C#: Async Callback - Does the callback method's processing block the application? - c#

Basically, if I call an async method my application doesn't hang, I can click things and the such (if I allow it) without penalty. Once the async operation is complete, the callback method is executed.
I'm wondering if this blocks things again or is it still "asynchronous"? That is... say the callback method is extremely intensive, will my application still run nicely or is it blocked once the callback method is entered?
Update:
What I'm talking about are the methods created when you add a service reference and select "Async operations"
public void AsyncSaveFooCompleted(Object sender, SaveFooEventArgs e)
{
//Send a large binary from the WCF Service
Client.SaveFooBinary(Foo.LargeBinary);
}
public void SaveFoo(Foo foo)
{
Client.SaveFooAsync(foo);
}

You will have some kind of blocking if your callback is that intensive. If you are having this issue, move more of the processing in the async method and leave the callback nice and simple.
Alternatively, if you need to process this in stages, have the callback start another async process with a different callback.

The callback method should not be intensive. In my opinion your thread should handle its intensive processing and let to the callback just the rendering logic.

I'm assuming you're talking about C# 5 async methods...
The callback will execute on the UI thread by default. It sounds like you should put the expensive work into its own task (e.g. with TaskEx.Run), then await that... assuming the heavy processing doesn't have to execute on the UI thread. If you've fundamentally got a lot of work which has to be on the UI thread, there's not a great deal you can do about that.

Your question is kind of vague, because you don't explain how you are performing the async operation. If you are using the new async methods in C# 5.0 like Jon Skeet suggested, then follow his advice, but if not then the easiest way for you to test (however you are doing your async), is to throw some blocking code in the callback.
Something along the lines of Thread.Sleep(10000), and you will know in an instant whether your callback will block the UI thread or not. In all fairness though, your UI thread should never have "intensive" work unless the user cannot continue or do anything until the operation is complete because of some requirement of that task, then it doesn't really matter because the user has to wait in either circumstance. However, you could still consider this bad design because any UI with intensive work on the UI thread gets the infamous "Not Responding" and the user may thing your app has stopped working, even though its still executing the task.

Related

Do I always need to use async/await?

I wanted to ask you about async/await. Namely, why does it always need to be used? (all my friends say so)
Example 1.
public async Task Boo()
{
await WriteInfoIntoFile("file.txt");
some other logic...
}
I have a Boo method, inside which I write something to files and then execute some logic. Asynchrony is used here so that the stream does not stop while the information is being written to the file. Everything is logical.
Example 2.
public async Task Bar()
{
var n = await GetNAsync(nId);
_uow.NRepository.Remove(n);
await _uow.CompleteAsync();
}
But for the second example, I have a question. Why here asynchronously get the entity, if without its presence it will still be impossible to work further?
