Preventing StackOverFlow in recursive functions - c#

I have a recursive function in a BaseClass which relies on a protected virtual function for it's return condition.
It's possible for a child class to override this function incorrectly and leads to a StackOverFlow exception. The worst thing is there are some slow network calls and the exception is not gonna happen soon (many resources waste for a long time).
I'm looking for a method to check StackOverFlow in early stages some way in the base class (maybe using Reflection and the current recursion level).
Any idea ?

You could pass a simple integer 'depth' to the recursive function and increment it with each subsequent call. If it gets larger than the maximum allowed depth throw an Exception right then instead of waiting until it's too late and the dreaded StackOverflow exception has occurred.
Such safety mechanisms (increment counter, check it's not stupidly large) can also be handy in while loops where a small error can cause an infinite loop consuming vast quantities of CPU.
In large systems with many users (e.g. web sites) sometimes it's best to take precautionary measures like these with recursion and while loops because the consequences can reach far beyond one web page or one user of the system. It's not pretty code and the purists will no doubt balk at it, but it's efficient, it's defensive and it's pragmatic.

Solve the problem instead of creating a workaround. Create a private function which is recursive which calls the protected virtual function.

Although you probably can read the call stack and analyze it I wouldn't do that.
It will slow down execution
It is not your base class' responsibility
Document your base class' behaviour
An alternative could be to do the call stack analysis in DEBUG mode only. Here is a little code to see how to get the call stack.
using System.Diagnostics;
[STAThread]
public static void Main()
{
StackTrace stackTrace = new StackTrace(); // get call stack
StackFrame[] stackFrames = stackTrace.GetFrames(); // get method calls (frames)
// write call stack method names
foreach (StackFrame stackFrame in stackFrames)
{
Console.WriteLine(stackFrame.GetMethod().Name); // write method name
}
}
From this site

Related

Can the C# compiler throw an error or warning if a certain method is called in a loop

Often times a developer on my team writes code in a loop that makes a call that is relatively slow (i.e. database access or web service call or other slow method). This is a super common mistake.
Yes, we practice code reviews, and we try to catch these and fix them before merging. However, failing early is better, right?
So is there a way to catch this mistake via the compiler?
Example:
Imagine this method
public ReturnObject SlowMethod(Something thing)
{
// method work
}
Below the method is called in a loop, which is a mistake.
public ReturnObject Call(IEnumerable<Something> things)
{
foreach(var thing in Things)
SlowMethod(thing); // Should throw compiler error or warning in a loop
}
Is there any way to decorate the above SlowMethod() with an attribute or compiler statement so that it would complain if used in a loop?
No, there is nothing in regular C# to prevent a method being used in a loop.
Your options:
discourage usage in a loop by providing easier to use alternatives. Providing second (or only) method that deals with collections will likely discourage one from writing calls in a loop enough so it is no longer a major concern.
try to write your own code analysis rule (stating tutorial - https://learn.microsoft.com/en-us/dotnet/csharp/roslyn-sdk/tutorials/how-to-write-csharp-analyzer-code-fix)
add run-time protection to the method if it is called more often than you'd like.
Obviously it makes sense to invoke those slow methods in a loop - you're trying to put work into preventing that, but that's putting work into something fundamentally negative. Why not do something positive instead? Obviously, you've provided an API that's convenient to use in a loop. So, provide some alternatives that are easier to use correctly where formerly an incorrect use in a loop would take place, like:
an iterable-based API that would make the loop implicit, to remove some of the latency since you'd have a full view of what will be iterated, and can hide the latency appropriately,
an async API that won't block the thread, with example code showing how to use it in the typical situations you've encountered thus far; remember that an API that's too hard to use correctly won't get used!
a lowest-common-denominator API: split the methods into a requester and a result provider, so that there'd naturally be two loops: one to submit all the requests, another to collect and process the results (I dislike this approach, since it doesn't make the code any nicer)

Best practice for null testing [duplicate]

