Given a DateTime representing a person's birthday, how do I calculate their age in years?
An easy to understand and simple solution.
// Save today's date.
var today = DateTime.Today;
// Calculate the age.
var age = today.Year - birthdate.Year;
// Go back to the year in which the person was born in case of a leap year
if (birthdate.Date > today.AddYears(-age)) age--;
However, this assumes you are looking for the western idea of the age and not using East Asian reckoning.
This is a strange way to do it, but if you format the date to yyyymmdd and subtract the date of birth from the current date then drop the last 4 digits you've got the age :)
I don't know C#, but I believe this will work in any language.
20080814 - 19800703 = 280111
Drop the last 4 digits = 28.
C# Code:
int now = int.Parse(DateTime.Now.ToString("yyyyMMdd"));
int dob = int.Parse(dateOfBirth.ToString("yyyyMMdd"));
int age = (now - dob) / 10000;
Or alternatively without all the type conversion in the form of an extension method. Error checking omitted:
public static Int32 GetAge(this DateTime dateOfBirth)
{
var today = DateTime.Today;
var a = (today.Year * 100 + today.Month) * 100 + today.Day;
var b = (dateOfBirth.Year * 100 + dateOfBirth.Month) * 100 + dateOfBirth.Day;
return (a - b) / 10000;
}
Here is a test snippet:
DateTime bDay = new DateTime(2000, 2, 29);
DateTime now = new DateTime(2009, 2, 28);
MessageBox.Show(string.Format("Test {0} {1} {2}",
CalculateAgeWrong1(bDay, now), // outputs 9
CalculateAgeWrong2(bDay, now), // outputs 9
CalculateAgeCorrect(bDay, now), // outputs 8
CalculateAgeCorrect2(bDay, now))); // outputs 8
Here you have the methods:
public int CalculateAgeWrong1(DateTime birthDate, DateTime now)
{
return new DateTime(now.Subtract(birthDate).Ticks).Year - 1;
}
public int CalculateAgeWrong2(DateTime birthDate, DateTime now)
{
int age = now.Year - birthDate.Year;
if (now < birthDate.AddYears(age))
age--;
return age;
}
public int CalculateAgeCorrect(DateTime birthDate, DateTime now)
{
int age = now.Year - birthDate.Year;
if (now.Month < birthDate.Month || (now.Month == birthDate.Month && now.Day < birthDate.Day))
age--;
return age;
}
public int CalculateAgeCorrect2(DateTime birthDate, DateTime now)
{
int age = now.Year - birthDate.Year;
// For leap years we need this
if (birthDate > now.AddYears(-age))
age--;
// Don't use:
// if (birthDate.AddYears(age) > now)
// age--;
return age;
}
The simple answer to this is to apply AddYears as shown below because this is the only native method to add years to the 29th of Feb. of leap years and obtain the correct result of the 28th of Feb. for common years.
Some feel that 1th of Mar. is the birthday of leaplings but neither .Net nor any official rule supports this, nor does common logic explain why some born in February should have 75% of their birthdays in another month.
Further, an Age method lends itself to be added as an extension to DateTime. By this you can obtain the age in the simplest possible way:
List item
int age = birthDate.Age();
public static class DateTimeExtensions
{
/// <summary>
/// Calculates the age in years of the current System.DateTime object today.
/// </summary>
/// <param name="birthDate">The date of birth</param>
/// <returns>Age in years today. 0 is returned for a future date of birth.</returns>
public static int Age(this DateTime birthDate)
{
return Age(birthDate, DateTime.Today);
}
/// <summary>
/// Calculates the age in years of the current System.DateTime object on a later date.
