I need to move backwards through an array, so I have code like this:
for (int i = myArray.Length - 1; i >= 0; i--)
{
// Do something
myArray[i] = 42;
}
Is there a better way of doing this?
Update: I was hoping that maybe C# had some built-in mechanism for this like:
foreachbackwards (int i in myArray)
{
// so easy
}
While admittedly a bit obscure, I would say that the most typographically pleasing way of doing this is
for (int i = myArray.Length; i --> 0; )
{
//do something
}
In C++ you basicially have the choice between iterating using iterators, or indices.
Depending on whether you have a plain array, or a std::vector, you use different techniques.
Using std::vector
Using iterators
C++ allows you to do this using std::reverse_iterator:
for(std::vector<T>::reverse_iterator it = v.rbegin(); it != v.rend(); ++it) {
/* std::cout << *it; ... */
}
Using indices
The unsigned integral type returned by `std::vector::size` is *not* always `std::size_t`. It can be greater or less. This is crucial for the loop to work.
for(std::vector<int>::size_type i = someVector.size() - 1;
i != (std::vector<int>::size_type) -1; i--) {
/* std::cout << someVector[i]; ... */
}
It works, since unsigned integral types values are defined by means of modulo their count of bits. Thus, if you are setting -N, you end up at (2 ^ BIT_SIZE) -N
Using Arrays
Using iterators
We are using `std::reverse_iterator` to do the iterating.
for(std::reverse_iterator<element_type*> it(a + sizeof a / sizeof *a), itb(a);
it != itb;
++it) {
/* std::cout << *it; .... */
}
Using indices
We can safely use `std::size_t` here, as opposed to above, since `sizeof` always returns `std::size_t` by definition.
for(std::size_t i = (sizeof a / sizeof *a) - 1; i != (std::size_t) -1; i--) {
/* std::cout << a[i]; ... */
}
Avoiding pitfalls with sizeof applied to pointers
Actually the above way of determining the size of an array sucks. If a is actually a pointer instead of an array (which happens quite often, and beginners will confuse it), it will silently fail. A better way is to use the following, which will fail at compile time, if given a pointer:
template<typename T, std::size_t N> char (& array_size(T(&)[N]) )[N];
It works by getting the size of the passed array first, and then declaring to return a reference to an array of type char of the same size. char is defined to have sizeof of: 1. So the returned array will have a sizeof of: N * 1, which is what we are looking for, with only compile time evaluation and zero runtime overhead.
Instead of doing
(sizeof a / sizeof *a)
Change your code so that it now does
(sizeof array_size(a))
I would always prefer clear code against 'typographically pleasing' code.
Thus, I would always use :
for (int i = myArray.Length - 1; i >= 0; i--)
{
// Do something ...
}
You can consider it as the standard way to loop backwards.
Just my two cents...
In C#, using Visual Studio 2005 or later, type 'forr' and hit [TAB] [TAB]. This will expand to a for loop that goes backwards through a collection.
It's so easy to get wrong (at least for me), that I thought putting this snippet in would be a good idea.
That said, I like Array.Reverse() / Enumerable.Reverse() and then iterate forwards better - they more clearly state intent.
In C# using Linq:
foreach(var item in myArray.Reverse())
{
// do something
}
That's definitely the best way for any array whose length is a signed integral type. For arrays whose lengths are an unsigned integral type (e.g. an std::vector in C++), then you need to modify the end condition slightly:
for(size_t i = myArray.size() - 1; i != (size_t)-1; i--)
// blah
If you just said i >= 0, this is always true for an unsigned integer, so the loop will be an infinite loop.
Looks good to me. If the indexer was unsigned (uint etc), you might have to take that into account. Call me lazy, but in that (unsigned) case, I might just use a counter-variable:
uint pos = arr.Length;
for(uint i = 0; i < arr.Length ; i++)
{
arr[--pos] = 42;
}
(actually, even here you'd need to be careful of cases like arr.Length = uint.MaxValue... maybe a != somewhere... of course, that is a very unlikely case!)
The best way to do that in C++ is probably to use iterator (or better, range) adaptors, which will lazily transform the sequence as it is being traversed.
