else
{
yield return x;
}
}
}

You may at least omit first ToList() statement - so it will be
List<int> _result = Ids.Split(',').Select(item => int.Parse(item)).ToList();

You can probably loop on the split result and do a yield return int.Parse... but I would not expect big differences unless you have really many items in the original string.

Use the Stringify.Library nuget package
Example 1 (Default delimiter is implicitly taken as comma)
var ids = "1, 4, 5, 7, 12";
var splitComma = new StringConverter().ConvertTo<List<int>>(ids);
Example 2 (Specifying the delimiter explicitly)
var ids = "1; 4; 5; 7; 12";
var splitColon = new StringConverter().ConvertTo<List<int>>(ids, new ConverterOptions { Delimiter = ';' });

Related

How can I get a sorted `List<string>` based on an associated numeric index

I want to sort a string using indexes, but it's not working after 10th index, 10th/later indexes added after 1st index in the list after using Sort() method.
I have tried below code, but it's not working.
List<string> stringList = new List<string>();
foreach (ManagementObject disk in objectSearcher.Get() )
{
stringList.Add(string.Format("{0, -15} {1,-35} {2, -20}",
disk.GetPropertyValue("Index"),
disk.GetPropertyValue("Model"),
diskSize));
}
stringList.Sort();
In the above scenario, the code is working fine for 0-9 indexes but for later indexes, this is not working as expected.
Put your object into a class structure and work with that strong type as long as possible:
public class DiskInfo
{
private int index = 0;
private string model = String.Empty;
private unsigned long size = 0;
public int getIndex() { return index; }
public string getModel() { return model; }
public unsigned long getSize() { return size; }
public DiskInfo(int index, string model, unsigned long size)
{
this.index = index;
this.model = model;
this.size = size;
}
public string ToString()
{
return string.Format("{0, -15} {1,-35} {2, -20}", index, model, size);
}
}
// ...
List<DiskInfo> lst = new List<DiskInfo>();
foreach (ManagementObject disk in objectSearcher.Get() )
{
lst.Add(new DiskInfo(
disk.GetPropertyValue("Index"),
disk.GetPropertyValue("Model"),
diskSize
));
}
Adjust types as needed.
Then you can use simple linq to sort.
lst = lst.OrderBy(x => x.getIndex());
On top of that you get IDE support and compiler errors instead of trying to figure out why you get format exceptions, etc when mucking around with strings.
If your input data is not of the correct data type, then cast it then and there.
For example, index gets passed as a string:
string strIdx = "15";
lst.Add(new DiskInfo(int.Parse(strIdx)), ...)
It's not working after 10th index.
That is because List().Sort invoke string's comparison function.In string comparison "0" is less than "1", "1" is less than "11" and "12" is less than "2" etc.So it is not working after 10.
You can definition a sample comparison function as below:
public static int Compare(string a, string b)
{
return int.Parse(a.Substring(0, 15)).CompareTo(int.Parse(b.Substring(0, 15)));
}
and then invoke it in sort method:
stringList.Sort(Compare);
The prerequisite is that your format is satisfied that its first 15 characters can convert to an integer.
You are probably looking for the "logical sort order" seen in Windows Explorer. Below I have replaced the default string comparer with a comparer using that API: StrCmpLogicalW
class Program
{
public sealed class NaturalStringComparer : IComparer<string>
{
[DllImport("shlwapi.dll", CharSet = CharSet.Unicode)]
public static extern int StrCmpLogicalW(string psz1, string psz2);
public int Compare(string a, string b) => StrCmpLogicalW(a, b);
}
static void Main()
{
var stringList = new List<string>();
var index = 0;
while (index < 12)
{
stringList.Add($"{index,-15} {"Model",-35} {"35GB",-20}");
index++;
}
stringList.Sort(new NaturalStringComparer());
foreach (var s in stringList)
{
Console.WriteLine(s);
}
}
}
You seem to be deliberately left aligning index your numbers, which will mean that the ascending string sorted sequence of 1 through 12 would would be 1, 11, 12, 2, 3, 4, ...
Since you have the index value during the creation of the string, it would be wasteful to again parse the number out of the string in order to sort it. It would be better to retain the index and the string separately in a suitable data structure, sort by the index, and then project out just the string.
Updated for OP's new Question
Creating a custom POCO class (with or without an IComparable implementation) seems overkill everytime you need to sort an enumerable of related data by one of its properties.
Instead, you can easily build up a sortable anon class, struct or tuple containing the sortable integer and the concatenated string, then sort, then project out just the string. Either way, OP's GetPropertyValue method appears to return (reflect) a weak type such as object or string - accepted answer wouldn't compile as it needs to cast index to an int.
Here's value tuple solution:
var tuples = new List<(int index, string str)>();
foreach (ManagementObject disk in objectSearcher.Get() )
{
var indexValue = int.Parse(disk.GetPropertyValue("Index"));
tuples.Add((indexValue, string.Format("{0, -15} {1,-35} {2, -20}",
indexValue,
disk.GetPropertyValue("Model"),
diskSize)));
}
// Sort by index, and project out the assembled string.
var myList = tuples
.OrderBy(t => t.index)
.Select(t => t.str)
.ToList();
Original Answer, OP had a simple loop
What I've done below is to keep a Value tuple of the original string, and the parsed integer value of the first 15 digits.
Note that this will break if there are non-numeric characters in the first 15 characters of your string.
// Test Data
var strings = Enumerable.Range(0, 12)
.Select(i => (string.Format("{0, -15} {1,-35} {2, -20}", i, "Model", "35GB")));
// Project out a tuple of (index, string)
var indexedTuples = strings.Select(s => (idx: int.Parse(s.Substring(0, 15)), str: s));
var sorted = indexedTuples.OrderBy(t => t.idx)
.Select(t => t.str);

