I understand how to force a single instance of an application using a mutex and this is what I use.
Several of my users have asked me to allow multiple instances to run. I don't want to remove the control code as I can see it as a recipe for disaster since multiple instances could be writing to the same files, log and so on.
I perhaps could handle things if the number of instances is limited to two. My current idea is to allow the first one to run as the active one and a second in some form of read-only mode.
So how would I control the number of instances to no more than two?
Thanks
It sounds like you want a named system Semaphore with a count of 2.
Here is an example:
class Program
{
private const int MaxInstanceCount = 2;
private static readonly Semaphore Semaphore = new Semaphore(MaxInstanceCount, MaxInstanceCount, "CanRunTwice");
static void Main(string[] args)
{
if (Semaphore.WaitOne(1000))
{
try
{
Console.WriteLine("Program is running");
Console.ReadLine();
}
finally
{
Semaphore.Release();
}
}
else
{
Console.WriteLine("I cannot run, too many instances are already running");
Console.ReadLine();
}
}
}
A Semaphore allows a number of concurrent threads to access a resource, and when it is created with a name, it is a operating-system-wide semaphore, so it fits your purpose well.
bool IsFree = false;
Mutex mutex = new Mutex(true, "MutexValue1", out IsFree);
if(!IsFree)
mutex = new Mutex(true, "MutexValue2", out IsFree);
if(!IsFree)
{
//two instances are already running
}
Related
I'm writing a windows phone app which stores data in a local database. There are multiple threads in my app that access the database and up until this point I have used the technique described here with an AutoResetEvent to ensure that only one thread can access the database at any one time.
So far this has worked very reliably, but now I want to add a ScheduledTask to do some work in the background so I've potentially got multiple processes now competing for access to the database.
Can anyone advise how I can adapt the AutoResetEvent technique to be used across multiple processes on Windows Phone?
I have seen approaches using a Mutex. If I acquire the Mutex before each DB call and then release it afterwards (similar to the way I'm using AutoResetEvent), will this do the trick? Is there any potential problems with this technique? eg: performance?
Ok so first of all my problem was actually 2 problems:
Need to ensure that if the foreground app is running, the background process won't run
Need to ensure that only one thread can access the databasse at once and this needs to work across processes to cater for the (admittedly rare, but possible) scenario where the foreground app is started while the background process is in progress.
Based on the good work done in this thread, I created a couple of classes to help.
To solve problem (1), I created the SingleInstanceSynchroniser:
/// <summary>
/// Used to ensure only one instance (foreground app or background app) runs at once
/// </summary>
public class SingleInstanceSynchroniser : IDisposable
{
private bool hasHandle = false;
Mutex mutex;
private void InitMutex()
{
string mutexId = "Global\\SingleInstanceSynchroniser";
mutex = new Mutex(false, mutexId);
}
public SingleInstanceSynchroniser()
{
InitMutex();
hasHandle = mutex.WaitOne(0);
}
public void Dispose()
{
if (hasHandle && mutex != null)
mutex.ReleaseMutex();
}
public bool HasExclusiveHandle { get { return hasHandle; } }
}
Usage:
In App.xaml.cs:
...
SingleInstanceSynchroniser singleInstanceSynchroniser;
public App()
{
singleInstanceSynchroniser = new SingleInstanceSynchroniser();
...
In ScheduledAgent.cs:
SingleInstanceSynchroniser singleInstanceSynchroniser;
protected override void OnInvoke(ScheduledTask task)
{
singleInstanceSynchroniser = new SingleInstanceSynchroniser();
if (singleInstanceSynchroniser.HasExclusiveHandle)
{
//Run background process
...