To avoid all standard-answers I could have Googled on, I will provide an example you all can attack at will.
C# and Java (and too many others) have with plenty of types some of ‘overflow’ behaviour I don’t like at all (e.g type.MaxValue + type.SmallestValue == type.MinValue for example : int.MaxValue + 1 == int.MinValue).
But, seen my vicious nature, I’ll add some insult to this injury by expanding this behaviour to, let’s say an Overridden DateTime type. (I know DateTime is sealed in .NET, but for the sake of this example, I’m using a pseudo language that is exactly like C#, except for the fact that DateTime isn’t sealed).
The overridden Add method:
/// <summary>
/// Increments this date with a timespan, but loops when
/// the maximum value for datetime is exceeded.
/// </summary>
/// <param name="ts">The timespan to (try to) add</param>
/// <returns>The Date, incremented with the given timespan.
/// If DateTime.MaxValue is exceeded, the sum wil 'overflow' and
/// continue from DateTime.MinValue.
/// </returns>
public DateTime override Add(TimeSpan ts)
{
try
{
return base.Add(ts);
}
catch (ArgumentOutOfRangeException nb)
{
// calculate how much the MaxValue is exceeded
// regular program flow
TimeSpan saldo = ts - (base.MaxValue - this);
return DateTime.MinValue.Add(saldo)
}
catch(Exception anyOther)
{
// 'real' exception handling.
}
}
Of course an if could solve this just as easy, but the fact remains that I just fail to see why you couldn’t use exceptions (logically that is, I can see that when performance is an issue that in certain cases exceptions should be avoided).
I think in many cases they are more clear than if-structures and don’t break any contract the method is making.
IMHO the “Never use them for regular program flow” reaction everybody seems to have is not that well underbuild as the strength of that reaction can justify.
Or am I mistaken?
I've read other posts, dealing with all kind of special cases, but my point is there's nothing wrong with it if you are both:
Clear
Honour the contract of your method
Shoot me.
Have you ever tried to debug a program raising five exceptions per second in the normal course of operation ?
I have.
The program was quite complex (it was a distributed calculation server), and a slight modification at one side of the program could easily break something in a totally different place.
I wish I could just have launched the program and wait for exceptions to occur, but there were around 200 exceptions during the start-up in the normal course of operations
My point : if you use exceptions for normal situations, how do you locate unusual (ie exceptional) situations ?
Of course, there are other strong reasons not to use exceptions too much, especially performance-wise
Exceptions are basically non-local goto statements with all the consequences of the latter. Using exceptions for flow control violates a principle of least astonishment, make programs hard to read (remember that programs are written for programmers first).
Moreover, this is not what compiler vendors expect. They expect exceptions to be thrown rarely, and they usually let the throw code be quite inefficient. Throwing exceptions is one of the most expensive operations in .NET.
However, some languages (notably Python) use exceptions as flow-control constructs. For example, iterators raise a StopIteration exception if there are no further items. Even standard language constructs (such as for) rely on this.
My rule of thumb is:
If you can do anything to recover from an error, catch exceptions
If the error is a very common one (eg. user tried to log in with the wrong password), use returnvalues
If you can't do anything to recover from an error, leave it uncaught (Or catch it in your main-catcher to do some semi-graceful shutdown of the application)
The problem I see with exceptions is from a purely syntax point of view (I'm pretty sure the perfomance overhead is minimal). I don't like try-blocks all over the place.
Take this example:
try
{
DoSomeMethod(); //Can throw Exception1
DoSomeOtherMethod(); //Can throw Exception1 and Exception2
}
catch(Exception1)
{
//Okay something messed up, but is it SomeMethod or SomeOtherMethod?
}
.. Another example could be when you need to assign something to a handle using a factory, and that factory could throw an exception:
Class1 myInstance;
try
{
myInstance = Class1Factory.Build();
}
catch(SomeException)
{
// Couldn't instantiate class, do something else..
}
myInstance.BestMethodEver(); // Will throw a compile-time error, saying that myInstance is uninitalized, which it potentially is.. :(
Soo, personally, I think you should keep exceptions for rare error-conditions (out of memory etc.) and use returnvalues (valueclasses, structs or enums) to do your error checking instead.
Hope I understood your question correct :)
A first reaction to a lot of answers :
you're writing for the programmers and the principle of least astonishment
Of course! But an if just isnot more clear all the time.
It shouldn't be astonishing eg : divide (1/x) catch (divisionByZero) is more clear than any if to me (at Conrad and others) . The fact this kind of programming isn't expected is purely conventional, and indeed, still relevant. Maybe in my example an if would be clearer.
But DivisionByZero and FileNotFound for that matter are clearer than ifs.
Of course if it's less performant and needed a zillion time per sec, you should of course avoid it, but still i haven't read any good reason to avoid the overal design.
As far as the principle of least astonishment goes : there's a danger of circular reasoning here : suppose a whole community uses a bad design, this design will become expected! Therefore the principle cannot be a grail and should be concidered carefully.
exceptions for normal situations, how do you locate unusual (ie exceptional) situations ?
In many reactions sth. like this shines trough. Just catch them, no? Your method should be clear, well documented, and hounouring it's contract. I don't get that question I must admit.
Debugging on all exceptions : the same, that's just done sometimes because the design not to use exceptions is common. My question was : why is it common in the first place?
Before exceptions, in C, there were setjmp and longjmp that could be used to accomplish a similar unrolling of the stack frame.
Then the same construct was given a name: "Exception". And most of the answers rely on the meaning of this name to argue about its usage, claiming that exceptions are intended to be used in exceptional conditions. That was never the intent in the original longjmp. There were just situations where you needed to break control flow across many stack frames.