Generate all combinations with unknown number of slots

I have a text file full of strings, one on each line. Some of these strings will contain an unknown number of "#" characters. Each "#" can represent the numbers 1, 2, 3, or 4. I want to generate all possible combinations (permutations?) of strings for each of those "#"s. If there were a set number of "#"s per string, I'd just use nested for loops (quick and dirty). I need help finding a more elegant way to do it with an unknown number of "#"s.
Example 1: Input string is a#bc
Output strings would be:
a1bc
a2bc
a3bc
a4bc
Example 2: Input string is a#bc#d
Output strings would be:
a1bc1d
a1bc2d
a1bc3d
a1bc4d
a2bc1d
a2bc2d
a2bc3d
...
a4bc3d
a4bc4d
Can anyone help with this one? I'm using C#.
This is actually a fairly good place for a recursive function. I don't write C#, but I would create a function List<String> expand(String str) which accepts a string and returns an array containing the expanded strings.
expand can then search the string to find the first # and create a list containing the first part of the string + expansion. Then, it can call expand on the last part of the string and add each element in it's expansion to each element in the last part's expansion.
Example implementation using Java ArrayLists:
ArrayList<String> expand(String str) {
/* Find the first "#" */
int i = str.indexOf("#");
ArrayList<String> expansion = new ArrayList<String>(4);
/* If the string doesn't have any "#" */
if(i < 0) {
expansion.add(str);
return expansion;
}
/* New list to hold the result */
ArrayList<String> result = new ArrayList<String>();
/* Expand the "#" */
for(int j = 1; j <= 4; j++)
expansion.add(str.substring(0,i-1) + j);
/* Combine every expansion with every suffix expansion */
for(String a : expand(str.substring(i+1)))
for(String b : expansion)
result.add(b + a);
return result;
}
I offer you here a minimalist approach for the problem at hand.
Yes, like other have said recursion is the way to go here.
Recursion is a perfect fit here, since we can solve this problem by providing the solution for a short part of the input and start over again with the other part until we are done and merge the results.
Every recursion must have a stop condition - meaning no more recursion needed.
Here my stop condition is that there are no more "#" in the string.
I'm using string as my set of values (1234) since it is an IEnumerable<char>.
All other solutions here are great, Just wanted to show you a short approach.
internal static IEnumerable<string> GetStrings(string input)
{
var values = "1234";
var permutations = new List<string>();
var index = input.IndexOf('#');
if (index == -1) return new []{ input };
for (int i = 0; i < values.Length; i++)
{
var newInput = input.Substring(0, index) + values[i] + input.Substring(index + 1);
permutations.AddRange(GetStrings(newInput));
}
return permutations;
}
An even shorter and cleaner approach with LINQ:
internal static IEnumerable<string> GetStrings(string input)
{
var values = "1234";
var index = input.IndexOf('#');
if (index == -1) return new []{ input };
return
values
.Select(ReplaceFirstWildCardWithValue)
.SelectMany(GetStrings);
string ReplaceFirstWildCardWithValue(char value) => input.Substring(0, index) + value + input.Substring(index + 1);
}
This is shouting out loud for a recursive solution.
First, lets make a method that generates all combinations of a certain length from a given set of values. Because we are only interested in generating strings, lets take advantage of the fact that string is immutable (see P.D.2); this makes recursive functions so much easier to implement and reason about:
static IEnumerable<string> GetAllCombinations<T>(
ISet<T> set, int length)
{
IEnumerable<string> getCombinations(string current)
{
