Trace LINQ when Joins are used - c#

[Note After Answer: I am actually querying in memory-objects and that's why ToTraceString doesn't work. I added this to save the reader potential time from reading my long post].
I'm using a ToTraceString command when trying to inspect how my LINQ queries end up looking. However, today my query got a bit complicated, involving a join and all of the sudden, I get this error when I try to Trace my String:
Unable to cast object of type 'd__7a`1[EGSLanguageProviderShared.DTODataType]' to type 'System.Data.Objects.ObjectQuery'.
My Query, and subsequent invocation of ToTraceString is as follows (note that System.Data.Entity has to be referenced in order for this to work). Both objects I'm querying (langDTs and langInstructionsAVDTs) are Entity Framework (.Net 3.5) objects from the same database. My Where Clause (== av.InstructionAVKey) uses a simple Value Collection Class, nothing to see there.
IEnumerable<DTODataType> dts =
(from langDT in langDTs
join langIAVDT in langInstructionsAVDTs
on langDT.DataTypeKey equals langIAVDT.DataTypeKey
where langIAVDT.InstructionAVKey == av.InstructionAVKey
select langDT).Distinct();
var sql = ((System.Data.Objects.ObjectQuery)dts).ToTraceString();
Any ideas on how I could see the LINQ translation of this Join? ::- ). I noticed that System.Data.Objects has more types of queries, but I can't get any of the ones which seem more relevant to this case, to work.
LATER EDIT:
As you recommended, I tried changing the IEnumerable to an IQueryable but that resulted in a type incompatibility compilation error ::- /.
After doing an explicit cast, I got the same error, but at Runtime (Unable to cast object of type '<DistinctIterator>d__7a1[EGSLanguageProviderShared.DTODataType]' to type 'System.Linq.IQueryable1[EGSLanguageProviderShared.DTODataType]'.`)
Additional code: my objects langDTs and langInstructionsAVDTs are:
List<DTOInstructionActiveValueDataType> langInstructionsAVDTs = CurrentLPInstructionManager.GetInstructionsActiveValuesDataTypes((from avKey in langInstructionsAVs select avKey.InstructionAVKey).Distinct().ToArray());
List<DTODataType> langDTs = _LPDataTypeManager.GetDataTypes((from dt in langInstructionsAVDTs orderby dt.DataTypeKey select dt.DataTypeKey).Distinct().ToArray());
So these objects are indeed queried immediately because they are Lists ::- ). As for DTODataType and DTOInstructionActiveValueDataType, they are simple Value Collection Classes, just public Properties, that's all.
EVEN LATER EDIT
Might be of interest that at their root, the objects I'm using are indeed declared as ObjectQuery back in the deepest layer (Entity Framework):
public global::System.Data.Objects.ObjectQuery<instructions> instructions
However, as I bring the data from over the Data Access Layer, I am converting them to Data Transfer Objects (the DTO-prefixed classes you keep seeing), which are simple Value Collection Classes (a property-by-property map of the Entity Objects which I use in order to keep the Data Model completely separated from the View and also to execute any data post-processing in the Presentation side).

Instead of typing your variable as IEnumerable<DTODataType> try IQueryable<DTODataType>, or even var.
I'm guessing somewhere in there your query is getting executed, and the results being stored as IEnumerable, and therefore no longer able to be cast as ObjectQuery
EDIT
Can you please expand your code snippet to show were both langDTs and langInstructionsAVDTs come from?

Based on your subsequent edit, it's clear that you are simply querying and joining in memory collections. That's why you can't cast to ObjectQuery, and that's also why you can't declare the query to be of type IQueryable<T>.
In other words there's no way to do a dump of the SQL being issued, because no SQL is being issued. Once you converted your data over to your in-memory collection of DTOs, you became disconnected from your database, and all your queries became linq-to-objects queries with no corresponding T-SQL being generated.