}
else
{ //Do not run if foreground app is running
NotifyComplete();
}
}
To solve problem (2), I created the SingleAccessSynchroniser:
/// <summary>
/// Used to ensure only one call is made to the database at once
/// </summary>
public class SingleAccessSynchroniser : IDisposable
{
public bool hasHandle = false;
Mutex mutex;
private void InitMutex()
{
string mutexId = "Global\\SingleAccessSynchroniser";
mutex = new Mutex(false, mutexId);
}
public SingleAccessSynchroniser() : this(0)
{ }
public SingleAccessSynchroniser(int TimeOut)
{
InitMutex();
if (TimeOut <= 0)
hasHandle = mutex.WaitOne();
else
hasHandle = mutex.WaitOne(TimeOut);
if (hasHandle == false)
throw new TimeoutException("Timeout waiting for exclusive access on SingleInstance");
}
public void Release()
{
if (hasHandle && mutex != null)
{
mutex.ReleaseMutex();
hasHandle = false;
}
}
public void Dispose()
{
Release();
}
}
Usage: In all database calls:
using (var dbSync = new SingleAccessSynchroniser())
{
//Execute your database calls
}
This has been running reliably for a few weeks now. Hope someone else finds it useful.
I ran into some problems using Bens solution on Windows Phone 8. Please see this thread for a complete documentation of the problems.
I was able to resolve the issues by removing "Global\" from "Global\SingleInstanceSynchroniser".
Concurrent access to a database between an agent and an app shouldn't be an issue. In fact, using Linq2SQL is one of the recommended ways for communicating between the app and agent.
In practice, it's rarely necessary for the app and agent to run at the same time and so it may be more appropriate to prevent that happening instead.
Potential performance issues will be dependent upon what you're doing. You'll need to measure this to see if it's really an issue.
I'm developing an ASP.NET forms webapplication using C#. I have a method which creates a new Order for a customer. It looks similar to this;
private string CreateOrder(string userName) {
// Fetch current order
Order order = FetchOrder(userName);
if (order.OrderId == 0) {
// Has no order yet, create a new one
order.OrderNumber = Utility.GenerateOrderNumber();
order.Save();
}
return order;
}
The problem here is, it is possible that 1 customer in two requests (threads) could cause this method to be called twice while another thread is also inside this method. This can cause two orders to be created.
How can I properly lock this method, so it can only be executed by one thread at a time per customer?
I tried;
Mutex mutex = null;
private string CreateOrder(string userName) {
if (mutex == null) {
mutex = new Mutex(true, userName);
}
mutex.WaitOne();
// Code from above
mutex.ReleaseMutex();
mutex = null;
return order;
}
This works, but on some occasions it hangs on WaitOne and I don't know why. Is there an error, or should I use another method to lock?
Thanks
Pass false for initiallyOwned in the mutex ctor. If you create the mutex and initially own it, you need to call ReleaseMutex again.
You should always try finally when releasing mutex. Also, make sure that the key is correct(userName)
Mutex mutex = null;
private string CreateOrder(string userName) {
mutex = mutex ?? new Mutex(true, userName);
mutex.WaitOne();
try{
// Code from above
}finally{
mutex.ReleaseMutex();
}
mutex = null;
return order;
}
In your code, you are creating the mutex lazily. This leads to race conditions.
E.g. it can happen that the mutex is only partially constructed when you call WaitOne() from another thread.
It can also happen that you create two mutex instances.
etc...
You can avoid this by creating the instance eagerly - i.e. as in Michael's code.
(Be sure to initialize it to a non-owned state.)
Mutex is a kernel-level synchronization primitive - it is more expensive than Monitor (that is what lock uses.).
Unless I'm missing something, can't you just use a regular lock?
private object _locker = new object();
private string CreateOrder(string userName)
{
lock(_locker)
{
// Fetch current order
Order order = FetchOrder(userName);
if (order.OrderId == 0)
{
// Has no order yet, create a new one
order.OrderNumber = Utility.GenerateOrderNumber();
order.Save();
}
return order;
}
}
I have always avoided locking in a web-based application - let the web server deal with the threads, and instead build in duplicate detection.
What do you think you're going to get by locking on the CreateOrder? It seems to me that you may avoid creating two order simultaneously, but you're still going to end up with two orders created.
Its easier to do this:
define a class somewhere like so:
public class MyLocks {
public static object OrderLock;
static MyLocks() {
OrderLock = new object();
}
}
then when using the lock do this:
lock(MyLocks.OrderLock) {
// put your code here
}
Its not very complicated then. Its light weight to define locks for whatever purpose as they are just very tiny objects in memory that are alive across multiple threads.
Okay, so i've created my c# application, created an installer for it and have it working installed on my machine.