why does it always need to be used?
It shouldn't always be used. Ideally (and especially for new code), it should be used for most I/O-based operations.
Why here asynchronously get the entity, if without its presence it will still be impossible to work further?
Asynchronous code is all about freeing up the calling thread. This brings two kinds of benefits, depending on where the code is running.
If the calling thread is a UI thread inside a GUI application, then asynchrony frees up the UI thread to handle user input. In other words, the application is more responsive.
If the calling thread is a server-side thread, e.g., an ASP.NET request thread, then asynchrony frees up that thread to handle other user requests. In other words, the server is able to scale further.
Depending on the context, you might or might not get some benefit. In case you call the second function from a desktop application, it allows the UI to stay responsive while the async code is being executed.
Why here asynchronously get the entity, if without its presence it will still be impossible to work further?
You are correct in the sense that this stream of work cannot proceed, but using async versions allows freeing up the thread to do other work:
I like this paragraph from Using Asynchronous Methods in ASP.NET MVC 4 to explain the benefits:
Processing Asynchronous Requests
In a web app that sees a large number of concurrent requests at start-up or has a bursty load (where concurrency increases suddenly), making web service calls asynchronous increases the responsiveness of the app. An asynchronous request takes the same amount of time to process as a synchronous request. If a request makes a web service call that requires two seconds to complete, the request takes two seconds whether it's performed synchronously or asynchronously. However during an asynchronous call, a thread isn't blocked from responding to other requests while it waits for the first request to complete. Therefore, asynchronous requests prevent request queuing and thread pool growth when there are many concurrent requests that invoke long-running operations.
Not sure what you mean by
without its presence it will still be impossible to work further
regarding example 2. As far as I can tell this code gets an entity by id from its repository asynchronously, removes it, then completes the transaction on its Unit of Work. Do you mean why it does not simply remove the entry by id? That would certainly be an improvement, but would still leave you with an asynchronous method as CompleteAsync is obviously asynchronous?
As to your general question, I don't think there is a general concensus to always use async/await.
In your second example there with the async/await keywords you are getting the value of the n variable asynchronously. This might be necessary because the GetNAsync method is likely performing some time-consuming operation, such as querying a database or perhaps you might be calling a webservice downstream, that could block the main thread of execution. By calling the method asynchronously, the rest of the code in the Bar method can continue to run while the query is being performed in the background.
But if in the GetNAsync you are just calling another method locally that is doing some basic CPU bound task then the async is pointless in my view. Aync works well when you are sure you need to wait such as network calls or I/O bound calls that will definitely add latency to your stack.