Related

Force Entity Framework 6.1 to use exists instead of populating entire child object graph [duplicate]

What is the difference between returning IQueryable<T> vs. IEnumerable<T>, when should one be preferred over the other?
IQueryable<Customer> custs = from c in db.Customers
where c.City == "<City>"
select c;
IEnumerable<Customer> custs = from c in db.Customers
where c.City == "<City>"
select c;
Will both be deferred execution and when should one be preferred over the other?
Yes, both will give you deferred execution.
The difference is that IQueryable<T> is the interface that allows LINQ-to-SQL (LINQ.-to-anything really) to work. So if you further refine your query on an IQueryable<T>, that query will be executed in the database, if possible.
For the IEnumerable<T> case, it will be LINQ-to-object, meaning that all objects matching the original query will have to be loaded into memory from the database.
In code:
IQueryable<Customer> custs = ...;
// Later on...
var goldCustomers = custs.Where(c => c.IsGold);
That code will execute SQL to only select gold customers. The following code, on the other hand, will execute the original query in the database, then filtering out the non-gold customers in the memory:
IEnumerable<Customer> custs = ...;
// Later on...
var goldCustomers = custs.Where(c => c.IsGold);
This is quite an important difference, and working on IQueryable<T> can in many cases save you from returning too many rows from the database. Another prime example is doing paging: If you use Take and Skip on IQueryable, you will only get the number of rows requested; doing that on an IEnumerable<T> will cause all of your rows to be loaded in memory.
The top answer is good but it doesn't mention expression trees which explain "how" the two interfaces differ. Basically, there are two identical sets of LINQ extensions. Where(), Sum(), Count(), FirstOrDefault(), etc all have two versions: one that accepts functions and one that accepts expressions.
The IEnumerable version signature is: Where(Func<Customer, bool> predicate)
The IQueryable version signature is: Where(Expression<Func<Customer, bool>> predicate)
You've probably been using both of those without realizing it because both are called using identical syntax:
e.g. Where(x => x.City == "<City>") works on both IEnumerable and IQueryable
When using Where() on an IEnumerable collection, the compiler passes a compiled function to Where()
When using Where() on an IQueryable collection, the compiler passes an expression tree to Where(). An expression tree is like the reflection system but for code. The compiler converts your code into a data structure that describes what your code does in a format that's easily digestible.
Why bother with this expression tree thing? I just want Where() to filter my data.
The main reason is that both the EF and Linq2SQL ORMs can convert expression trees directly into SQL where your code will execute much faster.
Oh, that sounds like a free performance boost, should I use AsQueryable() all over the place in that case?
No, IQueryable is only useful if the underlying data provider can do something with it. Converting something like a regular List to IQueryable will not give you any benefit.
Yes, both use deferred execution. Let's illustrate the difference using the SQL Server profiler....
When we run the following code:
MarketDevEntities db = new MarketDevEntities();
IEnumerable<WebLog> first = db.WebLogs;
var second = first.Where(c => c.DurationSeconds > 10);
var third = second.Where(c => c.WebLogID > 100);
var result = third.Where(c => c.EmailAddress.Length > 11);
Console.Write(result.First().UserName);
In SQL Server profiler we find a command equal to:
"SELECT * FROM [dbo].[WebLog]"
It approximately takes 90 seconds to run that block of code against a WebLog table which has 1 million records.
So, all table records are loaded into memory as objects, and then with each .Where() it will be another filter in memory against these objects.
When we use IQueryable instead of IEnumerable in the above example (second line):
In SQL Server profiler we find a command equal to:
"SELECT TOP 1 * FROM [dbo].[WebLog] WHERE [DurationSeconds] > 10 AND [WebLogID] > 100 AND LEN([EmailAddress]) > 11"
It approximately takes four seconds to run this block of code using IQueryable.
IQueryable has a property called Expression which stores a tree expression which starts being created when we used the result in our example (which is called deferred execution), and at the end this expression will be converted to an SQL query to run on the database engine.
Both will give you deferred execution, yes.
As for which is preferred over the other, it depends on what your underlying datasource is.
Returning an IEnumerable will automatically force the runtime to use LINQ to Objects to query your collection.
Returning an IQueryable (which implements IEnumerable, by the way) provides the extra functionality to translate your query into something that might perform better on the underlying source (LINQ to SQL, LINQ to XML, etc.).
A lot has been said previously, but back to the roots, in a more technical way:
IEnumerable is a collection of objects in memory that you can enumerate - an in-memory sequence that makes it possible to iterate through (makes it way easy for within foreach loop, though you can go with IEnumerator only). They reside in the memory as is.
IQueryable is an expression tree that will get translated into something else at some point with ability to enumerate over the final outcome. I guess this is what confuses most people.
They obviously have different connotations.
IQueryable represents an expression tree (a query, simply) that will be translated to something else by the underlying query provider as soon as release APIs are called, like LINQ aggregate functions (Sum, Count, etc.) or ToList[Array, Dictionary,...]. And IQueryable objects also implement IEnumerable, IEnumerable<T> so that if they represent a query the result of that query could be iterated. It means IQueryable don't have to be queries only. The right term is they are expression trees.