The problem is, when the user opens the application exe twice, there will be two instances of the application running. I only ever want one instance of the application to be running at any time, how do I go about doing this?
Thanks for your help,
The common technique for this is to create a named Mutex and check for its presence on application start.
See this or this.
Code from DDJ:
class App : Form
{
Mutex mutex;
App()
{
Text = "Single Instance!";
mutex = new Mutex(false, "SINGLE_INSTANCE_MUTEX");
if (!mutex.WaitOne(0, false))
{
mutex.Close();
mutex = null;
}
}
protected override void Dispose(bool disposing)
{
if (disposing)
mutex.ReleaseMutex();
base.Dispose(disposing);
}
static void Main()
{
App app = new App();
if (app.mutex != null) Application.Run(app);
else MessageBox.Show("Instance already running");
}
}
i solved this problem by this
[STAThread]
static void Main()
{
Process[] result = Process.GetProcessesByName("ApplicationName");
if (result.Length > 1)
{
MessageBox.Show("There is already a instance running.", "Information");
System.Environment.Exit(0);
}
// here normal start
}
it is simple, but i had hardly time to check for better solutions.
With thanks to Messrs. Allen and Powell:
static void Main()
{
using (Mutex mutex = new Mutex(false, #"Global\" + appGuid)) {
if (!mutex.WaitOne(0, false)) {
string processName = GetProcessName();
BringOldInstanceToFront(processName);
}
else {
GC.Collect();
Application.Run(new Voting());
}
}
}
private static void BringOldInstanceToFront(string processName) {
Process[] RunningProcesses = Process.GetProcessesByName(processName);
if (RunningProcesses.Length > 0) {
Process runningProcess = RunningProcesses[0];
if (runningProcess != null) {
IntPtr mainWindowHandle = runningProcess.MainWindowHandle;
NativeMethods.ShowWindowAsync(mainWindowHandle, (int) WindowConstants.ShowWindowConstants.SW_SHOWMINIMIZED);
NativeMethods.ShowWindowAsync(mainWindowHandle, (int) WindowConstants.ShowWindowConstants.SW_RESTORE);
}
}
}
I don't know the environment that you are operating in, but something to keep in mind about 'single-instance applications' is how you define single-instance. If the application can be run on multiple workstations at the same time, using a common datasource, is that an issue? Likewise, what about a terminal-services situation (or a "run as" situation) where more than one user is logged into the same computer, do you want to restrict the application in such a way that only one instance per-user, per-computer? Or are you okay with it simply being one instance per user?
The answer to these might lead you in one direction over another. For example, we have a 'single-instance' application with the scope being a group of computers. Only one user is allowed on within that group of workstations. We managed this by have a table in our shared data-source that tracked currently connected users. This is a maintenance issue as you need to be sure that table is 100% accurate all the time. Handling things like unexpected power outages on the workstation, leaving "bogus" records in that table took some careful handling.
My situation is as follow:
I have an application that can be started only a fixed number of times (less than 50).
A separate central process to manage other processes is not allowed due to business requirement. (ie. if a nice solution that involves ONLY the application processes is still acceptable)
I am using C# for developing the application and therefore managed solution is preferred.
I have to deal with "unexpected" cases such as the processes can be terminated by using TaskManager.
I am thinking of solution that make use of system-wide mutex. However, it doesn't survive the "Unexpected" cases very well in the way that it leaves "abandoned" mutex. If this is a good way, may I ask what is the catch of "ignoring" the mutex abandoned?
One approach would be to query for the process list and count the number of instances currently alive. Another approach, more comples, would be to broadcast UDP and count the number of responses. I have used this pattern for distributed scenarios related to job processors.
HTH
Colby Africa
You could use a shared memory segment and increment a count each time an application is opened, and decrement when the application is closed. A more simple approach may be to use an interprocess semaphore which you alluded to in your question.
When a process is terminated via an "unexpected" event such as task manager process killing it should throw a ThreadAbortException. You should really try to wrap your mutex holding in some sort of try / finally that will allow you to release it as the thread is aborting.
I'm not 100% sure that's true but there aught to be some way to respond to situations like that.