if (current.Length == length)
{
yield return current;
}
else
{
foreach (var s in set)
{
foreach (var c in getCombinations(current + s))
{
yield return c;
}
}
}
}
return getCombinations(string.Empty);
}
Study carefully how this methods works. Work it out by hand for small examples to understand it.
Now, once we know how to generate all possible combinations, building the strings is easy:
Figure out the number of wildcards in the specified string: this will be our combination length.
For every combination, insert in order each character into the string where we encounter a wildcard.
Ok, lets do just that:
public static IEnumerable<string> GenerateCombinations<T>(
this string s,
IEnumerable<T> set,
char wildcard)
{
var length = s.Count(c => c == wildcard);
var combinations = GetAllCombinations(set, length);
var builder = new StringBuilder();
foreach (var combination in combinations)
{
var index = 0;
foreach (var c in s)
{
if (c == wildcard)
{
builder.Append(combination[index]);
index += 1;
}
else
{
builder.Append(c);
}
}
yield return builder.ToString();
builder.Clear();
}
}
And we're done. Usage would be:
var set = new HashSet<int>(new[] { 1, 2, 3, 4 });
Console.WriteLine(
string.Join("; ", "a#bc#d".GenerateCombinations(set, '#')));
And sure enough, the output is:
a1bc1d; a1bc2d; a1bc3d; a1bc4d; a2bc1d; a2bc2d; a2bc3d;
a2bc4d; a3bc1d; a3bc2d; a3bc3d; a3bc4d; a4bc1d; a4bc2d;
a4bc3d; a4bc4d
Is this the most performant or efficient implementation? Probably not but its readable and maintainable. Unless you have a specific performance goal you are not meeting, write code that works and is easy to understand.
P.D. I’ve omitted all error handling and argument validation.
P.D.2: if the length of the combinations is big, concatenting strings inside GetAllCombinations might not be a good idea. In that case I’d have GetAllCombinations return an IEnumerable<IEnumerable<T>>, implement a trivial ImmutableStack<T>, and use that as the combination buffer instead of string.

remove elements from array until specific index

I have a string array, I need to delete all elements until a specific index or get a new array of all elements from my specific index. I'm looking for a system function without loops.
my code for example:
string []myArray = {"AAA","BBB","CCC","DDD","EEE","FFF","GGG","HHH"}
int myIndex = Array.IndexOf(myArray, "DDD");
needed output :
string []myNewArray = {"EEE","FFF","GGG","HHH"}
Just use Skip in Linq
string []myArray = {"AAA","BBB","CCC","DDD","EEE","FFF","GGG","HHH"}
int myIndex = Array.IndexOf(myArray, "DDD");
var newArray = myArray.Skip(myIndex+1);
Of course this means only that the loop is hidden from your view, but it exits nevertheless inside the Skip method.
Also, the code above, will return the whole array if the search for the string is unsuccessful.
You can use Linq's SkipWhile
string[] myArray = { "AAA", "BBB", "CCC", "DDD", "EEE", "FFF", "GGG", "HHH" };
var myNewArray = myArray.SkipWhile(x => x != "DDD").Skip(1).ToArray();
Arrays are a pretty "dumb" object, as they mostly just have methods that effectively describe themselves. What you'll want to do is make it Queryable (one of its methods), then use LINQ to do it.
string[] myarray = GimmeAStringArray();
int x = desiredIndexValue;
return myarray.AsQueryable().Where(t => myarray.IndexOf(t) > x);
You might not need to AsQueryable() it to do that.
there is another simple way to do that using arrayList:
you can use method arraylist.RemoveRange(start index, last index)
public static void Main()
{
string[] array = new string[] {"AAA","BBB","CCC","DDD","EEE","FFF","GGG","HHH"};
List<string> list = new List<string>(array);
list.RemoveRange(0,list.IndexOf("DDD")+1);
foreach (string str in list)
{
Console.WriteLine(str);
}
}
output of program will be :
EEE
FFF
GGG
HHH

