Related
From what I can tell, it is an accepted rule that if you have a class A that has a member m that is IDisposable, A should implement IDisposable and it should call m.Dispose() inside of it.
I can't find a satisfying reason why this is the case.
I understand the rule that if you have unmanaged resources, you should provide a finalizer along with IDisposable so that if the user doesn't explicitly call Dispose, the finalizer will still clean up during GC.
However, with that rule in place, it seems like you shouldn't need to have the rule that this question is about. For instance...
If I have a class:
class MyImage{
private Image _img;
... }
Conventions states that I should have MyImage : IDisposable. But if Image has followed conventions and implemented a finalizer and I don't care about the timely release of resources, what's the point?
UPDATE
Found a good discussion on what I was trying to get at here.
But if Image has followed conventions and implemented a finalizer and I don't care about the timely release of resources, what's the point?
You've missed the point of Dispose entirely. It's not about your convenience. It's about the convenience of other components that might want to use those unmanaged resources. Unless you can guarantee that no other code in the system cares about the timely release of resources, and the user doesn't care about timely release of resources, you should release your resources as soon as possible. That's the polite thing to do.
In the classic Prisoner's Dilemma, a lone defector in a world of cooperators gains a huge benefit. But in your case, being a lone defector produces only the tiny benefit of you personally saving a few minutes by writing low-quality, best-practice-ignoring code. It's your users and all the programs they use that suffer, and you gain practically nothing. Your code takes advantage of the fact that other programs unlock files and release mutexes and all that stuff. Be a good citizen and do the same for them. It's not hard to do, and it makes the whole software ecosystem better.
UPDATE: Here is an example of a real-world situation that my team is dealing with right now.
We have a test utility. It has a "handle leak" in that a bunch of unmanaged resources aren't aggressively disposed; it's leaking maybe half a dozen handles per "task". It maintains a list of "tasks to do" when it discovers disabled tests, and so on. We have ten or twenty thousand tasks in this list, so we very quickly end up with so many outstanding handles -- handles that should be dead and released back into the operating system -- that soon none of the code in the system that is not related to testing can run. The test code doesn't care. It works just fine. But eventually the code being tested can't make message boxes or other UI and the entire system either hangs or crashes.
The garbage collector has no reason to know that it needs to run finalizers more aggressively to release those handles sooner; why should it? Its job is to manage memory. Your job is to manage handles, so you've got to do that job.
But if Image has followed conventions
and implemented a finalizer and I
don't care about the timely release of
resources, what's the point?
Then there isn't one, if you don't care about timely release, and you can ensure that the disposable object is written correct (in truth I never make an assumption like that, not even with MSs code. You never know when something accidentally slipped by). The point is that you should care, as you never know when it will cause a problem. Think about an open database connection. Leaving it hanging around, means that it isn't replaced in the pool. You can run out if you have several requests come in for one.
Nothing says you have to do it if you don't care. Think of it this way, it's like releasing variables in an unmanaged program. You don't have to, but it is highly advisable. If for no other reason the person inheriting from the program doesn't have to wonder why it wasn't taken care of and then try and clear it up.
Firstly, there's no guaranteeing when an object will be cleaned up by the finalizer thread - think about the case where a class has a reference to a sql connection. Unless you make sure this is disposed of promptly, you'll have a connection open for an unknown period of time - and you won't be able to reuse it.
Secondly, finalization is not a cheap process - you should be making sure that if your objects are disposed of properly you're calling GC.SuppressFinalize(this) to prevent finalization happening.
Expanding on the "not cheap" aspect, the finalizer thread is a high-priority thread. It will take resources away from your main application if you give it too much to do.
Edit: Ok, here's a blog article by Chris Brummie about Finalization, including why it is expensive. (I knew I'd read loads about this somewhere)
If you don't care about the timely release of resources, then indeed there is no point. If you can be sure that the code is only for your consumption and you've got plenty of free memory/resources why not let GC hoover it up when it chooses to. OTOH, if someone else is using your code and creating many instances of (e.g.) MyImage, it's going to be pretty difficult to control memory/resource usage unless it disposes nicely.