Expanding on the Process List approach, using WMI.NET with C# may look like this:
using System;
using System.Collections.Generic;
using System.Collections.Specialized;
using System.Text;
using System.Management;
namespace WmiProc
{
class Program
{
static void Main(string[] args)
{
ManagementScope ms = new System.Management.ManagementScope(
#"\\myserver\root\cimv2");
var oq = new System.Management.ObjectQuery(
"SELECT * FROM Win32_Process where Name='myprocname'");
ManagementObjectSearcher query1 = new ManagementObjectSearcher(ms, oq);
ManagementObjectCollection procsCollection = query1.Get();
Console.WriteLine("process count:{0}", procsCollection.Count);
}
}
}
EDIT: There will be some separation of starting times, such that letting too many processes to run at once is not likely. You'll have to test for specific behavior in your environment.
Maybe you can periodically check the process count from a separate (long running) process and terminate excess processes according to some criterion (e.g. newest).
Well, you could work with named Mutex-instances.
Use a personal naming-scheme for Mutexes, request this name and check the result of a mutex with this name already was created.
If you use a naming scheme with an incremental element, you can try all mutex-names ascending you incremental element, and count like this, how many mutex were created.
Needs some improvement on handling with released mutexes still, but that seems trivial.
class Program
{
private static Mutex mutex = null;
static void Main(string[] args)
{
AppDomain.CurrentDomain.ProcessExit += new EventHandler(CurrentDomain_ProcessExit);
int count = Program.CheckInstanceCount();
Console.WriteLine("This is instance {0} running.", count);
Console.Read();
}
static void CurrentDomain_ProcessExit(object sender, EventArgs e)
{
Program.mutex.ReleaseMutex();
Program.mutex.Close();
}
private static int CheckInstanceCount()
{
int result = 0;
bool created = false;
for (int i = 0; i < 50; i++)
{
/* try to create a mutex with this name,
* if it does exist, another instance
* of this program is running
*/
mutex = new Mutex(true, string.Concat(AppDomain.CurrentDomain.FriendlyName, i.ToString()), out created);
if (created)
{
// this instance is instance #i currently running
result = i;
break;
}
}
return result;
}
}
I couldn't add comments to an above answer, but from reading the above answers, and comments, it seems like you should be able to combine a mutex with the Process Instance check.
// You can use any System wide mutual exclusion mechanism here
bool waitAndLockMutex();
void unlockMutex();
// returns the number of processes who use the specified command
int getProcessCount();
void main() {
try {
waitAndLockMutex();
if (getProcessCount() > MAX_ALLOWED)
return;
doUsualWork();
} finally {
unlockMutex();
}
}
Note that the above code is simply for illustrative purposes, and the body for the declared functions calls can be easily written using .NET
EDIT:
If you do not want to go the route of counting the processes of interest, you can use global mutex for it. Not sure if .NET exposes that. But the gist is that you can acquire all the mutexes till the MAX, and in the process if you get a Mutex that has not yet been created or is ABANDONED, then you go ahead and let the process launch, else exit saying exceeding max count
void main() {
for (int i = 0; i < MAX; ++i) {
int status = TryToAcquireMutex("mutex" + i);
continue if (status == locked);
if (status == success || status == WAIT_ABANDONED) {
doUsusalWork();
}
}
}
In .NET, what's the best way to prevent multiple instances of an app from running at the same time? And if there's no "best" technique, what are some of the caveats to consider with each solution?
Use Mutex. One of the examples above using GetProcessByName has many caveats. Here is a good article on the subject:
http://odetocode.com/Blogs/scott/archive/2004/08/20/401.aspx
[STAThread]
static void Main()
{
using(Mutex mutex = new Mutex(false, "Global\\" + appGuid))
{
if(!mutex.WaitOne(0, false))
{
MessageBox.Show("Instance already running");
return;
}
Application.Run(new Form1());
}
}
private static string appGuid = "c0a76b5a-12ab-45c5-b9d9-d693faa6e7b9";
if (Process.GetProcessesByName(Process.GetCurrentProcess().ProcessName).Length > 1)
{
AppLog.Write("Application XXXX already running. Only one instance of this application is allowed", AppLog.LogMessageType.Warn);
return;
}
Here is the code you need to ensure that only one instance is running. This is the method of using a named mutex.
public class Program
{
static System.Threading.Mutex singleton = new Mutex(true, "My App Name");
static void Main(string[] args)
{
if (!singleton.WaitOne(TimeSpan.Zero, true))
{
//there is already another instance running!