Basically,
vector<value_type> range;
foreach(value_type v, range | reversed)
cout << v;
Displays the range "range" (here, it's empty, but i'm fairly sure you can add elements yourself) in reverse order.
Of course simply iterating the range is not much use, but passing that new range to algorithms and stuff is pretty cool.
This mechanism can also be used for much more powerful uses:
range | transformed(f) | filtered(p) | reversed
Will lazily compute the range "range", where function "f" is applied to all elements, elements for which "p" is not true are removed, and finally the resulting range is reversed.
Pipe syntax is the most readable IMO, given it's infix.
The Boost.Range library update pending review implements this, but it's pretty simple to do it yourself also. It's even more cool with a lambda DSEL to generate the function f and the predicate p in-line.
In C I like to do this:
int i = myArray.Length;
while (i--) {
myArray[i] = 42;
}
C# example added by MusiGenesis:
{int i = myArray.Length; while (i-- > 0)
{
myArray[i] = 42;
}}
I prefer a while loop. It's more clear to me than decrementing i in the condition of a for loop
int i = arrayLength;
while(i)
{
i--;
//do something with array[i]
}
i do this
if (list.Count > 0)
for (size_t i = list.Count - 1; ; i--)
{
//do your thing
if (i == 0) //for preventing unsigned wrap
break;
}
but for some reason visual studio 2019 gets angry and warns me "ill-defined loop" or something.. it doesnt trust me
edit: you can remove "i >= 0" from "for (size_t i = list.Count - 1; i >= 0; i--)" .. its unnecessary
I'm going to try answering my own question here, but I don't really like this, either:
for (int i = 0; i < myArray.Length; i++)
{
int iBackwards = myArray.Length - 1 - i; // ugh
myArray[iBackwards] = 666;
}
I'd use the code in the original question, but if you really wanted to use foreach and have an integer index in C#:
foreach (int i in Enumerable.Range(0, myArray.Length).Reverse())
{
myArray[i] = 42;
}
// this is how I always do it
for (i = n; --i >= 0;){
...
}
For C++:
As mentioned by others, when possible (i.e. when you only want each element at a time) it is strongly preferable to use iterators to both be explicit and avoid common pitfalls. Modern C++ has a more concise syntax for that with auto:
std::vector<int> vec = {1,2,3,4};
for (auto it = vec.rbegin(); it != vec.rend(); ++it) {
std::cout<<*it<<" ";
}
prints 4 3 2 1 .
You can also modify the value during the loop:
std::vector<int> vec = {1,2,3,4};
for (auto it = vec.rbegin(); it != vec.rend(); ++it) {
*it = *it + 10;
std::cout<<*it<<" ";
}
leading to 14 13 12 11 being printed and {11, 12, 13, 14} being in the std::vector afterwards.
If you don't plan on modifying the value during the loop, you should make sure that you get an error when you try to do that by accident, similarly to how one might write for(const auto& element : vec). This is possible like this:
std::vector<int> vec = {1,2,3,4};
for (auto it = vec.crbegin(); it != vec.crend(); ++it) { // used crbegin()/crend() here...