Is there a neat way to force a pile of `async` C# code to run single-threadly as though it weren't actually `async`

Suppose (entirely hypothetically ;)) I have a big pile of async code.
10s of classes; 100s of async methods, of which 10s are actually doing async work (e.g. where we WriteToDbAsync(data) or we ReadFileFromInternetAsync(uri), or when WhenAll(parallelTasks).
And I want to do a bunch of diagnostic debugging on it. I want to perf profile it, and step through a bunch of it manually to see what's what.
All my tools are designed around synchronous C# code. They will sort of work with async, but it's definitely much less effective, and debugging is way harder, even when I try to directly manage the threads a bit.
If I'm only interested in a small portion of the code, then it's definitely a LOT easier to temporarily un-async that portion of the code. Read and Write synchronously, and just Task.Wait() on each of my "parallel" Tasks in sequence. But that's not viable for to do if I want to poke around in a large swathe of the code.
Is there anyway to ask C# to run some "async" code like that for me?
i.e. some sort of (() => MyAsyncMethod()).RunAsThoughAsyncDidntExist() which knows that any time it does real async communication with the outside world, it should just spin (within the same thread) until it gets an answer. Any time it's asked to run code in parallel ... don't; just run them in series on its single thread. etc. etc.
I'm NOT talking about just awaiting for the Task to finish, or calling Task.Wait(). Those won't change how that Task executes itself
I strongly assume that this sort of thing doesn't exist, and I just have to live with my tools not being well architected for async code.
But it would be great if someone with some expertise in the area, could confirm that.
EDIT: (Because SO told me to explain why the suggestion isn't an answer)...
Sinatr suggested this: How do I create a custom SynchronizationContext so that all continuations can be processed by my own single-threaded event loop? but (as I understand it) that is going to ensure that each time there's an await command then the code after that await continues on the same thread. But I want the actual contents of the await to be on the same thread.
Keep in mind that asynchronous != parallel.
Parallel means running two or more pieces of code at the same time, which can only be done with multithreading. It's about how code runs.
Asynchronous code frees the current thread to do other things while it is waiting for something else. It is about how code waits.
Asynchronous code with a synchronization context can run on a single thread. It starts running on one thread, then fires off an I/O request (like an HTTP request), and while it waits there is no thread. Then the continuation (because there is a synchronization context) can happen on the same thread depending on what the synchronization context requires, like in a UI application where the continuation happens on the UI thread.
When there is no synchronization context, then the continuation can be run on any ThreadPool thread (but might still happen on the same thread).
So if your goal is to make it initially run and then resume all on the same thread, then the answer you were already referred to is indeed the best way to do it, because it's that synchronization context that decides how the continuation is executed.
However, that won't help you if there are any calls to Task.Run, because the entire purpose of that method is to start a new thread (and give you an asynchronous way to wait for that thread to finish).
It also may not help if the code uses .ConfigureAwait(false) in any of the await calls, since that explicitly means "I don't need to resume on the synchronization context", so it may still run on a ThreadPool thread. I don't know if Stephen's solution does anything for that.
But if you really want it to "RunAsThoughAsyncDidntExist" and lock the current thread while it waits, then that's not possible. Take this code for example:
var myTask = DoSomethingAsync();
DoSomethingElse();
var results = await myTask;
This code starts an I/O request, then does something else while waiting for that request to finish, then finishes waiting and processes the results after. The only way to make that behave synchronously is to refactor it, since synchronous code isn't capable of doing other work while waiting. A decision would have to be made whether to do the I/O request before or after DoSomethingElse().