/// </summary>
/// <param name="birthDate">The date of birth</param>
/// <param name="laterDate">The date on which to calculate the age.</param>
/// <returns>Age in years on a later day. 0 is returned as minimum.</returns>
public static int Age(this DateTime birthDate, DateTime laterDate)
{
int age;
age = laterDate.Year - birthDate.Year;
if (age > 0)
{
age -= Convert.ToInt32(laterDate.Date < birthDate.Date.AddYears(age));
}
else
{
age = 0;
}
return age;
}
}
Now, run this test:
class Program
{
static void Main(string[] args)
{
RunTest();
}
private static void RunTest()
{
DateTime birthDate = new DateTime(2000, 2, 28);
DateTime laterDate = new DateTime(2011, 2, 27);
string iso = "yyyy-MM-dd";
for (int i = 0; i < 3; i++)
{
for (int j = 0; j < 3; j++)
{
Console.WriteLine("Birth date: " + birthDate.AddDays(i).ToString(iso) + " Later date: " + laterDate.AddDays(j).ToString(iso) + " Age: " + birthDate.AddDays(i).Age(laterDate.AddDays(j)).ToString());
}
}
Console.ReadKey();
}
}
The critical date example is this:
Birth date: 2000-02-29 Later date: 2011-02-28 Age: 11
Output:
{
Birth date: 2000-02-28 Later date: 2011-02-27 Age: 10
Birth date: 2000-02-28 Later date: 2011-02-28 Age: 11
Birth date: 2000-02-28 Later date: 2011-03-01 Age: 11
Birth date: 2000-02-29 Later date: 2011-02-27 Age: 10
Birth date: 2000-02-29 Later date: 2011-02-28 Age: 11
Birth date: 2000-02-29 Later date: 2011-03-01 Age: 11
Birth date: 2000-03-01 Later date: 2011-02-27 Age: 10
Birth date: 2000-03-01 Later date: 2011-02-28 Age: 10
Birth date: 2000-03-01 Later date: 2011-03-01 Age: 11
}
And for the later date 2012-02-28:
{
Birth date: 2000-02-28 Later date: 2012-02-28 Age: 12
Birth date: 2000-02-28 Later date: 2012-02-29 Age: 12
Birth date: 2000-02-28 Later date: 2012-03-01 Age: 12
Birth date: 2000-02-29 Later date: 2012-02-28 Age: 11
Birth date: 2000-02-29 Later date: 2012-02-29 Age: 12
Birth date: 2000-02-29 Later date: 2012-03-01 Age: 12
Birth date: 2000-03-01 Later date: 2012-02-28 Age: 11
Birth date: 2000-03-01 Later date: 2012-02-29 Age: 11
Birth date: 2000-03-01 Later date: 2012-03-01 Age: 12
}
My suggestion
int age = (int) ((DateTime.Now - bday).TotalDays/365.242199);
That seems to have the year changing on the right date. (I spot tested up to age 107.)
Another function, not by me but found on the web and refined it a bit:
public static int GetAge(DateTime birthDate)
{
DateTime n = DateTime.Now; // To avoid a race condition around midnight
int age = n.Year - birthDate.Year;
if (n.Month < birthDate.Month || (n.Month == birthDate.Month && n.Day < birthDate.Day))
age--;
return age;
}
Just two things that come into my mind: What about people from countries that do not use the Gregorian calendar? DateTime.Now is in the server-specific culture I think. I have absolutely zero knowledge about actually working with Asian calendars and I do not know if there is an easy way to convert dates between calendars, but just in case you're wondering about those Chinese guys from the year 4660 :-)
2 Main problems to solve are:
1. Calculate Exact age - in years, months, days, etc.
2. Calculate Generally perceived age - people usually do not care how old they exactly are, they just care when their birthday in the current year is.
Solution for 1 is obvious:
DateTime birth = DateTime.Parse("1.1.2000");
DateTime today = DateTime.Today; //we usually don't care about birth time
TimeSpan age = today - birth; //.NET FCL should guarantee this as precise
double ageInDays = age.TotalDays; //total number of days ... also precise
double daysInYear = 365.2425; //statistical value for 400 years
double ageInYears = ageInDays / daysInYear; //can be shifted ... not so precise
Solution for 2 is the one which is not so precise in determing total age, but is perceived as precise by people. People also usually use it, when they calculate their age "manually":
DateTime birth = DateTime.Parse("1.1.2000");
DateTime today = DateTime.Today;
int age = today.Year - birth.Year; //people perceive their age in years
if (today.Month < birth.Month ||
((today.Month == birth.Month) && (today.Day < birth.Day)))
{
age--; //birthday in current year not yet reached, we are 1 year younger ;)
//+ no birthday for 29.2. guys ... sorry, just wrong date for birth
}
Notes to 2.:
This is my preferred solution
We cannot use DateTime.DayOfYear or TimeSpans, as they shift number of days in leap years
I have put there little more lines for readability
Just one more note ... I would create 2 static overloaded methods for it, one for universal usage, second for usage-friendliness:
public static int GetAge(DateTime bithDay, DateTime today)
{
//chosen solution method body
}
public static int GetAge(DateTime birthDay)
{
return GetAge(birthDay, DateTime.Now);
}
The best way that I know of because of leap years and everything is:
DateTime birthDate = new DateTime(2000,3,1);
int age = (int)Math.Floor((DateTime.Now - birthDate).TotalDays / 365.25D);
Here's a one-liner:
int age = new DateTime(DateTime.Now.Subtract(birthday).Ticks).Year-1;
This is the version we use here. It works, and it's fairly simple. It's the same idea as Jeff's but I think it's a little clearer because it separates out the logic for subtracting one, so it's a little easier to understand.