Simple Way to Read Integers from a File

I am trying to read in a file which is essentially a list of integers, seperated by a line. Obviously, file input can never be trusted so I need to filter out non-integers.
1
2
3
4
I know the as operator usually converts if it can and then assigns a null, however because int isn't nullable this isn't the case. I thought that perhaps I could cast to Nullable<int>. I have never really delved into this, I thought perhaps I could do:
var lines = File.ReadAllLines("");
var numbers = lines.Select(line => line as int?).Where(i => i != null);
I know that I could get potentially get around this by doing:
var numbers = lines.Select(line =>
{
int iReturn = 0;
if (int.TryParse(line, out iReturn ))
return iReturn;
else
return null;
}).Where(i => i != null);
I also could potentially do it as an extension method.
I was just looking for a neat, concise way of doing the cast in a statement and also understanding why my code is invalid.
I'm always using this simple extension method:
public static int? TryGetInt(this string item)
{
int i;
bool success = int.TryParse(item, out i);
return success ? (int?)i : (int?)null;
}
Then it's easy:
var numbers = lines.Select(line => line.TryGetInt())
.Where(i => i.HasValue)
.Select(i => i.Value);
You can also use int.TryParse without the extension, but that is undocumented hence might stop working in future:
int i = 0;
var numbers = lines.Where(line => int.TryParse(line, out i))
.Select(line => i);
Edit
"also understanding why my code is invalid"
relevant code:
if (int.TryParse(line, out iReturn ))
return iReturn;
else
return null;
It would work if you'd replace
else
return null;
with
else
return (int?)null;
because you are returning an int, but null is not convertible implicitly to an int.
There isn't a concise way to do this because here you don't need to cast (you cannot cast) -- you need to convert from one type to another. The types of course are int and string (so not exactly "any" types), but as in the general case any conversion between unrelated types cannot be done "just like that".
Nope. C# is deliberately cautious about changing strings to numbers.
You can make your code shorter (no more nulls) using a foreach loop
var numbers = new List<int>();
foreach(string line in lines)
{
int n;
if (int.TryParse(line, out n))
numbers.Add(n);
}
If I understand you correctly and you want just filter the non integer lines, maybe regex is an option?
var lines = File.ReadAllLines("");
var numbers = lines.Where(i => Regex.IsMatch(i, "[0-9]+"));
Here's the best I came up with:
Use this extension method:
public static class Int32Extensions
{
public static int? ParseOrDefault(this string text)
{
int iReturn = 0;
if (int.TryParse(text, out iReturn))
{
return iReturn;
}
return null;
}
}
Like this:
var query = lines.Select(x => x.ParseOrDefault()).Where(x => x.HasValue);
You can create and extension method
public static int? ToInt(this string s, int default){ ... }
and use it in LINQ:
var lines = File.ReadAllLines(path);
var numbers = lines.Select(line => line.ToInt())
.Where(i => i != null);