Many classes require that Dispose be called to ensure correctness. If some C# code uses an iterator with a "finally" block, for example, the code in that block will not run if an enumerator is created with that iterator and not disposed. While there a few cases where it would be impractical to ensure objects were cleaned up without finalizers, for the most part code which relies upon finalizers for correct operation or to avoid memory leaks is bad code.
If your code acquires ownership of an IDisposable object, then unless either the object's cleass is sealed or your code creates the object by calling a constructor (as opposed to a factory method) you have no way of knowing what the real type of the object is, and whether it can be safely abandoned. Microsoft may have originally intended that it should be safe to abandon any type of object, but that is unrealistic, and the belief that it should be safe to abandon any type of object is unhelpful. If an object subscribes to events, allowing for safe abandonment will require either adding a level of weak indirection to all events, or a level of (non-weak) indirection to all other accesses. In many cases, it's better to require that a caller Dispose an object correctly than to add significant overhead and complexity to allow for abandonment.
Note also, btw, that even when objects try to accommodate abandonment it can still be very expensive. Create a Microsoft.VisualBasic.Collection (or whatever it's called), add a few objects, and create and Dispose a million enumerators. No problem--executes very quickly. Now create and abandon a million enumeartors. Major snooze fest unless you force a GC every few thousand enumerators. The Collection object is written to allow for abandonment, but that doesn't mean it doesn't have a major cost.
If an object you're using implements IDisposable, it's telling you it has something important to do when you're finished with it. That important thing may be to release unmanaged resources, or unhook from events so that it doesn't handle events after you think you're done with it, etc, etc. By not calling the Dispose, you're saying that you know better about how that object operates than the original author. In some tiny edge cases, this may actually be true, if you authored the IDisposable class yourself, or you know of a bug or performance problem related to calling Dispose. In general, it's very unlikely that ignoring a class requesting you to dispose it when you're done is a good idea.
Talking about finalizers - as has been pointed out, they have a cost, which can be avoided by Disposing the object (if it uses SuppressFinalize). Not just the cost of running the finalizer itself, and not just the cost of having to wait till that finalizer is done before the GC can collect the object. An object with a finalizer survives the collection in which it is identified as being unused and needing finalization. So it will be promoted (if it's not already in gen 2). This has several knock on effects:
The next higher generation will be collected less frequently, so after the finalizer runs, you may be waiting a long time before the GC comes around to that generation and sweeps your object away. So it can take a lot longer to free memory.
This adds unnecessary pressure to the collection the object is promoted to. If it's promoted from gen 0 to gen 1, then now gen 1 will fill up earlier than it needs to.
This can lead to more frequent garbage collections at higher generations, which is another performance hit.
If the object's finalizer isn't completed by the time the GC comes around to the higher generation, the object can be promoted again. Hence in a bad case you can cause an object to be promoted from gen 0 to gen 2 without good reason.
Obviously if you're only doing this on one object it's not likely to cost you anything noticeable. If you're doing it as general practice because you find calling Dispose on objects you're using tiresome, then it can lead to all of the problems above.
Dispose is like a lock on a front door. It's probably there for a reason, and if you're leaving the building, you should probably lock the door. If it wasn't a good idea to lock it, there wouldn't be a lock.
Even if you don't care in this particular case, you should still follow the standard because you will care in some cases. It's much easier to set a standard and follow it always based on specific guidelines than have a standard that you sometimes disregard. This is especially true as your team grows and your product ages.
I am comfortable with how to implement IDisposable..
However I'm not clear as to the exact consequences of not implementing this properly. Is it a case that unmanaged resources will never be cleared thus causing memory leaks or will the memory eventually get recycled anyway, just not in a timely manner?
It depends.