public static int GetAge(this DateTime dateOfBirth, DateTime dateAsAt)
{
return dateAsAt.Year - dateOfBirth.Year - (dateOfBirth.DayOfYear < dateAsAt.DayOfYear ? 0 : 1);
}
You could expand the ternary operator to make it even clearer, if you think that sort of thing is unclear.
Obviously this is done as an extension method on DateTime, but clearly you can grab that one line of code that does the work and put it anywhere. Here we have another overload of the Extension method that passes in DateTime.Now, just for completeness.
This gives "more detail" to this question. Maybe this is what you're looking for
DateTime birth = new DateTime(1974, 8, 29);
DateTime today = DateTime.Now;
TimeSpan span = today - birth;
DateTime age = DateTime.MinValue + span;
// Make adjustment due to MinValue equalling 1/1/1
int years = age.Year - 1;
int months = age.Month - 1;
int days = age.Day - 1;
// Print out not only how many years old they are but give months and days as well
Console.Write("{0} years, {1} months, {2} days", years, months, days);
I use this:
public static class DateTimeExtensions
{
public static int Age(this DateTime birthDate)
{
return Age(birthDate, DateTime.Now);
}
public static int Age(this DateTime birthDate, DateTime offsetDate)
{
int result=0;
result = offsetDate.Year - birthDate.Year;
if (offsetDate.DayOfYear < birthDate.DayOfYear)
{
result--;
}
return result;
}
}
Here's yet another answer:
public static int AgeInYears(DateTime birthday, DateTime today)
{
return ((today.Year - birthday.Year) * 372 + (today.Month - birthday.Month) * 31 + (today.Day - birthday.Day)) / 372;
}
This has been extensively unit-tested. It does look a bit "magic". The number 372 is the number of days there would be in a year if every month had 31 days.
The explanation of why it works (lifted from here) is:
Let's set Yn = DateTime.Now.Year, Yb = birthday.Year, Mn = DateTime.Now.Month, Mb = birthday.Month, Dn = DateTime.Now.Day, Db = birthday.Day
age = Yn - Yb + (31*(Mn - Mb) + (Dn - Db)) / 372
We know that what we need is either Yn-Yb if the date has already been reached, Yn-Yb-1 if it has not.
a) If Mn<Mb, we have -341 <= 31*(Mn-Mb) <= -31 and -30 <= Dn-Db <= 30
-371 <= 31*(Mn - Mb) + (Dn - Db) <= -1
With integer division
(31*(Mn - Mb) + (Dn - Db)) / 372 = -1
b) If Mn=Mb and Dn<Db, we have 31*(Mn - Mb) = 0 and -30 <= Dn-Db <= -1
With integer division, again
(31*(Mn - Mb) + (Dn - Db)) / 372 = -1
c) If Mn>Mb, we have 31 <= 31*(Mn-Mb) <= 341 and -30 <= Dn-Db <= 30
1 <= 31*(Mn - Mb) + (Dn - Db) <= 371
With integer division
(31*(Mn - Mb) + (Dn - Db)) / 372 = 0
d) If Mn=Mb and Dn>Db, we have 31*(Mn - Mb) = 0 and 1 <= Dn-Db <= 30
With integer division, again
(31*(Mn - Mb) + (Dn - Db)) / 372 = 0
e) If Mn=Mb and Dn=Db, we have 31*(Mn - Mb) + Dn-Db = 0
and therefore (31*(Mn - Mb) + (Dn - Db)) / 372 = 0
I have created a SQL Server User Defined Function to calculate someone's age, given their birthdate. This is useful when you need it as part of a query:
using System;
using System.Data;