Now how those expressions are executed and what they turn to is all up to so called query providers (expression executors we can think them of).
In the Entity Framework world (which is that mystical underlying data source provider, or the query provider) IQueryable expressions are translated into native T-SQL queries. Nhibernate does similar things with them. You can write your own one following the concepts pretty well described in LINQ: Building an IQueryable Provider link, for example, and you might want to have a custom querying API for your product store provider service.
So basically, IQueryable objects are getting constructed all the way long until we explicitly release them and tell the system to rewrite them into SQL or whatever and send down the execution chain for onward processing.
As if to deferred execution it's a LINQ feature to hold up the expression tree scheme in the memory and send it into the execution only on demand, whenever certain APIs are called against the sequence (the same Count, ToList, etc.).
The proper usage of both heavily depends on the tasks you're facing for the specific case. For the well-known repository pattern I personally opt for returning IList, that is IEnumerable over Lists (indexers and the like). So it is my advice to use IQueryable only within repositories and IEnumerable anywhere else in the code. Not saying about the testability concerns that IQueryable breaks down and ruins the separation of concerns principle. If you return an expression from within repositories consumers may play with the persistence layer as they would wish.
A little addition to the mess :) (from a discussion in the comments))
None of them are objects in memory since they're not real types per se, they're markers of a type - if you want to go that deep. But it makes sense (and that's why even MSDN put it this way) to think of IEnumerables as in-memory collections whereas IQueryables as expression trees. The point is that the IQueryable interface inherits the IEnumerable interface so that if it represents a query, the results of that query can be enumerated. Enumeration causes the expression tree associated with an IQueryable object to be executed.
So, in fact, you can't really call any IEnumerable member without having the object in the memory. It will get in there if you do, anyways, if it's not empty. IQueryables are just queries, not the data.
In general terms I would recommend the following:
Return IQueryable<T> if you want to enable the developer using your method to refine the query you return before executing.
Return IEnumerable if you want to transport a set of Objects to enumerate over.
Imagine an IQueryable as that what it is - a "query" for data (which you can refine if you want to). An IEnumerable is a set of objects (which has already been received or was created) over which you can enumerate.
In general you want to preserve the original static type of the query until it matters.
For this reason, you can define your variable as 'var' instead of either IQueryable<> or IEnumerable<> and you will know that you are not changing the type.
If you start out with an IQueryable<>, you typically want to keep it as an IQueryable<> until there is some compelling reason to change it. The reason for this is that you want to give the query processor as much information as possible. For example, if you're only going to use 10 results (you've called Take(10)) then you want SQL Server to know about that so that it can optimize its query plans and send you only the data you'll use.
A compelling reason to change the type from IQueryable<> to IEnumerable<> might be that you are calling some extension function that the implementation of IQueryable<> in your particular object either cannot handle or handles inefficiently. In that case, you might wish to convert the type to IEnumerable<> (by assigning to a variable of type IEnumerable<> or by using the AsEnumerable extension method for example) so that the extension functions you call end up being the ones in the Enumerable class instead of the Queryable class.
There is a blog post with brief source code sample about how misuse of IEnumerable<T> can dramatically impact LINQ query performance: Entity Framework: IQueryable vs. IEnumerable.
If we dig deeper and look into the sources, we can see that there are obviously different extension methods are perfomed for IEnumerable<T>:
// Type: System.Linq.Enumerable
// Assembly: System.Core, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089
// Assembly location: C:\Windows\Microsoft.NET\Framework\v4.0.30319\System.Core.dll
public static class Enumerable
{
public static IEnumerable<TSource> Where<TSource>(
this IEnumerable<TSource> source,
Func<TSource, bool> predicate)
{
return (IEnumerable<TSource>)
new Enumerable.WhereEnumerableIterator<TSource>(source, predicate);
}
}
and IQueryable<T>:
// Type: System.Linq.Queryable
// Assembly: System.Core, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089
// Assembly location: C:\Windows\Microsoft.NET\Framework\v4.0.30319\System.Core.dll
public static class Queryable
{
public static IQueryable<TSource> Where<TSource>(
this IQueryable<TSource> source,
Expression<Func<TSource, bool>> predicate)
{
return source.Provider.CreateQuery<TSource>(
Expression.Call(
null,
((MethodInfo) MethodBase.GetCurrentMethod()).MakeGenericMethod(
new Type[] { typeof(TSource) }),
new Expression[]
{ source.Expression, Expression.Quote(predicate) }));
}
}
The first one returns enumerable iterator, and the second one creates query through the query provider, specified in IQueryable source.
The main difference between “IEnumerable” and “IQueryable” is about where the filter logic is executed. One executes on the client side (in memory) and the other executes on the database.
For example, we can consider an example where we have 10,000 records for a user in our database and let's say only 900 out which are active users, so in this case if we use “IEnumerable” then first it loads all 10,000 records in memory and then applies the IsActive filter on it which eventually returns the 900 active users.