If the object in question fails to implement IDisposable, but does still implement a finalizer correctly, the resources will eventually get cleaned up.
However, if it doesn't properly implement a finalizer, AND it's wrapping an unmanaged resource, that resource will be leaked. This is more often a resource leak (ie: leaking a HANDLE stored as IntPtr) more than a traditional "memory leak" (though, of course, the object being pointed to does still use memory).
will the memory eventually get recycled anyway?
One point here... IDisposable has nothing to do with memory - it's about resources. These resources often use memory of their own, but implementing IDisposable does not cause your garbage collector to reclaim memory more quickly.
It depends entirely on what te implementation is, of course.
An incorrect dispose on a SqlTransaction could lead to excessive long blocking, for example - impacting multiple machines and users. An incorrect dispose on a SqlConnection could cause connection saturation and inability to connect. These are not just memory (etc) issues.
IIRC a missing graphic (pen/brush/whatever) dispose was responsible for a VS crash bug - GC didn't happen because there was no memory pressure, so instead it simply saturated the GDI handles and broke.
An incorrect file/stream dispose could cause exceptions due to a file bring unavailable for reading/writing - potentially losing data.
With unmanaged resources not properly handled, anything is possible.
Instead of thinking in terms of some vaguely-defined "resources", think of IDisposable as meaning "This object manipulates something outside itself (and possibly even outside the computer!) in a way that needs to be cleaned up, while the information necessary for such cleanup still exists." A finalizer which fires essentially says "Nobody else is using this stuff anymore, and I'm the only one who knows about it; I'd better clean it up because nobody else is going to."
It is dangerous to assume that finalizers will magically take care of things; while many objects can be safely abandoned, many others cannot. In some cases, it will be easy for an object to detect that it has been abandoned and clean up appropriately. In some other cases, it may be so difficult as to be impractical. Consider an object which is supposed to count how many times the word "quack" appears in a long-lived data stream. If the creator of the object has forgotten about it, and nobody is every going to query the count, the object may as well go away. Unfortunately, since the data stream holds a reference to the counting object (so as to let it know when data comes in), the counter object won't go away. If code creates a counter, then forgets about it, then creates another one, forgets about it, etc. this could become an unbounded memory leak.
A class that holds unmanaged resources should ensure that they are cleaned up during finalization. However, this only happens when the garbage collector gets around to it.
Not calling Dispose means waiting for the garbage collector to need memory before the resources are released.
The latter of the two. Just not in a timely manner.
The importance of this depends on the resources you are allocating. This is why you are more likely to see IDisposable interfaces on objects that open files and reference other, more crticital, resources.
Yes, unmanaged resources will never be released. (This assumes that the IDisposable types in question don't implement a "fallback" finaliser. If they do then the finaliser should sort things out... eventually.)
However, it's not just unmanaged memory allocations that you need to worry about; it's any unmanaged resources. For example, if you don't properly dispose of your database connections then you might find that the connection pool quickly gets exhausted.
Another potential problem with not implementing the disposable pattern properly - it is very easy to accidentally call .Dispose() more than once. If your Dispose method does not check for successive calls to it, and (eg.) attempts to free up an unmanaged resource more than once, you might end up with some unrecoverable error, or unexpected behaviour.
I'm busy getting confused about non-deterministic destruction. In an answer to another question I got the advice that destructors/finalisers (which I assume are the same thing in c#, i.e. the function called ~classname()) are expensive and not required. But looking at this example a destructor is used and from the comment sounds like it may be vital. Anyone got some advice about how this all fits together and should I remove the destructor from my code?
Thanks again.
You should only include a finalizer if you absolutely have to run some cleanup at some point, whether it's performed explicitly or not. In such cases you should always have an explicit way of performing clean-up in a timely manner anyway, and that should suppress finalization anyway, so that "good" clients don't see any performance penalty.
You would normally only need a finalizer if you have a direct handle to unmanaged resources - if you only have a reference to another class which has a handle on the resource (e.g. FileStream) then you should leave it to the other class to have a finalizer.