using System.Data.Sql;
using System.Data.SqlClient;
using System.Data.SqlTypes;
using Microsoft.SqlServer.Server;
public partial class UserDefinedFunctions
{
[SqlFunction(DataAccess = DataAccessKind.Read)]
public static SqlInt32 CalculateAge(string strBirthDate)
{
DateTime dtBirthDate = new DateTime();
dtBirthDate = Convert.ToDateTime(strBirthDate);
DateTime dtToday = DateTime.Now;
// get the difference in years
int years = dtToday.Year - dtBirthDate.Year;
// subtract another year if we're before the
// birth day in the current year
if (dtToday.Month < dtBirthDate.Month || (dtToday.Month == dtBirthDate.Month && dtToday.Day < dtBirthDate.Day))
years=years-1;
int intCustomerAge = years;
return intCustomerAge;
}
};
I've spent some time working on this and came up with this to calculate someone's age in years, months and days. I've tested against the Feb 29th problem and leap years and it seems to work, I'd appreciate any feedback:
public void LoopAge(DateTime myDOB, DateTime FutureDate)
{
int years = 0;
int months = 0;
int days = 0;
DateTime tmpMyDOB = new DateTime(myDOB.Year, myDOB.Month, 1);
DateTime tmpFutureDate = new DateTime(FutureDate.Year, FutureDate.Month, 1);
while (tmpMyDOB.AddYears(years).AddMonths(months) < tmpFutureDate)
{
months++;
if (months > 12)
{
years++;
months = months - 12;
}
}
if (FutureDate.Day >= myDOB.Day)
{
days = days + FutureDate.Day - myDOB.Day;
}
else
{
months--;
if (months < 0)
{
years--;
months = months + 12;
}
days +=
DateTime.DaysInMonth(
FutureDate.AddMonths(-1).Year, FutureDate.AddMonths(-1).Month
) + FutureDate.Day - myDOB.Day;
}
//add an extra day if the dob is a leap day
if (DateTime.IsLeapYear(myDOB.Year) && myDOB.Month == 2 && myDOB.Day == 29)
{
//but only if the future date is less than 1st March
if (FutureDate >= new DateTime(FutureDate.Year, 3, 1))
days++;
}
}
Do we need to consider people who is smaller than 1 year? as Chinese culture, we describe small babies' age as 2 months or 4 weeks.
Below is my implementation, it is not as simple as what I imagined, especially to deal with date like 2/28.
public static string HowOld(DateTime birthday, DateTime now)
{
if (now < birthday)
throw new ArgumentOutOfRangeException("birthday must be less than now.");
TimeSpan diff = now - birthday;
int diffDays = (int)diff.TotalDays;
if (diffDays > 7)//year, month and week
{
int age = now.Year - birthday.Year;
if (birthday > now.AddYears(-age))
age--;
if (age > 0)
{
return age + (age > 1 ? " years" : " year");
}
else
{// month and week
DateTime d = birthday;
int diffMonth = 1;
while (d.AddMonths(diffMonth) <= now)
{
diffMonth++;
}
age = diffMonth-1;
if (age == 1 && d.Day > now.Day)
age--;
if (age > 0)
{
return age + (age > 1 ? " months" : " month");
}
else
{
age = diffDays / 7;
return age + (age > 1 ? " weeks" : " week");
}
}
}
else if (diffDays > 0)
{
int age = diffDays;
return age + (age > 1 ? " days" : " day");
}
else
{
int age = diffDays;
return "just born";
}
}
This implementation has passed below test cases.