While on the other hand on the same case if we use “IQueryable” it will directly apply the IsActive filter on the database which directly from there will return the 900 active users.
I would like to clarify a few things due to seemingly conflicting responses (mostly surrounding IEnumerable).
(1) IQueryable extends the IEnumerable interface. (You can send an IQueryable to something which expects IEnumerable without error.)
(2) Both IQueryable and IEnumerable LINQ attempt lazy loading when iterating over the result set. (Note that implementation can be seen in interface extension methods for each type.)
In other words, IEnumerables are not exclusively "in-memory". IQueryables are not always executed on the database. IEnumerable must load things into memory (once retrieved, possibly lazily) because it has no abstract data provider. IQueryables rely on an abstract provider (like LINQ-to-SQL), although this could also be the .NET in-memory provider.
Sample use case
(a) Retrieve list of records as IQueryable from EF context. (No records are in-memory.)
(b) Pass the IQueryable to a view whose model is IEnumerable. (Valid. IQueryable extends IEnumerable.)
(c) Iterate over and access the data set's records, child entities and properties from the view. (May cause exceptions!)
Possible Issues
(1) The IEnumerable attempts lazy loading and your data context is expired. Exception thrown because provider is no longer available.
(2) Entity Framework entity proxies are enabled (the default), and you attempt to access a related (virtual) object with an expired data context. Same as (1).
(3) Multiple Active Result Sets (MARS). If you are iterating over the IEnumerable in a foreach( var record in resultSet ) block and simultaneously attempt to access record.childEntity.childProperty, you may end up with MARS due to lazy loading of both the data set and the relational entity. This will cause an exception if it is not enabled in your connection string.
Solution
I have found that enabling MARS in the connection string works unreliably. I suggest you avoid MARS unless it is well-understood and explicitly desired.
Execute the query and store results by invoking resultList = resultSet.ToList() This seems to be the most straightforward way of ensuring your entities are in-memory.
In cases where the you are accessing related entities, you may still require a data context. Either that, or you can disable entity proxies and explicitly Include related entities from your DbSet.
I recently ran into an issue with IEnumerable v. IQueryable. The algorithm being used first performed an IQueryable query to obtain a set of results. These were then passed to a foreach loop, with the items instantiated as an Entity Framework (EF) class. This EF class was then used in the from clause of a Linq to Entity query, causing the result to be IEnumerable.
I'm fairly new to EF and Linq for Entities, so it took a while to figure out what the bottleneck was. Using MiniProfiling, I found the query and then converted all of the individual operations to a single IQueryable Linq for Entities query. The IEnumerable took 15 seconds and the IQueryable took 0.5 seconds to execute. There were three tables involved and, after reading this, I believe that the IEnumerable query was actually forming a three table cross-product and filtering the results.
Try to use IQueryables as a rule-of-thumb and profile your work to make your changes measurable.
We can use both for the same way, and they are only different in the performance.
IQueryable only executes against the database in an efficient way. It means that it creates an entire select query and only gets the related records.
For example, we want to take the top 10 customers whose name start with ‘Nimal’. In this case the select query will be generated as select top 10 * from Customer where name like ‘Nimal%’.
But if we used IEnumerable, the query would be like select * from Customer where name like ‘Nimal%’ and the top ten will be filtered at the C# coding level (it gets all the customer records from the database and passes them into C#).
In addition to first 2 really good answers (by driis & by Jacob) :
IEnumerable
interface is in the System.Collections namespace.
The IEnumerable object represents a set of data in memory and can move on this data only forward. The query represented by the IEnumerable object is executed immediately and completely, so the application receives data quickly.
When the query is executed, IEnumerable loads all the data, and if we need to filter it, the filtering itself is done on the client side.
IQueryable interface is located in the System.Linq namespace.
The IQueryable object provides remote access to the database and allows you to navigate through the data either in a direct order from beginning to end, or in the reverse order. In the process of creating a query, the returned object is IQueryable, the query is optimized. As a result, less memory is consumed during its execution, less network bandwidth, but at the same time it can be processed slightly more slowly than a query that returns an IEnumerable object.
What to choose?
If you need the entire set of returned data, then it's better to use IEnumerable, which provides the maximum speed.
If you DO NOT need the entire set of returned data, but only some filtered data, then it's better to use IQueryable.
In addition to the above, it's interesting to note that you can get exceptions if you use IQueryable instead of IEnumerable:
The following works fine if products is an IEnumerable:
products.Skip(-4);
However if products is an IQueryable and it's trying to access records from a DB table, then you'll get this error:
The offset specified in a OFFSET clause may not be negative.
This is because the following query was constructed:
SELECT [p].[ProductId]
FROM [Products] AS [p]
ORDER BY (SELECT 1)
OFFSET #__p_0 ROWS
and OFFSET can't have a negative value.