With the advent of SafeHandle in .NET 2.0, situations where it's worth writing your own finalizer are very rare indeed.
The performance penalty of finalizers is that they make your objects live for longer than they need to: in the first GC cycle where they're otherwise considered eligible for collection, they get put on the finalizer queue - and bumped up to the next generation just like any other object which survives a GC cycle. The finalizer will then run in another thread (at some point) and only then will they be eligible to really be collected. So instead of (say) getting collected in the first gen1 collection, they live on past that until the next gen2 collection, which may be considerably later.
Usually, implementing a destructor is useful in on case: when it is not guaranteed, that client code will close all the resources(file streams, db connections and so on) properly. So, if client code will fail to do so, you will have code, which will close it, which is better than just left the resources open.
You only need the full Disposable pattern when you are dealing with an unmanaged resource directly. And then it is up to your calling code to make sure the destructor is (almost) never used.
When dealing with managed resources (= indirect ownership of unmanaged resources), the destructor is useless:
class FileWrapper
{
private FileStream fs; // managed resource
~FileWrapper()
{
if (fs != null)
fs.Dispose(); // fs is already on the GC finalizer queue
}
}
Whenever a FileWrapper object is being collected by the GC, it is certain that the fs object is in the same batch. So the call to fs.Dispose() is useless, only testing the correct (allowing multiple calls) behaviour of the FileStream.Dispose().
The only useful destructor here is the one in FileStream.
When would I implement IDispose on a class as opposed to a destructor? I read this article, but I'm still missing the point.
My assumption is that if I implement IDispose on an object, I can explicitly 'destruct' it as opposed to waiting for the garbage collector to do it. Is this correct?
Does that mean I should always explicitly call Dispose on an object? What are some common examples of this?
A finalizer (aka destructor) is part of garbage collection (GC) - it is indeterminate when (or even if) this happens, as GC mainly happens as a result of memory pressure (i.e. need more space). Finalizers are usually only used for cleaning up unmanaged resources, since managed resources will have their own collection/disposal.
Hence IDisposable is used to deterministically clean up objects, i.e. now. It doesn't collect the object's memory (that still belongs to GC) - but is used for example to close files, database connections, etc.
There are lots of previous topics on this:
deterministic finalization
disposing objects
using block
resources
Finally, note that it is not uncommon for an IDisposable object to also have a finalizer; in this case, Dispose() usually calls GC.SuppressFinalize(this), meaning that GC doesn't run the finalizer - it simply throws the memory away (much cheaper). The finalizer still runs if you forget to Dispose() the object.
The role of the Finalize() method is to ensure that a .NET object can clean up unmanaged resources when garbage collected. However, objects such as database connections or file handlers should be released as soon as possible, instead on relying on garbage collection. For that you should implement IDisposable interface, and release your resources in the Dispose() method.
The only thing that should be in a C# destructor is this line:
Dispose(False);
That's it. Nothing else should ever be in that method.
There is a very good description on MSDN:
The primary use of this interface is
to release unmanaged resources.
The garbage collector automatically
releases the memory allocated to a
managed object when that object is no
longer used. However, it is not
possible to predict when garbage
collection will occur. Furthermore,
the garbage collector has no
knowledge of unmanaged resources
such as window handles, or open
files and streams.
Use the Dispose method of this
interface to explicitly release
unmanaged resources in conjunction
with the garbage collector. The
consumer of an object can call this method when the object is no
longer needed.
Your question regarding whether or not you should always call Dispose is usually a heated debate. See this blog for an interesting perspective from respected individuals in the .NET community.
Personally, I think Jeffrey Richter's position that calling Dispose is not mandatory is incredibly weak. He gives two examples to justify his opinion.
In the first example he says calling Dispose on Windows Forms controls is tedious and unnecessary in mainstream scenarios. However, he fails to mention that Dispose actually is called automatically by control containers in those mainstream scenarios.
