How to create an IList of anonymous classes using AutoFixture - c#

I previously posted a question on this link:
Class with a nested collection - how do I populate the nested class?
I need to be able to do the same but with nested classes:
like so:
public class ParentClass
{
public int Value;
public IList<ChildClass> Children;
}
public class ChildClass
{
etc...
}
I tried this:
Fixture.Register(()=>Fixture.CreateMany<ChildClass>();
But this isn't working, any ideas?
I'm using AutoFixture 2.0.

The AutoProperties features of AutoFixture only assigns values to writable properties. The reason why ParentClass.Children isn't being populated is because it's a read-only property - AutoFixture doesn't attempt to assign a value because it knows that this is impossible.
However, assuming that you already have an instance of ParentClass, you can ask AutoFixture to fill the collection for you:
fixture.AddManyto(parentClass.Children);
This can be encapsulated into a customization like this:
fixture.Customize<ParentClass>(c => c.Do(pc => fixture.AddManyTo(pc.Children)));
Since Children is an IList<ChildClass> you'll also need to provide a mapping for that unless you use the MultipleCustomization:
fixture.Register<IList<ChildClass>>(() => fixture.CreateMany<ChildClass>().ToList());
This is definitely a behavior that we considered adding to the MultipleCustomization, but decided to postpone until after release 2.1 because it turns out to be not entirely easy to implement.

Related

Can PropertyGrid be used without an object?

I have an application in which I need to edit some data, and PropertyGrid structure is visually the best candidate for my needs. However, PropertyGrid takes the public properties of an object and displays them in the grid. (additional options with attributes). However, I don't have such an object, because the list of key-value pairs I need to edit is dynamic.
The ideal solution would be something like this:
public class GridParam
{
// ... several constructors here, one for each type
// ... or a single one but with generic class, does not matter
public String Name { get; set; }
public Object Value { get; set; }
public Type ItemType { get; set; }
}
GridParam stringParam = new GridParam("Address", "2534 Barkeley Av.");
GridParam numberParam = new GridParam("Year", 2012);
NewKindOfPropertyGrid grid = new NewKindOfPropertyGrid();
grid.AddParam(stringParam);
grid.AddParam(numberParam);
The above code would generate a property grid that looks like this:
Is something like this possible with PropertyGrid or any other existing control (which at least looks similar to PG)? The syntax does not have to be similar to what I've written, but it would need to be able to accept a collection of such properties that can be dynamic, without having to define a class...
You have two options here.
The first (and simpler, IMO) is to implement the ICustomTypeDescriptor interface on a class that takes an IEnumerable<T> of your GridParam instances.
The PropertyGrid class doesn't actually use reflection directly; instead, it uses a TypeDescriptor class to get metadata about an instance of an object, which by default uses reflection.
However, if you implement ICustomTypeDescriptor, then the PropertyGrid will get all the information it would get from a TypeDescriptor from your implementation. You just have to feed it what you want it to show.
So in this case, you'd have the GetProperties implementation return a PropertyDescriptorCollection populated with a PropertyDescriptor for each of your GridParam instances.
The other, much more difficult (possibly) option is to dynamically create the type, and have it bind to that (since PropertyGrid takes an object to bind to). Of course, you're really replicating on some level most of what an implementation of ICustomTypeDescriptor would do, so it's probably better to go with the former.

Setting Values on a derived class from the base class constructor using Reflection