Application.Exit();
}
}
}
Hanselman has a post on using the WinFormsApplicationBase class from the Microsoft.VisualBasic assembly to do this.
1 - Create a reference in program.cs ->
using System.Diagnostics;
2 - Put into void Main() as the first line of code ->
if (Process.GetProcessesByName(Process.GetCurrentProcess().ProcessName).Length >1)
return;
That's it.
After trying multiple solutions i the question. I ended up using the example for WPF here: http://www.c-sharpcorner.com/UploadFile/f9f215/how-to-restrict-the-application-to-just-one-instance/
public partial class App : Application
{
private static Mutex _mutex = null;
protected override void OnStartup(StartupEventArgs e)
{
const string appName = "MyAppName";
bool createdNew;
_mutex = new Mutex(true, appName, out createdNew);
if (!createdNew)
{
//app is already running! Exiting the application
Application.Current.Shutdown();
}
}
}
In App.xaml:
x:Class="*YourNameSpace*.App"
StartupUri="MainWindow.xaml"
Startup="App_Startup"
It sounds like there are 3 fundamental techniques that have been suggested so far.
Derive from the Microsoft.VisualBasic.ApplicationServices.WindowsFormsApplicationBase class and set the IsSingleInstance property to true. (I believe a caveat here is that this won't work with WPF applications, will it?)
Use a named mutex and check if it's already been created.
Get a list of running processes and compare the names of the processes. (This has the caveat of requiring your process name to be unique relative to any other processes running on a given user's machine.)
Any caveats I've missed?
i tried all the solutions here and nothing worked in my C# .net 4.0 project. Hoping to help someone here the solution that worked for me:
As main class variables:
private static string appGuid = "WRITE AN UNIQUE GUID HERE";
private static Mutex mutex;
When you need to check if app is already running:
bool mutexCreated;
mutex = new Mutex(true, "Global\\" + appGuid, out mutexCreated);
if (mutexCreated)
mutex.ReleaseMutex();
if (!mutexCreated)
{
//App is already running, close this!
Environment.Exit(0); //i used this because its a console app
}
I needed to close other istances only with some conditions, this worked well for my purpose
Using Visual Studio 2005 or 2008 when you create a project for an executable, on the properties windows inside the "Application" panel there is a check box named “Make single instance application” that you can activate to convert the application on a single instance application.
Here is a capture of the window I'm talking of:
This is a Visual Studio 2008 windows application project.
http://en.csharp-online.net/Application_Architecture_in_Windows_Forms_2.0—Single-Instance_Detection_and_Management
This is the code for VB.Net
Private Shared Sub Main()
Using mutex As New Mutex(False, appGuid)
If Not mutex.WaitOne(0, False) Then
MessageBox.Show("Instance already running", "ERROR", MessageBoxButtons.OK, MessageBoxIcon.Error)
Return
End If
Application.Run(New Form1())
End Using
End Sub
This is the code for C#
private static void Main()
{
using (Mutex mutex = new Mutex(false, appGuid)) {
if (!mutex.WaitOne(0, false)) {
MessageBox.Show("Instance already running", "ERROR", MessageBoxButtons.OK, MessageBoxIcon.Error);
return;
}
Application.Run(new Form1());
}
}
Use VB.NET!
No: really ;)
using Microsoft.VisualBasic.ApplicationServices;
The WindowsFormsApplicationBase from VB.Net provides you with a "SingleInstace" Property, which determines other Instances and let only one Instance run.
[STAThread]
static void Main() // args are OK here, of course
{
bool ok;
m = new System.Threading.Mutex(true, "YourNameHere", out ok);
if (! ok)
{
MessageBox.Show("Another instance is already running.");
return;
}
Application.Run(new Form1()); // or whatever was there
GC.KeepAlive(m); // important!