In the second example he states that a developer may incorrectly assume that the instance from IAsyncResult.WaitHandle should be aggressively disposed without realizing that the property lazily initializes the wait handle resulting in an unnecessary performance penalty. But, the problem with this example is that the IAsyncResult itself does not adhere to Microsoft's own published guidelines for dealing with IDisposable objects. That is if a class holds a reference to an IDisposable type then the class itself should implement IDisposable. If IAsyncResult followed that rule then its own Dispose method could make the decision regarding which of its constituent members needs disposing.
So unless someone has a more compelling argument I am going to stay in the "always call Dispose" camp with the understanding that there are going to be some fringe cases that arise mostly out of poor design choices.
It's pretty simple really. I know it's been answered but I'll try again but will try to keep it as simple as possible.
A destructor should generally never be used. It is only run .net wants it to run. It will only run after a garbage collectoin cycle. It may never actually be run during the lifecycle of your application. For this reason, you should not ever put any code in a destructor that 'must' be run. You also can't rely on any existing objects within the class to exist when it runs (they may have already been cleaned up as the order in which destructors run in is not garanteed).
IDisposible should be used whenever you have an object that creates resources that need cleaning up (ie, file and graphics handles). In fact, many argue that anything you put in a destructor should be putin IDisposable due to the reasons listed above.
Most classes will call dispose when the finalizer is executed but this is simply there as a safe guard and should never be relied upon. You should explicitly dispose anything that implements IDisposable when you're done with it. If you do implement IDisposable, you should call dispose in finalizer. See http://msdn.microsoft.com/en-us/library/system.idisposable.aspx for an example.
Here is another fine article which clears up some of the mist surrounding IDisposable, the GC and dispose.
Chris Lyons WebLog Demystifying Dispose
What resources have to be manually cleaned up in C# and what are the consequences of not doing so?
For example, say I have the following code:
myBrush = new System.Drawing.SolidBrush(System.Drawing.Color.Black);
// Use Brush
If I don't clean up the brush using the dispose method, I'm assuming the garbage collector frees the memory used at program termination? Is this correct?
What other resources do I need to manually clean up?
If you don't dispose something, it'll be cleaned up when the garbage collector notices that there are no more references to it in your code, which may be after some time. For something like that, it doesn't really matter, but for an open file it probably does.
In general, if something has a Dispose method, you should call it when you've finished with it, or, if you can, wrap it up in a using statement:
using (SolidBrush myBrush = new System.Drawing.SolidBrush(System.Drawing.Color.Black))
{
// use myBrush
}
Handles to internal windows data structures.
Database connections.
File handles.
Network connections.
COM/OLE references.
The list goes on.
It's important to call Dispose or even better yet, use the using pattern.
using (SolidBrush myBrush = new System.Drawing.SolidBrush(System.Drawing.Color.Black))
{
// use myBrush
}
If you don't dispose something, it'll be cleaned up when the garbage collector notices that there are no more references to it, which may be after some time.
In the case of System.Drawing.Brush, Windows will keep internal windows structures for the brush loaded in memory until all programs release their handle.
The consequences of not disposing your IDisposables can vary from a negligible performance hit to crashing your app.
The Brush object in your example will be cleaned up by the GC when it feels like it. But your program won't have had the benefit of that bit of extra memory you would have gained by cleaning it up earlier. If you are using a lot of Brush objects this might become significant. The GC is also more efficient at cleaning up objects if they haven't been around very long, because it is a generational garbage collector.
On the other hand, the consequences of not disposing database connection objects could mean you run out of pooled database connections very quickly and cause your app to crash.
Either use
using (new DisposableThing...
{
...