[TestMethod]
public void TestAge()
{
string age = HowOld(new DateTime(2011, 1, 1), new DateTime(2012, 11, 30));
Assert.AreEqual("1 year", age);
age = HowOld(new DateTime(2011, 11, 30), new DateTime(2012, 11, 30));
Assert.AreEqual("1 year", age);
age = HowOld(new DateTime(2001, 1, 1), new DateTime(2012, 11, 30));
Assert.AreEqual("11 years", age);
age = HowOld(new DateTime(2012, 1, 1), new DateTime(2012, 11, 30));
Assert.AreEqual("10 months", age);
age = HowOld(new DateTime(2011, 12, 1), new DateTime(2012, 11, 30));
Assert.AreEqual("11 months", age);
age = HowOld(new DateTime(2012, 10, 1), new DateTime(2012, 11, 30));
Assert.AreEqual("1 month", age);
age = HowOld(new DateTime(2008, 2, 28), new DateTime(2009, 2, 28));
Assert.AreEqual("1 year", age);
age = HowOld(new DateTime(2008, 3, 28), new DateTime(2009, 2, 28));
Assert.AreEqual("11 months", age);
age = HowOld(new DateTime(2008, 3, 28), new DateTime(2009, 3, 28));
Assert.AreEqual("1 year", age);
age = HowOld(new DateTime(2009, 1, 28), new DateTime(2009, 2, 28));
Assert.AreEqual("1 month", age);
age = HowOld(new DateTime(2009, 2, 1), new DateTime(2009, 3, 1));
Assert.AreEqual("1 month", age);
// NOTE.
// new DateTime(2008, 1, 31).AddMonths(1) == new DateTime(2009, 2, 28);
// new DateTime(2008, 1, 28).AddMonths(1) == new DateTime(2009, 2, 28);
age = HowOld(new DateTime(2009, 1, 31), new DateTime(2009, 2, 28));
Assert.AreEqual("4 weeks", age);
age = HowOld(new DateTime(2009, 2, 1), new DateTime(2009, 2, 28));
Assert.AreEqual("3 weeks", age);
age = HowOld(new DateTime(2009, 2, 1), new DateTime(2009, 3, 1));
Assert.AreEqual("1 month", age);
age = HowOld(new DateTime(2012, 11, 5), new DateTime(2012, 11, 30));
Assert.AreEqual("3 weeks", age);
age = HowOld(new DateTime(2012, 11, 1), new DateTime(2012, 11, 30));
Assert.AreEqual("4 weeks", age);
age = HowOld(new DateTime(2012, 11, 20), new DateTime(2012, 11, 30));
Assert.AreEqual("1 week", age);
age = HowOld(new DateTime(2012, 11, 25), new DateTime(2012, 11, 30));
Assert.AreEqual("5 days", age);
age = HowOld(new DateTime(2012, 11, 29), new DateTime(2012, 11, 30));
Assert.AreEqual("1 day", age);
age = HowOld(new DateTime(2012, 11, 30), new DateTime(2012, 11, 30));
Assert.AreEqual("just born", age);
age = HowOld(new DateTime(2000, 2, 29), new DateTime(2009, 2, 28));
Assert.AreEqual("8 years", age);
age = HowOld(new DateTime(2000, 2, 29), new DateTime(2009, 3, 1));
Assert.AreEqual("9 years", age);
Exception e = null;
try
{
age = HowOld(new DateTime(2012, 12, 1), new DateTime(2012, 11, 30));
}
catch (ArgumentOutOfRangeException ex)
{
e = ex;
}
Assert.IsTrue(e != null);
}
Hope it's helpful.
The simplest way I've ever found is this. It works correctly for the US and western europe locales. Can't speak to other locales, especially places like China. 4 extra compares, at most, following the initial computation of age.
public int AgeInYears(DateTime birthDate, DateTime referenceDate)
{
Debug.Assert(referenceDate >= birthDate,
"birth date must be on or prior to the reference date");
DateTime birth = birthDate.Date;
DateTime reference = referenceDate.Date;
int years = (reference.Year - birth.Year);
//
// an offset of -1 is applied if the birth date has
// not yet occurred in the current year.
//
if (reference.Month > birth.Month);
else if (reference.Month < birth.Month)
--years;
else // in birth month
{
if (reference.Day < birth.Day)
--years;
}
return years ;
}
I was looking over the answers to this and noticed that nobody has made reference to regulatory/legal implications of leap day births. For instance, per Wikipedia, if you're born on February 29th in various jurisdictions, you're non-leap year birthday varies:
In the United Kingdom and Hong Kong: it's the ordinal day of the year, so the next day, March 1st is your birthday.
In New Zealand: it's the previous day, February 28th for the purposes of driver licencing, and March 1st for other purposes.
Taiwan: it's February 28th.
And as near as I can tell, in the US, the statutes are silent on the matter, leaving it up to the common law and to how various regulatory bodies define things in their regulations.