}
From: Ensuring a single instance of .NET Application
and: Single Instance Application Mutex
Same answer as #Smink and #Imjustpondering with a twist:
Jon Skeet's FAQ on C# to find out why GC.KeepAlive matters
This article simply explains how you can create a windows application with control on the number of its instances or run only single instance. This is very typical need of a business application. There are already lots of other possible solutions to control this.
https://web.archive.org/web/20090205153420/http://www.openwinforms.com/single_instance_application.html
http://www.codeproject.com/KB/cs/SingleInstancingWithIpc.aspx
You have to use System.Diagnostics.Process.
Check out: http://www.devx.com/tips/Tip/20044
(Note: this is a fun-solution! It works but uses bad GDI+ design to achieve this.)
Put an image in with your app and load it on startup. Hold it until the app exits. The user wont be able to start a 2nd instance. (Of course the mutex solution is much cleaner)
private static Bitmap randomName = new Bitmap("my_image.jpg");
Simply using a StreamWriter, how about this?
System.IO.File.StreamWriter OpenFlag = null; //globally
and
try
{
OpenFlag = new StreamWriter(Path.GetTempPath() + "OpenedIfRunning");
}
catch (System.IO.IOException) //file in use
{
Environment.Exit(0);
}
Normally it's done with a named Mutex (use new Mutex( "your app name", true ) and check the return value), but there's also some support classes in Microsoft.VisualBasic.dll that can do it for you.
This worked for me in pure C#. the try/catch is when possibly a process in the list exits during your loop.
using System.Diagnostics;
....
[STAThread]
static void Main()
{
...
int procCount = 0;
foreach (Process pp in Process.GetProcesses())
{
try
{
if (String.Compare(pp.MainModule.FileName, Application.ExecutablePath, true) == 0)
{
procCount++;
if(procCount > 1) {
Application.Exit();
return;
}
}
}
catch { }
}
Application.Run(new Form1());
}
Be sure to consider security when restricting an application to a single instance:
Full article:
https://blogs.msdn.microsoft.com/oldnewthing/20060620-13/?p=30813
We are using a named mutex with a fixed name in order to detect
whether another copy of the program is running. But that also means an
attacker can create the mutex first, thereby preventing our program
from running at all! How can I prevent this type of denial of service
attack?
...
If the attacker is running in the same security context as your
program is (or would be) running in, then there is nothing you can do.
Whatever "secret handshake" you come up with to determine whether
another copy of your program is running, the attacker can mimic it.
Since it is running in the correct security context, it can do
anything that the "real" program can do.
...
Clearly you can't protect yourself from an attacker running at the
same security privilege, but you can still protect yourself against
unprivileged attackers running at other security privileges.
Try setting a DACL on your mutex, here's the .NET way:
https://msdn.microsoft.com/en-us/library/system.security.accesscontrol.mutexsecurity(v=vs.110).aspx
None of this answers worked for me because I needed this to work under Linux using monodevelop. This works great for me:
Call this method passing it a unique ID
public static void PreventMultipleInstance(string applicationId)
{
// Under Windows this is:
// C:\Users\SomeUser\AppData\Local\Temp\
// Linux this is:
// /tmp/
var temporaryDirectory = Path.GetTempPath();
// Application ID (Make sure this guid is different accross your different applications!
var applicationGuid = applicationId + ".process-lock";
// file that will serve as our lock
var fileFulePath = Path.Combine(temporaryDirectory, applicationGuid);
try
{
// Prevents other processes from reading from or writing to this file
var _InstanceLock = new FileStream(fileFulePath, FileMode.OpenOrCreate, FileAccess.ReadWrite, FileShare.None);
_InstanceLock.Lock(0, 0);
MonoApp.Logger.LogToDisk(LogType.Notification, "04ZH-EQP0", "Aquired Lock", fileFulePath);
// todo investigate why we need a reference to file stream. Without this GC releases the lock!
System.Timers.Timer t = new System.Timers.Timer()
{
Interval = 500000,
Enabled = true,
};
t.Elapsed += (a, b) =>
{
try
{
_InstanceLock.Lock(0, 0);
}
catch
{
MonoApp.Logger.Log(LogType.Error, "AOI7-QMCT", "Unable to lock file");
}
};
t.Start();
}
catch
{
// Terminate application because another instance with this ID is running
Environment.Exit(102534);
}
}