I have two classes like this:
public abstract class MyBase
{
protected MyBase(){
Initialize();
}
protected IDictionary<string,string> _data;
private void Initialize() {
// Use Reflection to get all properties
// of the derived class (e.g., call new MyDerived() then
// I want to know the names "Hello" and "ID" here
var data = GetDataFromBackend(propertyNamesFromDerived);
_data = data;
}
}
public class MyConcrete : MyBase
{
public MyConcrete(){
// Possibly use Reflection here
Hello = _data["Hello"];
ID = new Guid(data["ID"]);
}
public string Hello {get;set;}
public Guid ID {get; set;}
}
As you see, I want the constructor of my base class to know about the properties of the derived class I'm instantiating.
Now, this seems like a huge and big code smell, so let me give some more background about my intentions, maybe there is a better way.
I have a backend system that stores Key/Value Pairs, essentially a Dictionary<string,string>. I want to abstract away working with this backend system in a way where people can create classes whose properties are Keys into the backend system. When they construct this object, it will automatically load the data from that system and initialize all the variables to it.
In other words, I've just reinvented serialization, except that I don't control the backend system and just rather make working with it really painless. I don't want callers to have to call Initialize() after constructing the object, because in 100% of the cases you have to initalize it after constructing.
I don't want to move the initialize code into the Derived Classes, except for string-to-business-object conversion.
Would I have to use a Factory? Or is it considered safe to look at the property names of a derived class in a base constructor? (Don't care about their values and that they aren't initialized, just need the names).
Or is there a better way altogether to provide a facade between a Dictionary of strings and a concrete business object?
Edit: This is .net 3.5, so no System.Dynamic which would make this trivial :(
Edit 2: After looking at the Answers and thinking through this some more, I guess my question really boils down to this now: Is calling GetType().GetProperties() from a base constructor in order to get the Names of Properties and if they are decorated with a certain Attribute safe?
Wait, let's stop here for a second and do this properly. It shouldn't be MyBase's responsibility to do this.
So you write a class that manages getting stuff out of the backend for you, and you write a method on that class that is something like
T Get<T>() where T : new()
and you make Get responsible for reading the dictionary out of the backend and using reflection to populate an instance of T. Thus, you say
var concrete = foo.Get<MyConcrete>();
This isn't hard, and it's the right way to do it.
Incidentally, the code for Get is going to look something like
T t = new T();
var properties = typeof(T).GetProperties();
foreach(var property in properties) {
property.SetValue(t, dictionary[property.Name], null);
}
return t;
where dictionary is your loaded up key/value pairs. It turns out there are more optimal ways to do this, but unless it's a bottleneck I wouldn't worry about it.
The better way to do this would be to make the classes use the dictionary directly:
public string Hello {
get { return (string)base.data["Hello"]; }
set { base.data["Hello"] = value; }
}
You may want to call TryGetValue in the getter so that you can return a default value if the key isn't there. (You should probably do that in a separate method in the base class)
You can make a code snippet to make the properties easier to create.
If you don't want to do it this way, you can call GetType().GetProperties() to get PropertyInfo objects for the properties in your class, then call SetValue(this, value).
This will be slow; there are various tricks you can use to speed it up using expression trees, CreateDelegate, or IL generation.
Maybe try the Template method pattern
Have you considered using an ExpandoObject? With it you can dynamically add properties and inspect them (when serializing for example).
I'm not sure if it's what you really should do, but here's what you asked for (put this in Initialize, and you'll get a list of the derived property names):
var derivedProps = this.GetType().GetProperties();
var propNames = new List<string>(derivedProps.Select(x => x.Name));
From there, using the PropertyInfos in derivedProps, you can set the properties.
You can't really safely do anything to those properties in the base-class constructor anyway as some derived constructor may reset them anyway. You're much better off doing a two-phased load (e.g. call Initialize explicitly)

C# Serializing a Collection of Objects

I am working on a ASP.NET application that has a class that inherits a List of a Custom Object.
public class UserRoleList : List<UserRoleBO> {
public UserRoleList() { }
}
How do I make this class serializable in C#?
I believe you really just need to ensure that UserRoleBO is serializable and the list will take care of itself. This assumes the values you want to serialize are public properties on the UserRoleBO and UserList. For more info see What is the point of the ISerializable interface?
You need to do the following
Ensure UserRoleList is serializable
Ensure UserRoleBO is serializable
Ensure the type of all fields inside UserRoleBO are serializable (this is recursive)
The easiest way to do this is to add the [Serializable] attribute to the classes. This will work in most cases.
On a different note, deriving from List<T> is usually speaking a bad idea. The class is not meant to be derived from and any attempt to specialize it's behavior can be thwarted in sceanarios where the derived class is used from a List<T> reference. Can you explain why you want to derive in this way? There is likely a more robust solution.
Like so:
[Serializable]
public class UserRoleList : List<UserRoleBO> {
public UserRoleList() { }
}
(Note the 'Serializble' tag will need to be on all classes that need to be serialised (so the parent as well.
And then use BinarySerialization to do it.