*it = *it + 10; // ... so that this is a compile-time error
std::cout<<*it<<" ";
}
The compiler error in this case for me is:
/tmp/main.cpp:20:9: error: assignment of read-only location ‘it.std::reverse_iterator<__gnu_cxx::__normal_iterator<const int*, std::vector<int> > >::operator*()’
20 | *it = *it + 10;
| ~~~~^~~~~~~~~~
Also note that you should make sure not to use different iterator types together:
std::vector<int> vec = {1,2,3,4};
for (auto it = vec.rbegin(); it != vec.end(); ++it) { // mixed rbegin() and end()
std::cout<<*it<<" ";
}
leads to the verbose error:
/tmp/main.cpp: In function ‘int main()’:
/tmp/main.cpp:19:33: error: no match for ‘operator!=’ (operand types are ‘std::reverse_iterator<__gnu_cxx::__normal_iterator<int*, std::vector<int> > >’ and ‘std::vector<int>::iterator’ {aka ‘__gnu_cxx::__normal_iterator<int*, std::vector<int> >’})
19 | for (auto it = vec.rbegin(); it != vec.end(); ++it) {
| ~~ ^~ ~~~~~~~~~
| | |
| | std::vector<int>::iterator {aka __gnu_cxx::__normal_iterator<int*, std::vector<int> >}
| std::reverse_iterator<__gnu_cxx::__normal_iterator<int*, std::vector<int> > >
If you have C-style arrays on the stack, you can do things like this:
int vec[] = {1,2,3,4};
for (auto it = std::crbegin(vec); it != std::crend(vec); ++it) {
std::cout<<*it<<" ";
}
If you really need the index, consider the following options:
check the range, then work with signed values, e.g.:
void loop_reverse(std::vector<int>& vec) {
if (vec.size() > static_cast<size_t>(std::numeric_limits<int>::max())) {
throw std::invalid_argument("Input too large");
}
const int sz = static_cast<int>(vec.size());
for(int i=sz-1; i >= 0; --i) {
// do something with i
}
}
Work with unsigned values, be careful, and add comments, e.g.:
void loop_reverse2(std::vector<int>& vec) {
for(size_t i=vec.size(); i-- > 0;) { // reverse indices from N-1 to 0
// do something with i
}
}
calculate the actual index separately, e.g.:
void loop_reverse3(std::vector<int>& vec) {
for(size_t offset=0; offset < vec.size(); ++offset) {
const size_t i = vec.size()-1-offset; // reverse indices from N-1 to 0
// do something with i
}
}
If you use C++ and want to use size_t, not int,
for (size_t i = yourVector.size(); i--;) {
// i is the index.
}
(Note that -1 is interpreted as a large positive number if it's size_t, thus a typical for-loop such as for (int i = yourVector.size()-1; i>=0; --i) doesn't work if size_t is used instead of int.)
Not that it matters after 13+ years but just for educational purposes and a bit of trivial learning;
The original code was;
for (int i = myArray.Length - 1; i >= 0; i--)
{
// Do something
myArray[i] = 42;
}
You don't really need to test 'i' again being greater or equal to zero since you simply need to only produce a 'false' result to terminate the loop. Therefore, you can simple do this where you are only testing 'i' itself if it is true or false since it will be (implicitly) false when it hits zero.;
for (int i = myArray.Length - 1; i; i--)
{
// Do something
myArray[i] = 42;
}
Like I stated, it doesn't really matter, but it is just interesting to understand the mechanics of what is going on inside the for() loop.
NOTE: This post ended up being far more detailed and therefore off topic, I apologize.
That being said my peers read it and believe it is valuable 'somewhere'. This thread is not the place. I would appreciate your feedback on where this should go (I am new to the site).
Anyway this is the C# version in .NET 3.5 which is amazing in that it works on any collection type using the defined semantics. This is a default measure (reuse!) not performance or CPU cycle minimization in most common dev scenario although that never seems to be what happens in the real world (premature optimization).
*** Extension method working over any collection type and taking an action delegate expecting a single value of the type, all executed over each item in reverse **
Requres 3.5:
public static void PerformOverReversed<T>(this IEnumerable<T> sequenceToReverse, Action<T> doForEachReversed)
{
foreach (var contextItem in sequenceToReverse.Reverse())
doForEachReversed(contextItem);
}
Older .NET versions or do you want to understand Linq internals better? Read on.. Or not..
ASSUMPTION: In the .NET type system the Array type inherits from the IEnumerable interface (not the generic IEnumerable only IEnumerable).
This is all you need to iterate from beginning to end, however you want to move in the opposite direction. As IEnumerable works on Array of type 'object' any type is valid,
CRITICAL MEASURE: We assume if you can process any sequence in reverse order that is 'better' then only being able to do it on integers.