C# async/await - UI thread vs. other threads [duplicate]

I've been reading about the new async and await operators in C# and tried to figure out in which circumstances they would possibly be useful to me. I studied several MSDN articles and here's what I read between the lines:
You can use async for Windows Forms and WPF event handlers, so they can perform lengthy tasks without blocking the UI thread while the bulk of the operation is being executed.
async void button1_Click(object sender, EventArgs e)
{
// even though this call takes a while, the UI thread will not block
// while it is executing, therefore allowing further event handlers to
// be invoked.
await SomeLengthyOperationAsync();
}
A method using await must be async, which means that the usage of any async function somewhere in your code ultimately forces all methods in the calling sequence from the UI event handlers up until the lowest-level async method to be async as well.
In other words, if you create a thread with an ordinary good old ThreadStart entry point (or a Console application with good old static int Main(string[] args)), then you cannot use async and await because at one point you would have to use await, and make the method that uses it async, and hence in the calling method you also have to use await and make that one async and so on. But once you reach the thread entry point (or Main()), there's no caller to which an await would yield control to.
So basically you cannot use async and await without having a GUI that uses the standard WinForms and WPF message loop. I guess all that makes indeed sense, since MSDN states that async programming does not mean multithreading, but using the UI thread's spare time instead; when using a console application or a thread with a user defined entry point, multithreading would be necessary to perform asynchronous operations (if not using a compatible message loop).
My question is, are these assumptions accurate?
So basically you cannot use async and await without having a GUI that uses the standard WinForms and WPF message loop.
That's absolutely not the case.
In Windows Forms and WPF, async/await has the handy property of coming back to the UI thread when the asynchronous operation you were awaiting has completed, but that doesn't mean that's the only purpose to it.
If an asynchronous method executes on a thread-pool thread - e.g. in a web service - then the continuation (the rest of the asynchronous method) will simply execute in any thread-pool thread, with the context (security etc) preserved appropriately. This is still really useful for keeping the number of threads down.
For example, suppose you have a high traffic web service which mostly proxies requests to other web services. It spends most of its time waiting for other things, whether that's due to network traffic or genuine time at another service (e.g. a datbase). You shouldn't need lots of threads for that - but with blocking calls, you naturally end up with a thread per request. With async/await, you'd end up with very few threads, because very few requests would actually need any work performed for them at any one point in time, even if there were a lot of requests "in flight".
The trouble is that async/await is most easily demonstrated with UI code, because everyone knows the pain of either using background threads properly or doing too much work in the UI thread. That doesn't mean it's the only place the feature is useful though - far from it.
Various server-side technologies (MVC and WCF for example) already have support for asynchronous methods, and I'd expect others to follow suit.
A method using await must be async, which means that the usage of any async function somewhere in your code ultimately forces all methods in the calling sequence from the UI event handlers up until the lowest-level async method to be async as well.
Not true - methods marked async just mean they can use await, but callers of those methods have no restrictions. If the method returns Task or Task<T> then they can use ContinueWith or anything else you could do with tasks in 4.0
A good non-UI example is MVC4 AsyncController.
Ultimately, async/await is mostly about getting the compiler rewriting so you can write what looks like synchronous code and avoid all the callbacks like you had to do before async/await was added. It also helps with the SynchronizationContext handling, useful for scenarios with thread affinity (UI frameworks, ASP.NET), but even without those, it's still useful. Main can always do DoStuffAsync().Wait(); for instance. :)
My question is, are these assumptions accurate?
No.
You can use async for Windows Forms and WPF event handlers, so they can perform lengthy tasks without blocking the UI thread while the bulk of the operation is being executed.
True. Also true for other UI applications including Silverlight and Windows Store.
And also true for ASP.NET. In this case, it's the HTTP request thread that is not blocked.
A method using await must be async, which means that the usage of any async function somewhere in your code ultimately forces all methods in the calling sequence from the UI event handlers up until the lowest-level async method to be async as well.
This is a best practice ("async all the way down"), but it's not strictly required. You can block on the result of an asynchronous operation; many people choose to do this in Console applications.
an ordinary good old ThreadStart entry point
Well... I do have to take issue with "ordinary good old". As I explain on my blog, Thread is pretty much the worst option you have for doing background operations.
I recommend you review my introduction to async and await, and follow up with the async / await FAQ.
async-await is only wrapper for Task class manipulations, which is part of so named Tasks Parallel Library - TPL(published before async-await auto code generation tech.)
So fact is you may not use any references to UI controls within async - await.
Typically async-await is powerfull tool for any web and server relations, loading resources, sql. It works with smart waiting data with alive UI.
Typically TPL application: from simple big size loop till multi stages parallel calculations in complex calculations based on shared data (ContinueWith and so on)