}
Or, if you need to hold on to a reference to an IDisposable in your object for its lifetime, implement IDisposable on your object and call the IDisposable's Dispose method.
class MyClass : IDisposable
{
private IDisposable disposableThing;
public void DoStuffThatRequiresHavingAReferenceToDisposableThing() { ... }
public void Dispose()
{
Dispose(true);
GC.SuppressFinalize(this);
}
protected virtual void Dispose(bool disposing)
//etc... (see IDisposable on msdn)
}
Generally, anything that implements IDisposable should cause you to pause and research the resource you're using.
GC only happens when there's memory pressure, so you cannot predict when. Although an unload of the AppDomain will certainly trigger it.
Technically anything that inherits from IDisposable should be proactively disposed. You can use the 'using' statement to make things easier.
http://msdn.microsoft.com/en-us/library/yh598w02.aspx
Sometimes you will see inconsistent use of IDisposable derived objects in documentation sample code as well as code that is generated by tools (i.e. visual studio).
What's nice about IDisposable is that it gives you the ability to proactively release the underlying unmanaged resource. Sometimes you really want to do this - think network connections and file resources for example.
As others have said, using is your friend.
I wrote this blog entry about how to implement IDisposable in a fairly straightforward way that is less error-prone by factoring out the parts that are the most important.
A trick I use when I can't remember whether a given object is a disposable resource is to type ".Dispose" (at most!) after the declaration to get Intellisense to check for me:
MemoryStream ms = new MemoryStream().Dispose
Then delete the .Dispose and use the using() directive:
using(MemoryStream ms = new MemoryStream())
{
...
}
Well, as long as you use the managed version of the resources and don't call the windows APIs by yourself, you should be OK. Only worry about having to delete/destroy a resource when what you get is an IntPtr, as "windows handles" (and a whole lot other things) are known in .NET, and not an object.
By the way, the resource (as any other .NET object) will be flagged for collection as soon as you leave the current context, so if you create the Brush inside a method, it will be flagged when you exit it.
If it's managed (i.e. part of the framework) you don't need to worry about it. If it implements IDisposable just wrap it in a using block.
If you want to use unmanaged resources then you need to read up on finalisers and implementing IDisposable yourself.
There's a lot more detail under this question
First upon program termination, you can assume that memory used by the process will be eliminated with the process itself.
While using dispose or destructor in.net, one must understand that the time of when the dispose function is called by the GC is non-deterministic. That why it is recommended to use the using or calling the dispose explicitly.
When using resources such as files, memory objects such as semaphors and resources that live outside of the managed world of .net must be freed.
The SolidBrush for example, you need to dispose because it is a GDI object and living outside of the .net world.
The garbage collector does not only free up at program termination, otherwise it would not be really useful (on any decent/recent OS, when the process exits, all its memory is cleaned up automatically by the OS anyway).
One of the big advantage of C# compared to C/C++ is that you don't have to care about freeing allocated objects (most of the time at least); the gc does it when the runtime decides (various strategies when/how to do it).
Many ressources are not taken care of by the gc: file, thread-related ressources (locks), network connections, etc...
One place to be careful is Objects that look small to GC but are not... In the SharePoint API for example, the SPWeb object has a small footprint as far as the GC is concerned and so will have low priority for collection, but it has really grabbed a bunch of memory (in the heap I believe) that the GC doesn't know about. You will run into some fun memory issues if you are foreaching a whole bunch of these for example, always remember to use using or dispose!
Rather than thinking of an object as "holding" resources that need to be released, it's better to think in terms of an object as having altered something (possibly outside the computer!) which will outlive it, in a way could be harmful if it not undone or "cleaned up", but which only the object can clean up. While this alteration commonly takes the form of some concrete object in a pool being marked "busy", its precise form doesn't matter. What matters is that the changes need to be undone, and the object holds information necessary to do that.
The garbage collector will handle any managed resources. In your example, the brush will be cleaned up when the garbage collector decides to, which will happen some time after the last reference to the brush is no longer valid.
There are certain things that need to be manually cleaned up, but those are pointers retrieved from unmanaged sources, such as DLL calls, nothing within the .NET Framework needs this treatment however.