Solution a for .NET CLR 2.0-3.0:
Description: We will accept any IEnumerable implementing instance with the mandate that each instance it contains is of the same type. So if we recieve an array the entire array contains instances of type X. If any other instances are of a type !=X an exception is thrown:
A singleton service:
public class ReverserService
{
private ReverserService() { }
/// <summary>
/// Most importantly uses yield command for efficiency
/// </summary>
/// <param name="enumerableInstance"></param>
/// <returns></returns>
public static IEnumerable ToReveresed(IEnumerable enumerableInstance)
{
if (enumerableInstance == null)
{
throw new ArgumentNullException("enumerableInstance");
}
// First we need to move forwarad and create a temp
// copy of a type that allows us to move backwards
// We can use ArrayList for this as the concrete
// type
IList reversedEnumerable = new ArrayList();
IEnumerator tempEnumerator = enumerableInstance.GetEnumerator();
while (tempEnumerator.MoveNext())
{
reversedEnumerable.Add(tempEnumerator.Current);
}
// Now we do the standard reverse over this using yield to return
// the result
// NOTE: This is an immutable result by design. That is
// a design goal for this simple question as well as most other set related
// requirements, which is why Linq results are immutable for example
// In fact this is foundational code to understand Linq
for (var i = reversedEnumerable.Count - 1; i >= 0; i--)
{
yield return reversedEnumerable[i];
}
}
}
public static class ExtensionMethods
{
public static IEnumerable ToReveresed(this IEnumerable enumerableInstance)
{
return ReverserService.ToReveresed(enumerableInstance);
}
}
[TestFixture]
public class Testing123
{
/// <summary>
/// .NET 1.1 CLR
/// </summary>
[Test]
public void Tester_fornet_1_dot_1()
{
const int initialSize = 1000;
// Create the baseline data
int[] myArray = new int[initialSize];
for (var i = 0; i < initialSize; i++)
{
myArray[i] = i + 1;
}
IEnumerable _revered = ReverserService.ToReveresed(myArray);
Assert.IsTrue(TestAndGetResult(_revered).Equals(1000));
}
[Test]
public void tester_why_this_is_good()
{
ArrayList names = new ArrayList();
names.Add("Jim");
names.Add("Bob");
names.Add("Eric");
names.Add("Sam");
IEnumerable _revered = ReverserService.ToReveresed(names);
Assert.IsTrue(TestAndGetResult(_revered).Equals("Sam"));
}
[Test]
public void tester_extension_method()
{
// Extension Methods No Linq (Linq does this for you as I will show)
var enumerableOfInt = Enumerable.Range(1, 1000);
// Use Extension Method - which simply wraps older clr code
IEnumerable _revered = enumerableOfInt.ToReveresed();
Assert.IsTrue(TestAndGetResult(_revered).Equals(1000));
}
[Test]
public void tester_linq_3_dot_5_clr()
{
// Extension Methods No Linq (Linq does this for you as I will show)
IEnumerable enumerableOfInt = Enumerable.Range(1, 1000);
// Reverse is Linq (which is are extension methods off IEnumerable<T>
// Note you must case IEnumerable (non generic) using OfType or Cast
IEnumerable _revered = enumerableOfInt.Cast<int>().Reverse();
Assert.IsTrue(TestAndGetResult(_revered).Equals(1000));
}
[Test]
public void tester_final_and_recommended_colution()
{
var enumerableOfInt = Enumerable.Range(1, 1000);
enumerableOfInt.PerformOverReversed(i => Debug.WriteLine(i));
}
private static object TestAndGetResult(IEnumerable enumerableIn)
{
// IEnumerable x = ReverserService.ToReveresed(names);
Assert.IsTrue(enumerableIn != null);
IEnumerator _test = enumerableIn.GetEnumerator();
// Move to first
Assert.IsTrue(_test.MoveNext());
return _test.Current;
}
}
I am much more familiar with C# than C++ so I must ask for advice on this issue. I had to rewrite some code pieces to C++ and then (surprisingly) ran into performance issues.