Exceptions are slightly more general in that you can use them within the same stack frame too. This raises analogies with goto that I believe are wrong. Gotos are a tightly coupled pair (and so are setjmp and longjmp). Exceptions follow a loosely coupled publish/subscribe that is much cleaner! Therefore using them within the same stack frame is hardly the same thing as using gotos.
The third source of confusion relates to whether they are checked or unchecked exceptions. Of course, unchecked exceptions seem particularly awful to use for control flow and perhaps a lot of other things.
Checked exceptions however are great for control flow, once you get over all the Victorian hangups and live a little.
My favorite usage is a sequence of throw new Success() in a long fragment of code that tries one thing after the other until it finds what it is looking for. Each thing -- each piece of logic -- may have arbritrary nesting so break's are out as also any kind of condition tests. The if-else pattern is brittle. If I edit out an else or mess up the syntax in some other way, then there is a hairy bug.
Using throw new Success() linearizes the code flow. I use locally defined Success classes -- checked of course -- so that if I forget to catch it the code won't compile. And I don't catch another method's Successes.
Sometimes my code checks for one thing after the other and only succeeds if everything is OK. In this case I have a similar linearization using throw new Failure().
Using a separate function messes with the natural level of compartmentalization. So the return solution is not optimal. I prefer to have a page or two of code in one place for cognitive reasons. I don't believe in ultra-finely divided code.
What JVMs or compilers do is less relevant to me unless there is a hotspot. I cannot believe there is any fundamental reason for compilers to not detect locally thrown and caught Exceptions and simply treat them as very efficient gotos at the machine code level.
As far as using them across functions for control flow -- i. e. for common cases rather than exceptional ones -- I cannot see how they would be less efficient than multiple break, condition tests, returns to wade through three stack frames as opposed to just restore the stack pointer.
I personally do not use the pattern across stack frames and I can see how it would require design sophistication to do so elegantly. But used sparingly it should be fine.
Lastly, regarding surprising virgin programmers, it is not a compelling reason. If you gently introduce them to the practice, they will learn to love it. I remember C++ used to surprise and scare the heck out of C programmers.
The standard anwser is that exceptions are not regular and should be used in exceptional cases.
One reason, which is important to me, is that when I read a try-catch control structure in a software I maintain or debug, I try to find out why the original coder used an exception handling instead of an if-else structure. And I expect to find a good answer.
Remember that you write code not only for the computer but also for other coders. There is a semantic associated to an exception handler that you cannot throw away just because the machine doesn't mind.
Josh Bloch deals with this topic extensively in Effective Java. His suggestions are illuminating and should apply to .NET as well (except for the details).
In particular, exceptions should be used for exceptional circumstances. The reasons for this are usability-related, mainly. For a given method to be maximally usable, its input and output conditions should be maximally constrained.
For example, the second method is easier to use than the first:
/**
* Adds two positive numbers.
*
* #param addend1 greater than zero
* #param addend2 greater than zero
* #throws AdditionException if addend1 or addend2 is less than or equal to zero
*/
int addPositiveNumbers(int addend1, int addend2) throws AdditionException{
if( addend1 <= 0 ){
throw new AdditionException("addend1 is <= 0");
}
else if( addend2 <= 0 ){
throw new AdditionException("addend2 is <= 0");
}
return addend1 + addend2;
}
/**
* Adds two positive numbers.
*
* #param addend1 greater than zero
* #param addend2 greater than zero
*/
public int addPositiveNumbers(int addend1, int addend2) {
if( addend1 <= 0 ){
throw new IllegalArgumentException("addend1 is <= 0");
}
else if( addend2 <= 0 ){
throw new IllegalArgumentException("addend2 is <= 0");
}
return addend1 + addend2;
}
In either case, you need to check to make sure that the caller is using your API appropriately. But in the second case, you require it (implicitly). The soft Exceptions will still be thrown if the user didn't read the javadoc, but:
You don't need to document it.
You don't need to test for it (depending upon how aggresive your
unit testing strategy is).
You don't require the caller to handle three use cases.
The ground-level point is that Exceptions should not be used as return codes, largely because you've complicated not only YOUR API, but the caller's API as well.
Doing the right thing comes at a cost, of course. The cost is that everyone needs to understand that they need to read and follow the documentation. Hopefully that is the case anyway.
How about performance? While load testing a .NET web app we topped out at 100 simulated users per web server until we fixed a commonly-occuring exception and that number increased to 500 users.
I think that you can use Exceptions for flow control. There is, however, a flipside of this technique. Creating Exceptions is a costly thing, because they have to create a stack trace. So if you want to use Exceptions more often than for just signalling an exceptional situation you have to make sure that building the stack traces doesn't negatively influence your performance.
The best way to cut down the cost of creating exceptions is to override the fillInStackTrace() method like this:
public Throwable fillInStackTrace() { return this; }
Such an exception will have no stacktraces filled in.
Here are best practices I described in my blog post:
Throw an exception to state an unexpected situation in your software.
Use return values for input validation.
If you know how to deal with exceptions a library throws, catch them at the lowest level possible.
If you have an unexpected exception, discard current operation completely. Don’t pretend you know how to deal with them.
I don't really see how you're controlling program flow in the code you cited. You'll never see another exception besides the ArgumentOutOfRange exception. (So your second catch clause will never be hit). All you're doing is using an extremely costly throw to mimic an if statement.
Also you aren't performing the more sinister of operations where you just throw an exception purely for it to be caught somewhere else to perform flow control. You're actually handling an exceptional case.