How can I determine if a LINQ query is going to be LINQ to SQL vs. LINQ to Objects?

Usually the distinction between LINQ to SQL and LINQ to Objects isn't much of an issue, but how can I determine which is happening?
It would be useful to know when writing the code, but I fear one can only be sure at run time sometimes.
It's not micro optimization to make the distinction between Linq-To-Sql and Linq-To-Objects. The latter requires all data to be loaded into memory before you start filtering it. Of course, that can be a major issue.
Most LINQ methods are using deferred execution, which means that it's just building the query but it's not yet executed (like Select or Where). Few others are executing the query and materialize the result into an in-memory collection (like ToLIst or ToArray). If you use AsEnumerable you are also using Linq-To-Objects and no SQL is generated for the parts after it, which means that the data must be loaded into memory (yet still using deferred execution).
So consider the following two queries. The first selects and filters in the database:
var queryLondonCustomers = from cust in db.customers
where cust.City == "London"
select cust;
whereas the second selects all and filters via Linq-To-Objects:
var queryLondonCustomers = from cust in db.customers.AsEnumerable()
where cust.City == "London"
select cust;
The latter has one advantage: you can use any .NET method since it doesn't need to be translated to SQL (e.g. !String.IsNullOrWhiteSpace(cust.City)).
If you just get something that is an IEnumerable<T>, you can't be sure if it's actually a query or already an in-memory object. Even the try-cast to IQueryable<T> will not tell you for sure what it actually is because of the AsQueryable-method. Maybe you could try-cast it to a collection type. If the cast succeeds you can be sure that it's already materialized but otherwise it doesn't tell you if it's using Linq-To-Sql or Linq-To-Objects:
bool isMaterialized = queryLondonCustomers as ICollection<Customer> != null;
Related: EF ICollection Vs List Vs IEnumerable Vs IQueryable
The first solution comes into my mind is checking the query provider.
If the query is materialized, which means the data is loaded into memory, EnumerableQuery(T) is used. Otherwise, a special query provider is used, for example, System.Data.Entity.Internal.Linq.DbQueryProvider for entityframework.
var materialized = query
.AsQueryable()
.Provider
.GetType()
.GetGenericTypeDefinition() == typeof(EnumerableQuery<>);
However the above are ideal cases because someone can implement a custom query provider behaves like EnumerableQuery.
I had the same question, for different reasons.
Judging purely on your title & initial description (which is why google search brought me here).
Pre compilation, given an instance that implements IQueryable, there's no way to know the implementation behind the interface.
At runtime, you need to check the instance's Provider property like #Danny Chen mentioned.
public enum LinqProvider
{
Linq2SQL, Linq2Objects
}
public static class LinqProviderExtensions
{
public static LinqProvider LinqProvider(this IQueryable query)
{
if (query.Provider.GetType().IsGenericType && query.Provider.GetType().GetGenericTypeDefinition() == typeof(EnumerableQuery<>))
return LinqProvider.Linq2Objects;
if (typeof(ICollection<>).MakeGenericType(query.ElementType).IsAssignableFrom(query.GetType()))
return LinqProvider.Linq2Objects;
return LinqProvider.Linq2SQL;
}
}
In our case, we are adding additional filters dynamically, but ran into issues with different handling of case-sensitivity/nullreference handling on different providers.
Hence, at runtime we had to tweak the filters that we add based on the type of provider, and ended up adding this extension method:
Using EF core in net core 6
To see if the provider is an EF provider, use the following code:
if (queryable.Provider is Microsoft.EntityFrameworkCore.Query.Internal.EntityQueryProvider)
{
// Queryable is backed by EF and is not an in-memory/client-side queryable.
}
One could get the opposite by testing the provider against System.Linq.EnumerableQuery (base type of EnumerableQuery<T> - so you don't have to test generics).
This is useful if you have methods like EF.Functions.Like(...) which can only be executed in the database - and you want to branch to something else in case of client-side execution.