I've narrowed the problem down to these snippets:
C#
public class SuffixTree
{
public class Node
{
public int Index = -1;
public Dictionary<char, Node> Children = new Dictionary<char, Node>();
}
public Node Root = new Node();
public String Text;
public SuffixTree(string s)
{
Text = s;
for (var i = s.Length - 1; i >= 0; --i)
InsertSuffix(s, i);
}
public void InsertSuffix(string s, int from)
{
var cur = Root;
for (int i = from; i < s.Length; ++i)
{
var c = s[i];
if (!cur.Children.ContainsKey(c))
{
var n = new Node() { Index = from };
cur.Children.Add(c, n);
return;
}
cur = cur.Children[c];
}
}
public bool Contains(string s)
{
return FindNode(s) != null;
}
private Node FindNode(string s)
{
var cur = Root;
for (int i = 0; i < s.Length; ++i)
{
var c = s[i];
if (!cur.Children.ContainsKey(c))
{
for (var j = i; j < s.Length; ++j)
if (Text[cur.Index + j] != s[j])
return null;
return cur;
}
cur = cur.Children[c];
}
return cur;
}
}
}
C++
struct node
{
int index;
std::unordered_map<char, node*> children;
node() { this->index = -1; }
node(int idx) { this->index = idx; }
};
struct suffixTree
{
node* root;
char* text;
suffixTree(char* str)
{
int len = strlen(str) + 1;
this->text = new char[len];
strncpy(this->text, str, len);
root = new node();
for (int i = len - 2; i >= 0; --i)
insertSuffix(str, i);
}
void insertSuffix(char* str, int from)
{
node* current = root;
for (int i = from; i < strlen(str); ++i)
{
char key = str[i];
if (current->children.find(key) == current->children.end())
{
current->children[key] = new node(from);
return;
}
current = current->children[key];
}
}
bool contains(char* str)
{
node* current = this->root;
for (int i = 0; i < strlen(str); ++i)
{
char key = str[i];
if (current->children.find(key) == current->children.end())
{
for (int j = i; j < strlen(str); ++j)
if (this->text[current->index + j] != str[j])
return false;
return true;
}
current = current->children[key];
}
}
}
In both cases I'm creating a suffix tree and later using it in a much bigger function which is not relevant for the post (lets call it F()). I've tested both on two randomly generated strings of length 100000. The C# version constructed my suffix tree and used it in F() in a total execution time of: 480 ms while the code which I've "translated to C++" executed in 48 sec
I've drilled this down further and it seems that in my C++ code, the constructor takes 47 sec while using the tree in F() runs at 48 ms which is 10 times faster than in C#.
Conclusion
It seems that the main problem is in insertSuffix(), perhaps my lack of knowledge and understanding of the unordered_map structure. Can anyone shed a light on this? Did I make some rookie mistake in the C++ variant which causes the object construction to take so long?
Aditional Info
I've compiled both the C# and C++ program for maximum speed /O2 (release)
In C#, a System.String includes its Length, so you can get the length in constant time. In C++, a std::string also includes its size, so it is also available in constant time.
However, you aren’t using C++ std::string (which you should be, for a good translation of the algorithm); you’re using a C-style null-terminated char array. That char* literally means “pointer to char”, and just tells you where the first character of the string is. The strlen function looks at each char from the one pointed to forward, until it finds a null character '\0' (not to be confused with a null pointer); this is expensive, and you do it in each iteration of your loop in insertSuffix. That probably accounts for at least a reasonable fraction of your slowdown.
When doing C++, if you find yourself working with raw pointers (any type involving a *), you should always wonder if there’s a simpler way. Sometimes the answer is “no”, but often it’s “yes” (and that’s getting more common as the language evolves). For example, consider your struct node and node* root. Both use node pointers, but in both cases you should have used node directly because there is no need to have that indirection (in the case of node, some amount of indirection is necessary so you don’t have each node containing another node ad infinitum, but that’s provided by the std::unordered_map).
A couple other tips:
In C++ you often don’t want to do any work in the body of a constructor, but instead use initialization lists.
When you don’t want to copy something you pass as a parameter, you should make the parameter a reference; instead of changing insertSuffix to take a std::string as the first parameter, make it take std::string const&; similarly, contains should take a std::string const&. Better yet, since insertSuffix can see the text member, it doesn’t need to take that first parameter at all and can just use from.
C++ supports a foreach-like construct, which you should probably prefer to a standard for loop when iterating over a string’s characters.
If you’re using the newest not-technically-finalized-but-close-enough version of C++, C++17, you should use std::string_view instead of std::string whenever you just want a look at a string, and don’t need to change it or keep a reference to it around. This would be useful for contains, and since you want to make a local copy in the text member, even for the constructor; it would not be useful in the text member itself, because the object being viewed might be temporary. Lifetime can sometimes be tricky in C++, though, and until you get the hang of it you might just want to use std::string to be on the safe side.