Classes with Collections as Properties vs. Classes Inheriting Collections

Recently I used a class that inherits from a collection instead of having the collection instantiated within the class, is this acceptable or does it create unseen problems further down the road? Examples below for the sake of clarity:
public class Cars : List<aCar>
instead of something like:
public class Cars
{
List<aCar> CarList = new List<aCar>();
}
Any thoughts?
The problem with this is that your Cars class will still have the interface it inherits from List, which may allow operations you don't want.
That depends on the final purpose of your class. If it is only going to work as your own implementation of a collection use inheritance. If not, include a a collection as a property. The second option is more versatile:
As you can only inherit from one class, you might need to inherit from another class rather than collection
If you need to see this class as a collection you can include an indexer property.
I misread the question previously.
I would suggest using composition instead of inheritance. If you want to be able to use all the funky LINQ stuff, by all means implement IEnumerable<T> and perhaps even IList<T> - but I wouldn't derive from List<T> directly.
If you do want to get the collection stuff "for free" but still retain control, you could use CollectionBase. That still ties you down in terms of your one shot at inheritance, but at least you get more control over what happens in the collection.
If you want your Cars class to act just like a List and to have the same methods than it isn't that bad. You just derive from it and you're done. Then if you want to add any additional functionality, you can just declare those methods and you're done. However, you're now bound to List and if List changes in any undesirable ways, you're screwed.
When you make it a composite class instead and have the List instantiated inside the class then you only need tp expose the methods of List that you want exposed. But that means that you have to repeat them all too.
If the purpose of the class is to add additional functionality to a standard collection, then I would inherit from the collection. If the collection is just one part of a bigger picture, then that sounds more like a property.
I would, however, consider using Collection<T> instead of List<T> unless you really need the functionality in List<T>.
Is the "Cars" class really required?
Has some added functionality than "List" ? If not, you should use "List" ( or better "IList" ).
If class "Cars" has any added functionality, there is two main scenarios:
This class is "final" class, there is no big possibility, the someone others need extended it. Then is this construction OK.
This class will be probably used as base class. Then I recommend use this construction:
.
public class CarList<T> : List<T> where T : Car {
// some added functionality
}
If you want be more flexible in future, you should use a composition:
public class CarList<T> : IList<T> where T : Car {
private IList<T> innerList;
public CarList() { this.innerList = new List<T>(); }
// implementation of IList<T>
// some added functionality
}

List<BusinessObject> or BusinessObjectCollection?