Queryable Linq Query Differences In Entity Framework

I have a very simple many to many table in entity framework connecting my approvals to my transactions (shown below).
I am trying to do a query inside the approval object to count the amount of transactions on the approval, which should be relatively easy.
If I do something like this then it works super fast.
int count;
EntitiesContainer dbContext = new EntitiesContainer ();
var aCnt = from a in dbContext.Approvals
where a.id == id
select a.Transactions.Count;
count = aCnt.First();
However when I do this
count = Transactions.Count;
or this
count = Transactions.AsQueryable<Transaction>().Count();
its exceedingly slow. I have traced the sql running on the server and it does indeed seem to be trying to load in all the transactions instead of just doing the COUNT query on the collection of Transactions.
Can anyone explain to me why?
Additional :
Here is how the EF model looks in regards to these two classes
UPDATE :
Thanks for all the responses, I believe where I was going wrong was to believe that the collections attached to the Approval object would execute as IQueryable. I'm going to have to execute the count against the dbContext object.
Thanks everyone.
var aCnt = from a in dbContext.Approvals
where a.id == id
select a.Transactions.Count;
EF compiles query by itself, the above query will be compiled as select count transactions
Unlike,
count = Transactions.AsQueryable<Transaction>().Count();
count = Transactions.Count;
these will select all the records from transaction and then computes the count
When you access the a.Transactions property, then you load the list of transactions (lazy loading). If you want to get the Count only, then use something like this:
dbContext.Transactions.Where(t => t.Approvals.Any(ap => ap.Id == a.Id)).Count();
where a is given Approval.
Your first method allows the counting to take place on the database server level. It will ask the database not to return the records, but to return the amount of records found. This is the most efficient method.
This is not to say that other methods can't work as efficiently, but with the other two lines, you are not making it clear in the first place that you are retrieving transactions from a join on Approvals. Instead, in the other two lines, you take the Transactions collection just by itself and do a count on that, basically forcing the collection to be filled so it can be counted.
Your first snippet causes a query to be executed on the database server. It works that because the IQueryable instance is of type ObjectQuery provided by the Entity Framework which performs the necessary translation to SQL and then execution.
The second snippet illustrates working with IEnumerable instances. Count() works on them by, in worst case, enumerating the entire collection.
In the third snippet you attempt to make the IEnumerable an IQueryable again. But the Enumerable.AsQueryable method has no way of knowing that the IEnumerable it is getting "came" from Entity Framework. The best it can do is to wrap the IEnumerable in a EnumerableQuery instance which simply dynamically compiles the expression trees given to all LINQ query operators and executes them in memory.
If you need the count to be calculated by the database server, you can either formulate the requisite query manually (that is, write what you already did in snippet one), or use the method CreateSourceQuery available to you if you're not using Code First. Note that it will really be executed on the database server, so if you have modified the collection and have not yet saved changes, the result will be different to what would be returned by calling Count directly.