Since node isn’t useful outside of the concept of suffixTree, it should probably be inside it, like in the C# version. As a deviation from the C# version, you might want to make the type node and the data members root and text into private instead of public members.
I have a general question, concerning performance and best practice.
When working with a List (or any other datatype) from a different Class, which is better practice? Copying it at the beginning, working with the local and then re-copying it to the original, or always access the original?
An Example:
access the original:
public class A
{
public static List<int> list = new List<int>();
}
public class B
{
public static void insertString(int i)
{
// insert at right place
int count = A.list.Count;
if (count == 0)
{
A.list.Add(i);
}
else
{
for (int j = 0; j < count; j++)
{
if (A.list[j] >= i)
{
A.list.Insert(j, i);
break;
}
if (j == count - 1)
{
A.list.Add(i);
}
}
}
}
}
As you see I access the original List A.list several times. Here the alternative:
Copying:
public class A
{
public static List<int> list = new List<int>();
}
public class B
{
public static void insertString(int i)
{
List<int> localList = A.list;
// insert at right place
int count = localList.Count;
if (count == 0)
{
localList.Add(i);
}
else
{
for (int j = 0; j < count; j++)
{
if (localList[j] >= i)
{
localList.Insert(j, i);
break;
}
if (j == count - 1)
{
localList.Add(i);
}
}
}
A.list = localList;
}
}
Here I access the the list in the other class only twice (getting it at the beginning and setting it at the end). Which would be better.
Please note that this is a general question and that the algorithm is only an example.
I won't bother thinking about performance here and instead focus on best practice:
Giving out the whole List violates encapsulation. B can modify the List and all its elements without A noticing (This is not a problem if A never uses the List itself but then A wouldn't even need to store it).
A simple example: A creates the List and immediately adds one element. Subsequently, A never bothers to check List.Count, because it knows that the List cannot be empty. Now B comes along and empties the List...
So any time B is changed, you need to also check A to see if all the assumptions of A are still correct. This is enough of a headache if you have full control over the code. If another programmer uses your class A, he may do something unexpected with the List and never check if that's ok.
Solution(s):
If B only needs to iterate over the elements, write an IEnumerable accessor. If B mustn't modify the elements, make the accessor deliver copies.
If B needs to modify the List (add/remove elements), either give B a copy of the List (containing copies of the elements if they needn't be modified) and accept a new List from B or use an accessor as before and implement the necessary List operations. In both cases, A will know if B modifies the List and can react accordingly.
Example:
class A
{
private List<ItemType> internalList;
public IEnumerable<ItemType> Items()
{
foreach (var item in internalList)
yield return item;
// or maybe item.Copy();
// new ItemType(item);
// depending on ItemType
}
public RemoveFromList(ItemType toRemove)
{
internalList.Remove(toRemove);
// do other things necessary to keep A in a consistent state
}
}
I've been trying to write a program which can scan a raw data file and normalize it for data mining processes, I've trying to read the data from the file and store it in a list this way:
public static List<Normalize> NF()
{
//Regex r = new Regex(#"^\d+$");
List<Normalize> N = new List<Normalize>();
StreamReader ss = new StreamReader(#"C:\Users\User\Desktop\NN.txt");
String Line = null;
while (!ss.EndOfStream) {
Line = ss.ReadLine();
var L = Line.Split(',').ToList();
N.Add(new Normalize { age = Convert.ToInt16(L[0]),
Sex = L[1],
T3 = Convert.ToDouble(L[2]),
TT4 = Convert.ToDouble(L[3]),
TFU = Convert.ToDouble(L[4]),
FTI = Convert.ToDouble(L[5]),
RC = L[6],
R = L[7]
});
}
return N;
}
}
struct Normalize {
public int age;
public String Sex;
public double T3;
public double TT4;
public double TFU;
public double FTI;
public String RC;
public String R;
}
At this moment I want to go through the list that I've made and categorize the data , similar to this :
var X= NF();
for (int i = 0; i < X.Count; i++) {
if (X[i].age > 0 && X[i].age <= 5) { // Change the X[i].age value to 1 }
else if (X[i].age > 5 && X[i].age <= 10) { // Change the X[i].age value to 2 }
...