Prior to C# generics, everyone would code collections for their business objects by creating a collection base that implemented IEnumerable
IE:
public class CollectionBase : IEnumerable
and then would derive their Business Object collections from that.
public class BusinessObjectCollection : CollectionBase
Now with the generic list class, does anyone just use that instead? I've found that I use a compromise of the two techniques:
public class BusinessObjectCollection : List<BusinessObject>
I do this because I like to have strongly typed names instead of just passing Lists around.
What is your approach?
I am generally in the camp of just using a List directly, unless for some reason I need to encapsulate the data structure and provide a limited subset of its functionality. This is mainly because if I don't have a specific need for encapsulation then doing it is just a waste of time.
However, with the aggregate initializes feature in C# 3.0, there are some new situations where I would advocate using customized collection classes.
Basically, C# 3.0 allows any class that implements IEnumerable and has an Add method to use the new aggregate initializer syntax. For example, because Dictionary defines a method Add(K key, V value) it is possible to initialize a dictionary using this syntax:
var d = new Dictionary<string, int>
{
{"hello", 0},
{"the answer to life the universe and everything is:", 42}
};
The great thing about the feature is that it works for add methods with any number of arguments. For example, given this collection:
class c1 : IEnumerable
{
void Add(int x1, int x2, int x3)
{
//...
}
//...
}
it would be possible to initialize it like so:
var x = new c1
{
{1,2,3},
{4,5,6}
}
This can be really useful if you need to create static tables of complex objects. For example, if you were just using List<Customer> and you wanted to create a static list of customer objects you would have to create it like so:
var x = new List<Customer>
{
new Customer("Scott Wisniewski", "555-555-5555", "Seattle", "WA"),
new Customer("John Doe", "555-555-1234", "Los Angeles", "CA"),
new Customer("Michael Scott", "555-555-8769", "Scranton PA"),
new Customer("Ali G", "", "Staines", "UK")
}
However, if you use a customized collection, like this one:
class CustomerList : List<Customer>
{
public void Add(string name, string phoneNumber, string city, string stateOrCountry)
{
Add(new Customer(name, phoneNumber, city, stateOrCounter));
}
}
You could then initialize the collection using this syntax:
var customers = new CustomerList
{
{"Scott Wisniewski", "555-555-5555", "Seattle", "WA"},
{"John Doe", "555-555-1234", "Los Angeles", "CA"},
{"Michael Scott", "555-555-8769", "Scranton PA"},
{"Ali G", "", "Staines", "UK"}
}
This has the advantage of being both easier to type and easier to read because their is no need to retype the element type name for each element. The advantage can be particularly strong if the element type is long or complex.
That being said, this is only useful if you need static collections of data defined in your app. Some types of apps, like compilers, use them all the time. Others, like typical database apps don't because they load all their data from a database.
My advice would be that if you either need to define a static collection of objects, or need to encapsulate away the collection interface, then create a custom collection class. Otherwise I would just use List<T> directly.
It's recommended that in public API's not to use List<T>, but to use Collection<T>
If you are inheriting from it though, you should be fine, afaik.
I prefer just to use List<BusinessObject>. Typedefing it just adds unnecessary boilerplate to the code. List<BusinessObject> is a specific type, it's not just any List object, so it's still strongly typed.
More importantly, declaring something List<BusinessObject> makes it easier for everyone reading the code to tell what types they are dealing with, they don't have to search through to figure out what a BusinessObjectCollection is and then remember that it's just a list. By typedefing, you'll have to require a consistent (re)naming convention that everyone has to follow in order for it to make sense.
Use the type List<BusinessObject> where you have to declare a list of them. However,
where you return a list of BusinessObject, consider returning IEnumerable<T>, IList<T> or ReadOnlyCollection<T> - i.e. return the weakest possible contract that satisfies the client.
Where you want to "add custom code" to a list, code extension methods on the list type. Again, attach these methods to the weakest possible contract, e.g.
public static int SomeCount(this IEnumerable<BusinessObject> someList)
Of course, you can't and shouldn't add state with extension methods, so if you need to add a new property and a field behind it, use a subclass or better, a wrapper class to store this.
I've been going back and forth on 2 options:
public class BusinessObjectCollection : List<BusinessObject> {}
or methods that just do the following:
public IEnumerable<BusinessObject> GetBusinessObjects();
The benefits of the first approach is that you can change the underlying data store without having to mess with method signatures. Unfortunately if you inherit from a collection type that removes a method from the previous implementation, then you'll have to deal with those situations throughout your code.
You should probably avoid creating your own collection for that purpose. It's pretty common to want to change the type of data structure a few times during refactorings or when adding new features. With your approach, you would wind up with a separate class for BusinessObjectList, BusinessObjectDictionary, BusinessObjectTree, etc.
I don't really see any value in creating this class just because the classname is more readable. Yeah, the angle bracket syntax is kind of ugly, but it's standard in C++, C# and Java, so even if you don't write code that uses it you're going to run into it all the time.
I generally only derive my own collection classes if I need to "add value". Like, if the collection itself needed to have some "metadata" properties tagging along with it.
I do the exact same thing as you Jonathan... just inherit from List<T>. You get the best of both worlds. But I generally only do it when there is some value to add, like adding a LoadAll() method or whatever.
You can use both. For laziness - I mean productivity - List is a very useful class, it's also "comprehensive" and frankly full of YANGNI members. Coupled with the sensible argument / recommendation put forward by the MSDN article already linked about exposing List as a public member, I prefer the "third" way:
Personally I use the decorator pattern to expose only what I need from List i.e:
public OrderItemCollection : IEnumerable<OrderItem>
{
private readonly List<OrderItem> _orderItems = new List<OrderItem>();
void Add(OrderItem item)
{
_orderItems.Add(item)
}
//implement only the list members, which are required from your domain.
//ie. sum items, calculate weight etc...
private IEnumerator<string> Enumerator() {
return _orderItems.GetEnumerator();
}
public IEnumerator<string> GetEnumerator() {
return Enumerator();
}
}
Further still I'd probably abstract OrderItemCollection into IOrderItemCollection so I can swap my implementation of IOrderItemCollection over in the future in (I may prefer to use a different inner enumerable object such as Collection or more likley for perf use a Key Value Pair collection or Set.
I use generic lists for almost all scenarios. The only time that I would consider using a derived collection anymore is if I add collection specific members. However, the advent of LINQ has lessened the need for even that.
6 of 1, half dozen of another
Either way its the same thing. I only do it when I have reason to add custom code into the BusinessObjectCollection.
With out it having load methods return a list allows me to write more code in a common generic class and have it just work. Such as a Load method.
As someone else pointed out, it is recommended not to expose List publicly, and FxCop will whinge if you do so. This includes inheriting from List as in:
public MyTypeCollection : List<MyType>
In most cases public APIs will expose IList (or ICollection or IEnumerable) as appropriate.
In cases where you want your own custom collection, you can keep FxCop quiet by inheriting from Collection instead of List.
If you choose to create your own collection class you should check out the types in System.Collections.ObjectModel Namespace.
The namespace defines base classes thare are ment to make it easier for implementers to create a custom collections.
I tend to do it with my own collection if I want to shield the access to the actual list. When you are writing business objects, chance is that you need a hook to know if your object is being added/removed, in such sense I think BOCollection is better idea. Of coz if that is not required, List is more lightweight. Also you might want to check using IList to provide additional abstraction interface if you need some kind of proxying (e.g. a fake collection triggers lazy load from database)
But... why not consider Castle ActiveRecord or any other mature ORM framework? :)
At the most of the time I simply go with the List way, as it gives me all the functionality I need at the 90% of the time, and when something 'extra' is needed, I inherit from it, and code that extra bit.
I would do this:
using BusinessObjectCollection = List<BusinessObject>;
This just creates an alias rather than a completely new type. I prefer it to using List<BusinessObject> directly because it leaves me free to change the underlying structure of the collection at some point in the future without changing code that uses it (as long as I provide the same properties and methods).
try out this:
System.Collections.ObjectModel.Collection<BusinessObject>
it makes unnecessary to implement basic method like CollectionBase do
this is the way:
return arrays, accept IEnumerable<T>
=)

Categories

Resources