LINQ to Entities - Entity Framework

I'm looking to get a better understanding on when we should look to use IEnumerable over IQueryablewith LINQ to Entities.
With really basic calls to the database, IQueryable is way quicker, but when do i need to think about using an IEnumerable in its place?
Where is an IEnumerable optimal over an IQueryable??
Basically, IQueryables are executed by a query provider (for example a database) and some operations cannot be or should not be done by the database. For example, if you want to call a C# function (here as an example, capitalize a name correctly) using a value you got from the database you may try something like;
db.Users.Select(x => Capitalize(x.Name)) // Tries to make the db call Capitalize.
.ToList();
Since the Select is executed on an IQueryable, and the underlying database has no idea about your Capitalize function, the query will fail. What you can do instead is to get the correct data from the database and convert the IQueryable to an IEnumerable (which is basically just a way to iterate through collections in-memory) to do the rest of the operation in local memory, as in;
db.Users.Select(x => x.Name) // Gets only the name from the database
.AsEnumerable() // Do the rest of the operations in memory
.Select(x => Capitalize(x)) // Capitalize in memory
.ToList();
The most important thing when it comes to performance of IQueryable vs. IEnumerable from the side of EF, is that you should always try to filter the data using an IQueryable to get as little data as possible to convert to an IEnumerable. What the AsEnumerable call basically does is to tell the database "give me the data as it is filtered now", and if you didn't filter it, you'll get everything fetched to memory, even data you may not need.
IEnumerable represents a sequence of elements which you enumerate one by one until you find the answer you need, so for example if I wanted all entities that had some property greater than 10, I'd need to go through each one in turn and return only those that matched. Pulling every row of a database table into memory in order to do this would not maybe be a great idea.
IQueryable on the other hand represents a set of elements on which operations like filtering can be deferred to the underlying data source, so in the filtering case, if I were to implement IQueryable on top of a custom data source (or use LINQ to Entities!) then I could give the hard work of filtering / grouping etc to the data source (e.g. a database).
The major downside of IQueryable is that implementing it is pretty hard - queries are constructed as Expression trees which as the implementer you then have to parse in order to resolve the query. If you're not planning to write a provider though then this isn't going to hurt you.
Another aspect of IQueryable that it's worth being aware of (although this is really just a generic caveat about passing processing off to another system that may make different assumptions about the world) is that you may find things like string comparison work in the manner they are supported in the source system, not in the manner they are implemented by the consumer, e.g. if your source database is case-insensitive but your default comparison in .NET is case-sensitive.

How do I sort a gridview of Linq objects based on a derived field?

I have written a page which uses Linq to query the database and bind the resulting IQueryable to a datagrid. I have a partial class which contains extra properties which derive their values based on other values brought in from the database.
Sorting works fine on fields that are actually in the database but not for the derived fields. When I attempt to sort on such a field I get an error saying "The member 'Trip.Difference' has no supported translation to SQL.
Any idea how to allow sorting on these derived fields?
The problem is that you are binding to an IQueryable, so every time you enumerate it, you are translating the LINQ expression on the IQueryable to a SQL statement and going back to the database to execute it.
If you are trying to sort on properties that are not bound to the database model then you will get the error mentioned, as those properties only exist once an object has been created from a data row.
The simplest solution is to call ToList() on the IQueryable before using it for sorting and data-binding, so that you sort on the in-memory objects where the properties are actually available. ToList() converts your IQueryable into an IEnumerable (via List<T>), and stops it from going to the database again via LINQ to SQL.
This is generally a good design pattern to follow - the last thing you want is consumers of your business layer being able to unwittingly execute arbitrary queries against your database, simply because you returned IQueryable where you should have returned IEnumerable.
Call ToEnumerable() first, and then add the OrderBy:
var q = (from a in mDataContext.Somethings()
select a).ToEnumerable().OrderBy...

Categories

Resources