}
But the compiler says X[i].[variable name] is not a variable and cannot be modified in this way. My question is, what would be an efficient way to perform this operation.
struct Normalize is a value type, not a reference type, therefore you cannot change its fields like that. Change it to class Normalize
Change struct Normalize to class Normalize and iterate with foreach loop. It's way cleaner.
You could also set variables to private and use getters/setters to check/set variable.
foreach (Normalize x in X)
{
if (x.getAge() > 0 && x.getAge() <= 5)
x.setAge(1)
...
}
Edit:
just saw you already got your answer
Modifying struct field is fine as long as it's a single entity (Given its a mutable struct). This is possible -
var obj = new Normalize();
obh.Age = 10;
But in your case you are accessing the struct using indexer from the list.
Indexer will return copy of your struct and modifying the value won't reflect it back to the list which ain't you want.
Hence compiler is throwing error to stop you from writing this out.
As Alex mentioned, you should go for creating class instead of struct if you want to modify it.
On a side note, its always advisable to have immutable structs instead of mutable structs.
What I'm trying to achieve is say i have an array, i want to be able to modify a specific array element throughout my code, by pointing at it.
for example in C++ i can do this
int main(){
int arr [5]= {1,2,3,4,5};
int *c = &arr[3];
cout << arr[3] <<endl;
*c = 0;
cout << arr[3]<<endl;
}
I did some googling and there seems to be a way to do it through 'unsafe', but i don't really want to go that route.
I guess i could create a variable to store the indexes, but I'm actually dealing with slightly more complexity (a list within a list. so having two index variables seems to add complexity to the code.)
C# has a databinding class, so what I'm currently doing is binding the array element to a textbox (that i have hidden) and modifying that textbox whenever i want to modify the specific array element, but that's also not a good solution (since i have a textbox that's not being used for its intended purpose - a bit misleading).
A C# example of how you would like the use to look would help. If I understand what you're asking, a simple class like this might do it. What you're asking for though, doesn't seem like a very good idea. If you showed the larger scope in which you need this, someone might be able to point out a better design where you didn't need this sort of functionality at all.
public class ListElement<T> {
private IList<T> list;
private int index;
public ListElement(IList<T> list, int index) {
this.list = list;
this.index = index;
}
public T Value {
get {
return list[index];
}
set {
list[index] = value;
}
}
}
a use of this would look like
int[] arr = new int[] {1,2,3,4,5};
ListElement<int> third = new ListElement<int>(arr, 2);
Console.WriteLine(third.Value);
third.Value = 0;
Console.WriteLine(third.Value);
i'm not sure if this fits exactly, but the problem is that these pointers are not possible in c#.
if you have more complicated lists, you can take a look at LinkedList<T>
it provides a performant way if you want to change elements within a list.
I came up with a somewhat solution in C#. Granted this is off the cuff, so it may not work in all situations but I did test it briefly on your situation.
class Wrapper<T>
{
private T[] array;
private T item;
private int index;
public T Item { get { return item; } set { item = value;
array[Index] = value;
} }
public int Index
{
get { return index; }
set
{
index = value;
Item = array[value];
}
}
public Wrapper(T[] arr)
{
array = arr;
}
}
You can then use the class like this:
class Program
{
static void Main(string[] args)
{
int[] i = {1, 2, 3, 4, 5};
i.ToList().ForEach(x => Console.WriteLine(x));
Wrapper<int> w = new Wrapper<int>(i);
w.Index = 2;
w.Item = 5;
i.ToList().ForEach(x => Console.WriteLine(x));
Console.ReadLine();
}
}
This will give the output: 1234512545
It isn't as pretty as the solution in C++ but it will work as you want and provides a more "automatic" version of referencing the array.
I would wrap your arrays in Objects. In C#, stuff that needs pointer manipulation is usually best done with objects.
The advantage is that objects allow clearer naming and access to more complex data structures. You are right, it is not ideal to pass around sets of indices - the ordering and indexing is easily jumbled.. In fact, I think it was people in your position who decided Object-oriented programming would be a good idea!!
So you have class MyArray { }, and can use the 'object reference' as you would a pointer,
plus you can create arrays of MyArray[].