What's so special about UI thread?

Let's say I have a method fooCPU that runs synchronously (it doesn't call pure async methods performing I/O, or use other threads to run its code by calling Task.Run or similar ways). That method performs some heavy calculations - it's CPU bound.
Now I call fooCPU in my program without delegating it to be executed by a worker thread. If one line of fooCPU will take long to run, no other lines will be executed until it finishes. So for example, calling it from the UI thread causes the UI thread to freeze (GUI will become unresponsive).
When I stated that async/await is an imitation of mutlithreading. The lines of two different pieces of code are executed in turns, on a single thread. If one of these lines will take long to run, no other lines will be executed until it finishes.,
I've been told that it's true for async used on the UI thread, but it's not true for all other cases (ASP.NET, async on the thread pool, console apps, etc).
Could anyone tell me what this might mean? How is UI thread different from the main thread of a console program?
I think nobody wants anyone here on this forum to continue the discussion of related topics, as they appear in the comments for instance, so it's better to ask a new question.
I recommend you read my async intro post; it explains how the async and await keywords work. Then, if you're interested in writing asynchronous code, continue with my async best practices article.
The relevant parts of the intro post:
The beginning of an async method is executed just like any other method. That is, it runs synchronously until it hits an “await” (or throws an exception).
So this is why the inner method in your console code example (without an await) was running synchronously.
Await examines that awaitable to see if it has already completed; if the awaitable has already completed, then the method just continues running (synchronously, just like a regular method).
So this is why the outer method in your console code example (that was awaiting the inner method which was synchronous) was running synchronously.
Later on, when the awaitable completes, it will execute the remainder of the async method. If you’re awaiting a built-in awaitable (such as a task), then the remainder of the async method will execute on a “context” that was captured before the “await” returned.
This "context" is SynchronizationContext.Current unless it is null, in which case it is TaskScheduler.Current. Or, the simpler version:
What exactly is that “context”?
Simple answer:
If you’re on a UI thread, then it’s a UI context.
If you’re responding to an ASP.NET request, then it’s an ASP.NET request context.
Otherwise, it’s usually a thread pool context.
Putting all of this together, you can visualize async/await as working like this: the method is split into several "chunks", with each await acting as a point where the method is split. The first chunk is always run synchronously, and at each split point it may continue either synchronously or asynchronously. If it continues asynchronously, then it will continue in a captured context (by default). UI threads provide a context that will execute the next chunk on the UI thread.
So, to answer this question, the special thing about UI threads is that they provide a SynchronizationContext that queues work back to that same UI thread.
I think nobody wants anyone here on this forum to continue the discussion of related topics, as they appear in the comments for instance, so it's better to ask a new question.
Well, Stack Overflow is specifically not intended to be a forum; it's a Question & Answer site. So it's not a place to ask for exhaustive tutorials; it's a place to come when you're stuck trying to get code working or if you don't understand something after having researched everything you can about it. This is why the comments on SO are (purposefully) restricted - they have to be short, no nice code formatting, etc. Comments on this site are intended for clarification, not as a discussion or forum thread.
It is pretty simple, a thread can do only one thing at a time. So if you send your UI thread out in the woods doing something non-UI related, say a dbase query, then all UI activity stops. No more screen updates, no response to mouse clicks and key presses. It looks and acts frozen.
You'll probably say, "well, I'll just use another thread to do the UI then". Works in a console mode, kind of. But not in a GUI app, making code thread-safe is difficult and UI is not thread-safe at all because so much code is involved. Not the kind you wrote, the kind you use with a fancy class library wrapper.
The universal solution is to invert that, do the non-UI related stuff on a worker thread and leave the UI thread to only take care of the easy UI stuff. Async/await helps you do that, what's on the right of await runs on a worker. The only way to mess that up, and it is not uncommon, is to ask the UI thread to still do too much work. Like adding a line of text to a textbox once every millisecond. That's just bad UI design, humans don't read that fast.
Given
async void Foo() {
Bar();
await Task.Yield();
Baz();
}
you're right that if Foo() gets called on the UI thread, then Bar() gets called immediately, and Baz() gets called at some later time, but still on the UI thread.
However, this is not a property of the threads themselves.
What's actually going on is that this method gets split up into something similar to
Task Foo() {
Bar();
return Task.Yield().Continue(() => {
Baz();
});
}
This is not actually correct, but the ways in which it's wrong don't matter.
The argument that gets passed to my hypothetical Continue method is code that can be invoked in some way to be determined by the task. The task may decide to execute it immediately, it may decide to execute it at some later point on the same thread, or it may decide to execute it at some later point on a different thread.
Actually, the tasks themselves don't decide, they simply pass on the delegate to a SynchronizationContext. It's this synchronisation context that determines what to do with to-be-executed code.
And that's what's different between the thread types: once you access any WinForms control from a thread, then WinForms installs a synchronisation context for that specific thread, which will schedule the to-be-executed code at some later point on the same thread.
ASP.NET, background threads, it's all different synchronisation contexts, and that's what's causing the changes in how code gets scheduled.

Is async and await exclusively for GUI-based asynchronous programming?