Apart from the reasons stated, one reason not to use exceptions for flow control is that it can greatly complicate the debugging process.
For example, when I'm trying to track down a bug in VS I'll typically turn on "break on all exceptions". If you're using exceptions for flow control then I'm going to be breaking in the debugger on a regular basis and will have to keep ignoring these non-exceptional exceptions until I get to the real problem. This is likely to drive someone mad!!
Lets assume you have a method that does some calculations. There are many input parameters it has to validate, then to return a number greater then 0.
Using return values to signal validation error, it's simple: if method returned a number lesser then 0, an error occured. How to tell then which parameter didn't validate?
I remember from my C days a lot of functions returned error codes like this:
-1 - x lesser then MinX
-2 - x greater then MaxX
-3 - y lesser then MinY
etc.
Is it really less readable then throwing and catching an exception?
Because the code is hard to read, you may have troubles debugging it, you will introduce new bugs when fixing bugs after a long time, it is more expensive in terms of resources and time, and it annoys you if you are debugging your code and the debugger halts on the occurence of every exception ;)
If you are using exception handlers for control flow, you are being too general and lazy. As someone else mentioned, you know something happened if you are handling processing in the handler, but what exactly? Essentially you are using the exception for an else statement, if you are using it for control flow.
If you don't know what possible state could occur, then you can use an exception handler for unexpected states, for example when you have to use a third-party library, or you have to catch everything in the UI to show a nice error message and log the exception.
However, if you do know what might go wrong, and you don't put an if statement or something to check for it, then you are just being lazy. Allowing the exception handler to be the catch-all for stuff you know could happen is lazy, and it will come back to haunt you later, because you will be trying to fix a situation in your exception handler based on a possibly false assumption.
If you put logic in your exception handler to determine what exactly happened, then you would be quite stupid for not putting that logic inside the try block.
Exception handlers are the last resort, for when you run out of ideas/ways to stop something from going wrong, or things are beyond your ability to control. Like, the server is down and times out and you can't prevent that exception from being thrown.
Finally, having all the checks done up front shows what you know or expect will occur and makes it explicit. Code should be clear in intent. What would you rather read?
You can use a hammer's claw to turn a screw, just like you can use exceptions for control flow. That doesn't mean it is the intended usage of the feature. The if statement expresses conditions, whose intended usage is controlling flow.
If you are using a feature in an unintended way while choosing to not use the feature designed for that purpose, there will be an associated cost. In this case, clarity and performance suffer for no real added value. What does using exceptions buy you over the widely-accepted if statement?
Said another way: just because you can doesn't mean you should.
As others have mentioned numerously, the principle of least astonishment will forbid that you use exceptions excessively for control flow only purposes. On the other hand, no rule is 100% correct, and there are always those cases where an exception is "just the right tool" - much like goto itself, by the way, which ships in the form of break and continue in languages like Java, which are often the perfect way to jump out of heavily nested loops, which aren't always avoidable.
The following blog post explains a rather complex but also rather interesting use-case for a non-local ControlFlowException:
http://blog.jooq.org/2013/04/28/rare-uses-of-a-controlflowexception
It explains how inside of jOOQ (a SQL abstraction library for Java), such exceptions are occasionally used to abort the SQL rendering process early when some "rare" condition is met.
Examples of such conditions are:
Too many bind values are encountered. Some databases do not support arbitrary numbers of bind values in their SQL statements (SQLite: 999, Ingres 10.1.0: 1024, Sybase ASE 15.5: 2000, SQL Server 2008: 2100). In those cases, jOOQ aborts the SQL rendering phase and re-renders the SQL statement with inlined bind values. Example:
// Pseudo-code attaching a "handler" that will
// abort query rendering once the maximum number
// of bind values was exceeded:
context.attachBindValueCounter();
String sql;
try {
// In most cases, this will succeed:
sql = query.render();
}
catch (ReRenderWithInlinedVariables e) {
sql = query.renderWithInlinedBindValues();
}
If we explicitly extracted the bind values from the query AST to count them every time, we'd waste valuable CPU cycles for those 99.9% of the queries that don't suffer from this problem.
Some logic is available only indirectly via an API that we want to execute only "partially". The UpdatableRecord.store() method generates an INSERT or UPDATE statement, depending on the Record's internal flags. From the "outside", we don't know what kind of logic is contained in store() (e.g. optimistic locking, event listener handling, etc.) so we don't want to repeat that logic when we store several records in a batch statement, where we'd like to have store() only generate the SQL statement, not actually execute it. Example:
// Pseudo-code attaching a "handler" that will
// prevent query execution and throw exceptions
// instead:
context.attachQueryCollector();
// Collect the SQL for every store operation
for (int i = 0; i < records.length; i++) {
try {
records[i].store();
}
// The attached handler will result in this
// exception being thrown rather than actually
// storing records to the database
catch (QueryCollectorException e) {
// The exception is thrown after the rendered
// SQL statement is available
queries.add(e.query());
}
}
If we had externalised the store() logic into "re-usable" API that can be customised to optionally not execute the SQL, we'd be looking into creating a rather hard to maintain, hardly re-usable API.
Conclusion
In essence, our usage of these non-local gotos is just along the lines of what [Mason Wheeler][5] said in his answer:
"I just encountered a situation that I cannot deal with properly at this point, because I don't have enough context to handle it, but the routine that called me (or something further up the call stack) ought to know how to handle it."