int array to string

In C#, I have an array of ints, containing digits only. I want to convert this array to string.
Array example:
int[] arr = {0,1,2,3,0,1};
How can I convert this to a string formatted as: "012301"?
at.net 3.5 use:
String.Join("", new List<int>(array).ConvertAll(i => i.ToString()).ToArray());
at.net 4.0 or above use: (see #Jan Remunda's answer)
string result = string.Join("", array);
You can simply use String.Join function, and as separator use string.Empty because it uses StringBuilder internally.
string result = string.Join(string.Empty, new []{0,1,2,3,0,1});
E.g.: If you use semicolon as separator, the result would be 0;1;2;3;0;1.
It actually works with null separator, and second parameter can be enumerable of any objects, like:
string result = string.Join(null, new object[]{0,1,2,3,0,"A",DateTime.Now});
I realize my opinion is probably not the popular one, but I guess I have a hard time jumping on the Linq-y band wagon. It's nifty. It's condensed. I get that and I'm not opposed to using it where it's appropriate. Maybe it's just me, but I feel like people have stopped thinking about creating utility functions to accomplish what they want and instead prefer to litter their code with (sometimes) excessively long lines of Linq code for the sake of creating a dense 1-liner.
I'm not saying that any of the Linq answers that people have provided here are bad, but I guess I feel like there is the potential that these single lines of code can start to grow longer and more obscure as you need to handle various situations. What if your array is null? What if you want a delimited string instead of just purely concatenated? What if some of the integers in your array are double-digit and you want to pad each value with leading zeros so that the string for each element is the same length as the rest?
Taking one of the provided answers as an example:
result = arr.Aggregate(string.Empty, (s, i) => s + i.ToString());
If I need to worry about the array being null, now it becomes this:
result = (arr == null) ? null : arr.Aggregate(string.Empty, (s, i) => s + i.ToString());
If I want a comma-delimited string, now it becomes this:
result = (arr == null) ? null : arr.Skip(1).Aggregate(arr[0].ToString(), (s, i) => s + "," + i.ToString());
This is still not too bad, but I think it's not obvious at a glance what this line of code is doing.
Of course, there's nothing stopping you from throwing this line of code into your own utility function so that you don't have that long mess mixed in with your application logic, especially if you're doing it in multiple places:
public static string ToStringLinqy<T>(this T[] array, string delimiter)
{
// edit: let's replace this with a "better" version using a StringBuilder
//return (array == null) ? null : (array.Length == 0) ? string.Empty : array.Skip(1).Aggregate(array[0].ToString(), (s, i) => s + "," + i.ToString());
return (array == null) ? null : (array.Length == 0) ? string.Empty : array.Skip(1).Aggregate(new StringBuilder(array[0].ToString()), (s, i) => s.Append(delimiter).Append(i), s => s.ToString());
}
But if you're going to put it into a utility function anyway, do you really need it to be condensed down into a 1-liner? In that case why not throw in a few extra lines for clarity and take advantage of a StringBuilder so that you're not doing repeated concatenation operations:
public static string ToStringNonLinqy<T>(this T[] array, string delimiter)
{
if (array != null)
{
// edit: replaced my previous implementation to use StringBuilder
if (array.Length > 0)
{
StringBuilder builder = new StringBuilder();
builder.Append(array[0]);
for (int i = 1; i < array.Length; i++)
{
builder.Append(delimiter);
builder.Append(array[i]);
}
return builder.ToString()
}
else
{
return string.Empty;
}
}
else
{
return null;
}
}
And if you're really so concerned about performance, you could even turn it into a hybrid function that decides whether to do string.Join or to use a StringBuilder depending on how many elements are in the array (this is a micro-optimization, not worth doing in my opinion and possibly more harmful than beneficial, but I'm using it as an example for this problem):
public static string ToString<T>(this T[] array, string delimiter)
{
if (array != null)
{
// determine if the length of the array is greater than the performance threshold for using a stringbuilder
// 10 is just an arbitrary threshold value I've chosen
if (array.Length < 10)
{
// assumption is that for arrays of less than 10 elements
// this code would be more efficient than a StringBuilder.
// Note: this is a crazy/pointless micro-optimization. Don't do this.
string[] values = new string[array.Length];
for (int i = 0; i < values.Length; i++)
values[i] = array[i].ToString();
return string.Join(delimiter, values);
}
else
{
// for arrays of length 10 or longer, use a StringBuilder
StringBuilder sb = new StringBuilder();
sb.Append(array[0]);
for (int i = 1; i < array.Length; i++)
{
sb.Append(delimiter);
sb.Append(array[i]);
}
return sb.ToString();
}
}
else
{
return null;
}
}