To that end, an improvement:
public enum LeapDayRule
{
OrdinalDay = 1 ,
LastDayOfMonth = 2 ,
}
static int ComputeAgeInYears(DateTime birth, DateTime reference, LeapYearBirthdayRule ruleInEffect)
{
bool isLeapYearBirthday = CultureInfo.CurrentCulture.Calendar.IsLeapDay(birth.Year, birth.Month, birth.Day);
DateTime cutoff;
if (isLeapYearBirthday && !DateTime.IsLeapYear(reference.Year))
{
switch (ruleInEffect)
{
case LeapDayRule.OrdinalDay:
cutoff = new DateTime(reference.Year, 1, 1)
.AddDays(birth.DayOfYear - 1);
break;
case LeapDayRule.LastDayOfMonth:
cutoff = new DateTime(reference.Year, birth.Month, 1)
.AddMonths(1)
.AddDays(-1);
break;
default:
throw new InvalidOperationException();
}
}
else
{
cutoff = new DateTime(reference.Year, birth.Month, birth.Day);
}
int age = (reference.Year - birth.Year) + (reference >= cutoff ? 0 : -1);
return age < 0 ? 0 : age;
}
It should be noted that this code assumes:
A western (European) reckoning of age, and
A calendar, like the Gregorian calendar that inserts a single leap day at the end of a month.
Keeping it simple (and possibly stupid:)).
DateTime birth = new DateTime(1975, 09, 27, 01, 00, 00, 00);
TimeSpan ts = DateTime.Now - birth;
Console.WriteLine("You are approximately " + ts.TotalSeconds.ToString() + " seconds old.");
This is not a direct answer, but more of a philosophical reasoning about the problem at hand from a quasi-scientific point of view.
I would argue that the question does not specify the unit nor culture in which to measure age, most answers seem to assume an integer annual representation. The SI-unit for time is second, ergo the correct generic answer should be (of course assuming normalized DateTime and taking no regard whatsoever to relativistic effects):
var lifeInSeconds = (DateTime.Now.Ticks - then.Ticks)/TickFactor;
In the Christian way of calculating age in years:
var then = ... // Then, in this case the birthday
var now = DateTime.UtcNow;
int age = now.Year - then.Year;
if (now.AddYears(-age) < then) age--;
In finance there is a similar problem when calculating something often referred to as the Day Count Fraction, which roughly is a number of years for a given period. And the age issue is really a time measuring issue.
Example for the actual/actual (counting all days "correctly") convention:
DateTime start, end = .... // Whatever, assume start is before end
double startYearContribution = 1 - (double) start.DayOfYear / (double) (DateTime.IsLeapYear(start.Year) ? 366 : 365);
double endYearContribution = (double)end.DayOfYear / (double)(DateTime.IsLeapYear(end.Year) ? 366 : 365);
double middleContribution = (double) (end.Year - start.Year - 1);
double DCF = startYearContribution + endYearContribution + middleContribution;
Another quite common way to measure time generally is by "serializing" (the dude who named this date convention must seriously have been trippin'):
DateTime start, end = .... // Whatever, assume start is before end
int days = (end - start).Days;
I wonder how long we have to go before a relativistic age in seconds becomes more useful than the rough approximation of earth-around-sun-cycles during one's lifetime so far :) Or in other words, when a period must be given a location or a function representing motion for itself to be valid :)
TimeSpan diff = DateTime.Now - birthdayDateTime;
string age = String.Format("{0:%y} years, {0:%M} months, {0:%d}, days old", diff);
I'm not sure how exactly you'd like it returned to you, so I just made a readable string.
Here is a solution.
DateTime dateOfBirth = new DateTime(2000, 4, 18);
DateTime currentDate = DateTime.Now;
int ageInYears = 0;
int ageInMonths = 0;
int ageInDays = 0;
ageInDays = currentDate.Day - dateOfBirth.Day;
ageInMonths = currentDate.Month - dateOfBirth.Month;
ageInYears = currentDate.Year - dateOfBirth.Year;
if (ageInDays < 0)
{
ageInDays += DateTime.DaysInMonth(currentDate.Year, currentDate.Month);
ageInMonths = ageInMonths--;
if (ageInMonths < 0)
{
ageInMonths += 12;
ageInYears--;
}
}
if (ageInMonths < 0)
{
ageInMonths += 12;
ageInYears--;
}
Console.WriteLine("{0}, {1}, {2}", ageInYears, ageInMonths, ageInDays);
This is one of the most accurate answers that is able to resolve the birthday of 29th of Feb compared to any year of 28th Feb.