Both usages of ControlFlowExceptions were rather easy to implement compared to their alternatives, allowing us to reuse a wide range of logic without refactoring it out of the relevant internals.
But the feeling of this being a bit of a surprise to future maintainers remains. The code feels rather delicate and while it was the right choice in this case, we'd always prefer not to use exceptions for local control flow, where it is easy to avoid using ordinary branching through if - else.
Typically there is nothing wrong, per se, with handling an exception at a low level. An exception IS a valid message that provides a lot of detail for why an operation cannot be performed. And if you can handle it, you ought to.
In general if you know there is a high probability of failure that you can check for... you should do the check... i.e. if(obj != null) obj.method()
In your case, i'm not familiar enough with the C# library to know if date time has an easy way to check whether a timestamp is out of bounds. If it does, just call if(.isvalid(ts))
otherwise your code is basically fine.
So, basically it comes down to whichever way creates cleaner code... if the operation to guard against an expected exception is more complex than just handling the exception; than you have my permission to handle the exception instead of creating complex guards everywhere.
You might be interested in having a look at Common Lisp's condition system which is a sort of generalization of exceptions done right. Because you can unwind the stack or not in a controlled way, you get "restarts" as well, which are extremely handy.
This doesn't have anything much to do with best practices in other languages, but it shows you what can be done with some design thought in (roughly) the direction you are thinking of.
Of course there are still performance considerations if you're bouncing up and down the stack like a yo-yo, but it's a much more general idea than "oh crap, lets bail" kind of approach that most catch/throw exception systems embody.
I don't think there is anything wrong with using Exceptions for flow-control. Exceptions are somewhat similar to continuations and in statically typed languages, Exceptions are more powerful than continuations, so, if you need continuations but your language doesn't have them, you can use Exceptions to implement them.
Well, actually, if you need continuations and your language doesn't have them, you chose the wrong language and you should rather be using a different one. But sometimes you don't have a choice: client-side web programming is the prime example – there's just no way to get around JavaScript.
An example: Microsoft Volta is a project to allow writing web applications in straight-forward .NET, and let the framework take care of figuring out which bits need to run where. One consequence of this is that Volta needs to be able to compile CIL to JavaScript, so that you can run code on the client. However, there is a problem: .NET has multithreading, JavaScript doesn't. So, Volta implements continuations in JavaScript using JavaScript Exceptions, then implements .NET Threads using those continuations. That way, Volta applications that use threads can be compiled to run in an unmodified browser – no Silverlight needed.
But you won't always know what happens in the Method/s that you call. You won't know exactly where the exception was thrown. Without examining the exception object in greater detail....
I feel that there is nothing wrong with your example. On the contrary, it would be a sin to ignore the exception thrown by the called function.
In the JVM, throwing an exception is not that expensive, only creating the exception with new xyzException(...), because the latter involves a stack walk. So if you have some exceptions created in advance, you may throw them many times without costs. Of course, this way you can't pass data along with the exception, but I think that is a bad thing to do anyway.
There are a few general mechanisms via which a language could allow for a method to exit without returning a value and unwind to the next "catch" block:
Have the method examine the stack frame to determine the call site, and use the metadata for the call site to find either information about a try block within the calling method, or the location where the calling method stored the address of its caller; in the latter situation, examine metadata for the caller's caller to determine in the same fashion as the immediate caller, repeating until one finds a try block or the stack is empty. This approach adds very little overhead to the no-exception case (it does preclude some optimizations) but is expensive when an exception occurs.
Have the method return a "hidden" flag which distinguishes a normal return from an exception, and have the caller check that flag and branch to an "exception" routine if it's set. This routine adds 1-2 instructions to the no-exception case, but relatively little overhead when an exception occurs.
Have the caller place exception-handling information or code at a fixed address relative to the stacked return address. For example, with the ARM, instead of using the instruction "BL subroutine", one could use the sequence:
adr lr,next_instr
b subroutine
b handle_exception
next_instr:
To exit normally, the subroutine would simply do bx lr or pop {pc}; in case of an abnormal exit, the subroutine would either subtract 4 from LR before performing the return or use sub lr,#4,pc (depending upon the ARM variation, execution mode, etc.) This approach will malfunction very badly if the caller is not designed to accommodate it.
A language or framework which uses checked exceptions might benefit from having those handled with a mechanism like #2 or #3 above, while unchecked exceptions are handled using #1. Although the implementation of checked exceptions in Java is rather nuisancesome, they would not be a bad concept if there were a means by which a call site could say, essentially, "This method is declared as throwing XX, but I don't expect it ever to do so; if it does, rethrow as an "unchecked" exception. In a framework where checked exceptions were handled in such fashion, they could be an effective means of flow control for things like parsing methods which in some contexts may have a high likelihood of failure, but where failure should return fundamentally different information than success. I'm unaware of any frameworks that use such a pattern, however. Instead, the more common pattern is to use the first approach above (minimal cost for the no-exception case, but high cost when exceptions are thrown) for all exceptions.
One aesthetic reason:
A try always comes with a catch, whereas an if doesn't have to come with an else.
if (PerformCheckSucceeded())
DoSomething();
With try/catch, it becomes much more verbose.
try
{
PerformCheckSucceeded();
DoSomething();
}
catch
{
}
That's 6 lines of code too many.