For this example, the performance impact is probably not worth caring about, but the point is that if you are in a situation where you actually do need to be concerned with the performance of your operations, whatever they are, then it will most likely be easier and more readable to handle that within a utility function than using a complex Linq expression.
That utility function still looks kind of clunky. Now let's ditch the hybrid stuff and do this:
// convert an enumeration of one type into an enumeration of another type
public static IEnumerable<TOut> Convert<TIn, TOut>(this IEnumerable<TIn> input, Func<TIn, TOut> conversion)
{
foreach (TIn value in input)
{
yield return conversion(value);
}
}
// concatenate the strings in an enumeration separated by the specified delimiter
public static string Delimit<T>(this IEnumerable<T> input, string delimiter)
{
IEnumerator<T> enumerator = input.GetEnumerator();
if (enumerator.MoveNext())
{
StringBuilder builder = new StringBuilder();
// start off with the first element
builder.Append(enumerator.Current);
// append the remaining elements separated by the delimiter
while (enumerator.MoveNext())
{
builder.Append(delimiter);
builder.Append(enumerator.Current);
}
return builder.ToString();
}
else
{
return string.Empty;
}
}
// concatenate all elements
public static string ToString<T>(this IEnumerable<T> input)
{
return ToString(input, string.Empty);
}
// concatenate all elements separated by a delimiter
public static string ToString<T>(this IEnumerable<T> input, string delimiter)
{
return input.Delimit(delimiter);
}
// concatenate all elements, each one left-padded to a minimum length
public static string ToString<T>(this IEnumerable<T> input, int minLength, char paddingChar)
{
return input.Convert(i => i.ToString().PadLeft(minLength, paddingChar)).Delimit(string.Empty);
}
Now we have separate and fairly compact utility functions, each of which are arguable useful on their own.
Ultimately, my point is not that you shouldn't use Linq, but rather just to say don't forget about the benefits of creating your own utility functions, even if they are small and perhaps only contain a single line that returns the result from a line of Linq code. If nothing else, you'll be able to keep your application code even more condensed than you could achieve with a line of Linq code, and if you are using it in multiple places, then using a utility function makes it easier to adjust your output in case you need to change it later.
For this problem, I'd rather just write something like this in my application code:
int[] arr = { 0, 1, 2, 3, 0, 1 };
// 012301
result = arr.ToString<int>();
// comma-separated values
// 0,1,2,3,0,1
result = arr.ToString(",");
// left-padded to 2 digits
// 000102030001
result = arr.ToString(2, '0');
To avoid the creation of an extra array you could do the following.
var builder = new StringBuilder();
Array.ForEach(arr, x => builder.Append(x));
var res = builder.ToString();
string result = arr.Aggregate("", (s, i) => s + i.ToString());
(Disclaimer: If you have a lot of digits (hundreds, at least) and you care about performance, I suggest eschewing this method and using a StringBuilder, as in JaredPar's answer.)
You can do:
int[] arr = {0,1,2,3,0,1};
string results = string.Join("",arr.Select(i => i.ToString()).ToArray());
That gives you your results.
I like using StringBuilder with Aggregate(). The "trick" is that Append() returns the StringBuilder instance itself:
var sb = arr.Aggregate( new StringBuilder(), ( s, i ) => s.Append( i ) );
var result = sb.ToString();
string.Join("", (from i in arr select i.ToString()).ToArray())
In the .NET 4.0 the string.Join can use an IEnumerable<string> directly:
string.Join("", from i in arr select i.ToString())
I've left this here for posterity but don't recommend its use as it's not terribly readable. This is especially true now that I've come back to see if after a period of some time and have wondered what I was thinking when I wrote it (I was probably thinking 'crap, must get this written before someone else posts an answer'.)
string s = string.Concat(arr.Cast<object>().ToArray());
The most efficient way is not to convert each int into a string, but rather create one string out of an array of chars. Then the garbage collector only has one new temp object to worry about.
int[] arr = {0,1,2,3,0,1};
string result = new string(Array.ConvertAll<int,char>(arr, x => Convert.ToChar(x + '0')));
This is a roundabout way to go about it its not much code and easy for beginners to understand
int[] arr = {0,1,2,3,0,1};
string joined = "";
foreach(int i in arr){
joined += i.ToString();
}
int number = int.Parse(joined);
If this is long array you could use
var sb = arr.Aggregate(new StringBuilder(), ( s, i ) => s.Append( i ), s.ToString());
// This is the original array
int[] nums = {1, 2, 3};
// This is an empty string we will end up with
string numbers = "";
// iterate on every char in the array
foreach (var item in nums)
{
// add the char to the empty string
numbers += Convert.ToString(item);
}
// Write the string in the console
Console.WriteLine(numbers);

Categories

Resources