I've been reading about the new async and await operators in C# and tried to figure out in which circumstances they would possibly be useful to me. I studied several MSDN articles and here's what I read between the lines:
You can use async for Windows Forms and WPF event handlers, so they can perform lengthy tasks without blocking the UI thread while the bulk of the operation is being executed.
async void button1_Click(object sender, EventArgs e)
{
// even though this call takes a while, the UI thread will not block
// while it is executing, therefore allowing further event handlers to
// be invoked.
await SomeLengthyOperationAsync();
}
A method using await must be async, which means that the usage of any async function somewhere in your code ultimately forces all methods in the calling sequence from the UI event handlers up until the lowest-level async method to be async as well.
In other words, if you create a thread with an ordinary good old ThreadStart entry point (or a Console application with good old static int Main(string[] args)), then you cannot use async and await because at one point you would have to use await, and make the method that uses it async, and hence in the calling method you also have to use await and make that one async and so on. But once you reach the thread entry point (or Main()), there's no caller to which an await would yield control to.
So basically you cannot use async and await without having a GUI that uses the standard WinForms and WPF message loop. I guess all that makes indeed sense, since MSDN states that async programming does not mean multithreading, but using the UI thread's spare time instead; when using a console application or a thread with a user defined entry point, multithreading would be necessary to perform asynchronous operations (if not using a compatible message loop).
My question is, are these assumptions accurate?
So basically you cannot use async and await without having a GUI that uses the standard WinForms and WPF message loop.
That's absolutely not the case.
In Windows Forms and WPF, async/await has the handy property of coming back to the UI thread when the asynchronous operation you were awaiting has completed, but that doesn't mean that's the only purpose to it.
If an asynchronous method executes on a thread-pool thread - e.g. in a web service - then the continuation (the rest of the asynchronous method) will simply execute in any thread-pool thread, with the context (security etc) preserved appropriately. This is still really useful for keeping the number of threads down.
For example, suppose you have a high traffic web service which mostly proxies requests to other web services. It spends most of its time waiting for other things, whether that's due to network traffic or genuine time at another service (e.g. a datbase). You shouldn't need lots of threads for that - but with blocking calls, you naturally end up with a thread per request. With async/await, you'd end up with very few threads, because very few requests would actually need any work performed for them at any one point in time, even if there were a lot of requests "in flight".
The trouble is that async/await is most easily demonstrated with UI code, because everyone knows the pain of either using background threads properly or doing too much work in the UI thread. That doesn't mean it's the only place the feature is useful though - far from it.
Various server-side technologies (MVC and WCF for example) already have support for asynchronous methods, and I'd expect others to follow suit.
A method using await must be async, which means that the usage of any async function somewhere in your code ultimately forces all methods in the calling sequence from the UI event handlers up until the lowest-level async method to be async as well.
Not true - methods marked async just mean they can use await, but callers of those methods have no restrictions. If the method returns Task or Task<T> then they can use ContinueWith or anything else you could do with tasks in 4.0
A good non-UI example is MVC4 AsyncController.
Ultimately, async/await is mostly about getting the compiler rewriting so you can write what looks like synchronous code and avoid all the callbacks like you had to do before async/await was added. It also helps with the SynchronizationContext handling, useful for scenarios with thread affinity (UI frameworks, ASP.NET), but even without those, it's still useful. Main can always do DoStuffAsync().Wait(); for instance. :)
My question is, are these assumptions accurate?
No.
You can use async for Windows Forms and WPF event handlers, so they can perform lengthy tasks without blocking the UI thread while the bulk of the operation is being executed.
True. Also true for other UI applications including Silverlight and Windows Store.
And also true for ASP.NET. In this case, it's the HTTP request thread that is not blocked.
A method using await must be async, which means that the usage of any async function somewhere in your code ultimately forces all methods in the calling sequence from the UI event handlers up until the lowest-level async method to be async as well.
This is a best practice ("async all the way down"), but it's not strictly required. You can block on the result of an asynchronous operation; many people choose to do this in Console applications.
an ordinary good old ThreadStart entry point
Well... I do have to take issue with "ordinary good old". As I explain on my blog, Thread is pretty much the worst option you have for doing background operations.
I recommend you review my introduction to async and await, and follow up with the async / await FAQ.
async-await is only wrapper for Task class manipulations, which is part of so named Tasks Parallel Library - TPL(published before async-await auto code generation tech.)
So fact is you may not use any references to UI controls within async - await.
Typically async-await is powerfull tool for any web and server relations, loading resources, sql. It works with smart waiting data with alive UI.
Typically TPL application: from simple big size loop till multi stages parallel calculations in complex calculations based on shared data (ContinueWith and so on)

Categories

Resources