Recursive function causing an overflow despite it's not infinite

The following function I wrote causing the program to crash due to the stack overflow, although the recursion is finite.
public static void Key(char[] chars, int i, int l, string str) {
string newStr=null;
for(int j=0; j<l; j++)
newStr+=chars[i/(int)Math.Pow(68, j)%68];
if(newStr==str)
return;
Key(chars, ++i, l, newStr);
}
When I call the method with these parameters, all goes fine:
Key(chars, 0, 4, "aaaa");
But when it comes to bigger number of calls, it throws the StackOverflowException. So I assume the problem is that althogh the method is finite the call stack gets filled up before the the methods' job is done. So I have a few questions about that:
Why the functions don't get clear from the stack, they are no longer needed, they don't return any value.
And if so, is there a way i could clear the stack manually? I tried the StackTrace class but it's helpless in this case.
1) The function clears when it has ended execution. Calling Key inside of itself means that every call to it will be on the stack until the last call ends, at which stage they will all end in reverse order.
2) You can't clear the stack and carry on with the call.
The stack is still limited. For standard C# applications it is 1 MB. For ASP it is 256 KB. If you need more stack space than that, you'll see the exception.
If you create the thread yourself, you can adjust the stack size using this constructor.
Alternatively, you can rewrite your algorithm so it keeps track of state without using recursion.
It looks like the exit condition of NewStr == Str will never happen and eventually, you will run out of stack.
So, regardless of whether your code reaches its base case or not, your code should never get a stack overflow exception in production.
For example, this should give us a stack overflow right?
private static void Main(string[] args)
{
RecursorKey(0);
}
public static int RecursorKey(int val)
{
return RecursorKey(val ++);
}
In fact it doesn't, if you use .NET 4 and are not debugging and your binary is compiled as release.
This is because the clr is smart enough to do what is called tail recursion. Tail recursion isn't applicable everywhere, but in your case it is, and I was easily able to reproduce your exact problem. In your case, each time you call the function it pushes another stack frame onto the stack, so you get the overflow, even though the algorithm would theoretically end at some point.
To solve your issue, here is how you can enable optimizations.
However, I should point out that Jon Skeet recommends to not rely on tail call optimizations. Given that Jon's a smart guy, I'd listen to it him. If your code is going to encounter large stack depths, try rewriting it without recursion.

When should I use a ThrowHelper method instead of throwing directly?

When is it appropriate to use a ThrowHelper method instead of throwing directly?
void MyMethod() {
...
//throw new ArgumentNullException("paramName");
ThrowArgumentNullException("paramName");
...
}
void ThrowArgumentNullException(string paramName) {
throw new ArgumentNullException(paramName);
}
I've read that calling a ThrowHelper method (a method with the only purpouse of throwing an exception) instead of throwing directly should yield smaller bytecode.
This, and the obvious encapsulation (another layer of indirection), may be good reasons to not throw directly, at least in some scenarios.
Anyway, IMO the drawbacks are not insubstantial too.
A part of the (exceptional) control flow is hidden
Exceptions end up having a more cryptic stacktrace
the compiler (2.0) will not recognize that ThrowHelper calls are exit points from a method, hence some code-around is necessary.
My limited experience is that often the overall design gets worse.
int MyMethod(int i) {
switch (i) {
case 1:
return 1;
default:
ThrowMyException();
}
return 0; // Unreachable (but needed) code
}
This may partly be a matter of personal taste. Anyway what are your personal guidelines about this issue? Do you find it is a good idea to use ThrowHelpers for all those common tasks like method param validation (ThrowArgumentNullException(paramName) and such)?
Am I missing something obvious on this issue?
Btw I'm trying not to mix this issue with the validation issue, e.g. a method like:
ThrowIfNameIsNullOrEmpty(name);
My default approach is to throw directly from the exceptional code branch.
The DRY principle and the rule of 3 guides when I would wrap that in a method: if I find myself writing the same 'throw' code 3 or more times, I consider wrapping it in a helper method.
However, instead of a method that throws, it's much better to write a Factory Method that creates the desired Exception and then throw it from the original place:
public void DoStuff(string stuff)
{
// Do something
throw this.CreateException("Boo hiss!");
}
private MyException CreateException(string message)
{
return new MyException(message);
}
This preserves the stack trace.
This seems like a needless abstraction to me. You have a method that does one thing, named as verbosely as the thing that it does.
The argument about less bytecode is practically meaningless since the size of your code rarely matters (you wouldn't be saving more than a kilobyte per instance of your program, unless you throw that exception from a ridiculous number of places in your source code). Meanwhile your stated drawbacks are all real concerns, especially where clarity of exception handling is concerned.
Basically abstracting away minor things like this usually comes back to bite you. (Some entertaining reading on the subject: http://www.joelonsoftware.com/articles/LeakyAbstractions.html)
I would say that the only reasonable time to do this is in something like the BCL where the amount of usage of the class is wide spread enough that the savings may be worth it. It would have to make sense, however. In your case, I don't think you're actually saving any space. Instances of ThrowHelper in the BCL reduce size by substituting enums for strings and method calls (to get string messages). Your case simply passes the same arguments and thus doesn't achieve any savings. It costs just as much to call your method as it does to throw the exception in place.
From what I've understood, the smaller bytecode is pretty much the only advantage (See this question), so I don't expect you'll see a lot of arguments for it in the answers here.
I always try to throw my own exceptions for the mere purpose of customization. I can throw a message that is going to tell me in short order what the problem is (and possibly where it originated from). As far as performance issues go, I try to limit the number of exceptions thrown on the release versions of my software as much as possible, so I have never actually thought about it too much. I am interested to see what other say though.
That is my 2 cents. Please take it as such.
There are two justifiable reasons to do this. The first is if the same exception message / info is supposed to be shared in multiple places.
The second is for performance reasons. Historically a throw in a method would prevent that method from being inlined which can drastically impact performance for small methods. You see this very often in collection types where small methods that modify the collection need to check the bounds before performing the modification.
The idea is that we want the normal case to be inlined as far up the stack as possible and to do so the throw has to stay in it's own method which is not inlined.
See these blog posts among many others for further explanation : https://devblogs.microsoft.com/dotnet/performance_improvements_in_net_7/#exceptions
https://devblogs.microsoft.com/dotnet/performance-improvements-in-net-5/
One advantage not yet mentioned to using either a throw-helper or exception-factory method is the possibility of passing a delegate for such a purpose. When using a throw-helper delegate, one gains the possibility of not throwing (which would in some cases be a good thing; in other cases, a bad thing). For example:
string TryGetEntry(string key, Funct<problemCause, string> errorHandler)
{
if (disposed)
return errorHandler(problemCause.ObjectDisposed);
else if (...entry_doesnt_exist...)
return errorHandler(problemCause.ObjectNotFound);
else
return ...entry...;
}
string GetEntry(string key)
{
return TryGetEntry(key, ThrowExceptionOnError);
}
bool TryGetEntry(string key, ref result)
{
bool ok;
string result;
result = TryGetEntry(key, (problemCause theProblem) => {ok=false; return (string)null;});
return ok;
}
Using this approach, one may easily use one routine with a variety of error-handling strategies. One could eliminate the need for a closure by having the TryGetEntry method accept a generic type parameter along with a 'ref' parameter of that type and a delegate that accepts such a 'ref' parameter; the example is simpler, though, just using a closure.
Although having smaller bytecode seems only save you a few kb, it definetly "does" effect performance because more code have to be fetched/loaded to run your method which also means more cpu cache wasted. If you write high perf code where every micro-optimisation matters then it matters.
But what is more important you can localize or one day may want to localize your exception messages.

Code demonstrating the importance of a Constrained Execution Region

Could anyone create a short sample that breaks, unless the [ReliabilityContract(Consistency.WillNotCorruptState, Cer.Success)] is applied?
I just ran through this sample on MSDN and am unable to get it to break, even if I comment out the ReliabilityContract attribute. Finally seems to always get called.
using System;
using System.Runtime.CompilerServices;
using System.Runtime.ConstrainedExecution;
class Program {
static bool cerWorked;
static void Main( string[] args ) {
try {
cerWorked = true;
MyFn();
}
catch( OutOfMemoryException ) {
Console.WriteLine( cerWorked );
}
Console.ReadLine();
}
unsafe struct Big {
public fixed byte Bytes[int.MaxValue];
}
//results depends on the existance of this attribute
[ReliabilityContract( Consistency.WillNotCorruptState, Cer.Success )]
unsafe static void StackOverflow() {
Big big;
big.Bytes[ int.MaxValue - 1 ] = 1;
}
static void MyFn() {
RuntimeHelpers.PrepareConstrainedRegions();
try {
cerWorked = false;
}
finally {
StackOverflow();
}
}
}
When MyFn is jitted, it tries to create a ConstrainedRegion from the finally block.
In the case without the ReliabilityContract, no proper ConstrainedRegion could be formed, so a regular code is emitted. The stack overflow exception is thrown on the call to Stackoverflow (after the try block is executed).
In the case with the ReliabilityContract, a ConstrainedRegion could be formed and the stack requirements of methods in the finally block could be lifted into MyFn. The stack overflow exception is now thrown on the call to MyFn (before the try block is ever executed).
The primary driver for this functionality was to support SQL Servers stringent requirements for integrating the CLR into SQL Server 2005. Probably so that others could use and likely for legal reasons this deep integration was published as a hosting API but the technical requirements were SQL Servers. Remember that in SQL Server, MTBF is measured in months not hours and the process restarting because an unhandled exception happened is completely unacceptable.
This MSDN Magazine article is probably the best one that I've seen describing the technical requirements the constrained execution environment was built for.
The ReliabilityContract is used to decorate your methods to indicate how they operate in terms of potentially asynchronous exceptions (ThreadAbortException, OutOfMemoryException, StackOverflowException). A constrained execution region is defined as a catch or finally (or fault) section of a try block which is immediately preceded by a call to System.Runtime.CompilerServices.RuntimeServices.PrepareConstrainedRegions().
System.Runtime.CompilerServices.RuntimeServices.PrepareConstrainedRegions();
try
{
// this is not constrained
}
catch (Exception e)
{
// this IS a CER
}
finally
{
// this IS ALSO a CER
}
When a ReliabilityContract method is used from within a CER, there are 2 things that happen to it. The method will be pre-prepared by the JIT so that it won't invoke the JIT compiler the first time it's executed which could try to use memory itself and cause it's own exceptions. Also while inside of a CER the runtime promises not to throw a ThreadAbort exception and will wait to throw the exception until after the CER has completed.
So back to your question; I'm still trying to come up with a simple code sample that will directly answer your question. As you may have already guessed though, the simplest sample is going to require quite a lot of code given the asynchronous nature of the problem and will likely be SQLCLR code because that is the environment which will use CERs for the most benefit.
Are you running the MSDN sample under the debugger? I do not think it is possible for CER to function when you are executing within the debugger, as the debugger itself changes the nature of execution anyway.
If you build and run the app in optimized release mode, you should be able to see it fail.
While I don't have a concrete example for you, I think you're missing the point of have a try..finally block inside of the methods that guarantee success. The whole point of saying that the method will always succeed means that regards of what (exception) happens during execution, steps will be taken to ensure the data being accessed will be in a valid state when the method returns. Without the try..finally, you wouldn't be ensuring anything, and could mean that only half of the operations you wanted to happen, would happen. Thus, Cer.Success doesn't actually guarantee success, it only states that you as the developer are guaranteeing success.
Check out this page for an explanation of the differences between Success and MayFail states as it pertains to an Array.CopyTo method: http://weblogs.asp.net/justin_rogers/archive/2004/10/05/238275.aspx
CER attributes are means of documentation. They do influence how CLR will execute code in some situations, but I believe they (or lack of them) will never result in error in current versions of .NET.
They are mostly 'reserved for future use'.

Categories

Resources