public int GetAge(DateTime birthDate)
{
int age = DateTime.Now.Year - birthDate.Year;
if (birthDate.DayOfYear > DateTime.Now.DayOfYear)
age--;
return age;
}
I have a customized method to calculate age, plus a bonus validation message just in case it helps:
public void GetAge(DateTime dob, DateTime now, out int years, out int months, out int days)
{
years = 0;
months = 0;
days = 0;
DateTime tmpdob = new DateTime(dob.Year, dob.Month, 1);
DateTime tmpnow = new DateTime(now.Year, now.Month, 1);
while (tmpdob.AddYears(years).AddMonths(months) < tmpnow)
{
months++;
if (months > 12)
{
years++;
months = months - 12;
}
}
if (now.Day >= dob.Day)
days = days + now.Day - dob.Day;
else
{
months--;
if (months < 0)
{
years--;
months = months + 12;
}
days += DateTime.DaysInMonth(now.AddMonths(-1).Year, now.AddMonths(-1).Month) + now.Day - dob.Day;
}
if (DateTime.IsLeapYear(dob.Year) && dob.Month == 2 && dob.Day == 29 && now >= new DateTime(now.Year, 3, 1))
days++;
}
private string ValidateDate(DateTime dob) //This method will validate the date
{
int Years = 0; int Months = 0; int Days = 0;
GetAge(dob, DateTime.Now, out Years, out Months, out Days);
if (Years < 18)
message = Years + " is too young. Please try again on your 18th birthday.";
else if (Years >= 65)
message = Years + " is too old. Date of Birth must not be 65 or older.";
else
return null; //Denotes validation passed
}
Method call here and pass out datetime value (MM/dd/yyyy if server set to USA locale). Replace this with anything a messagebox or any container to display:
DateTime dob = DateTime.Parse("03/10/1982");
string message = ValidateDate(dob);
lbldatemessage.Visible = !StringIsNullOrWhitespace(message);
lbldatemessage.Text = message ?? ""; //Ternary if message is null then default to empty string
Remember you can format the message any way you like.
How about this solution?
static string CalcAge(DateTime birthDay)
{
DateTime currentDate = DateTime.Now;
int approximateAge = currentDate.Year - birthDay.Year;
int daysToNextBirthDay = (birthDay.Month * 30 + birthDay.Day) -
(currentDate.Month * 30 + currentDate.Day) ;
if (approximateAge == 0 || approximateAge == 1)
{
int month = Math.Abs(daysToNextBirthDay / 30);
int days = Math.Abs(daysToNextBirthDay % 30);
if (month == 0)
return "Your age is: " + daysToNextBirthDay + " days";
return "Your age is: " + month + " months and " + days + " days"; ;
}
if (daysToNextBirthDay > 0)
return "Your age is: " + --approximateAge + " Years";
return "Your age is: " + approximateAge + " Years"; ;
}
private int GetAge(int _year, int _month, int _day
{
DateTime yourBirthDate= new DateTime(_year, _month, _day);
DateTime todaysDateTime = DateTime.Today;
int noOfYears = todaysDateTime.Year - yourBirthDate.Year;
if (DateTime.Now.Month < yourBirthDate.Month ||
(DateTime.Now.Month == yourBirthDate.Month && DateTime.Now.Day < yourBirthDate.Day))
{
noOfYears--;
}
return noOfYears;
}
This classic question is deserving of a Noda Time solution.
static int GetAge(LocalDate dateOfBirth)
{
Instant now = SystemClock.Instance.Now;
// The target time zone is important.
// It should align with the *current physical location* of the person
// you are talking about. When the whereabouts of that person are unknown,
// then you use the time zone of the person who is *asking* for the age.
// The time zone of birth is irrelevant!
DateTimeZone zone = DateTimeZoneProviders.Tzdb["America/New_York"];
LocalDate today = now.InZone(zone).Date;
Period period = Period.Between(dateOfBirth, today, PeriodUnits.Years);
return (int) period.Years;
}
Usage:
LocalDate dateOfBirth = new LocalDate(1976, 8, 27);
int age = GetAge(dateOfBirth);
You might also be interested in the following improvements:
Passing in the clock as an IClock, instead of using SystemClock.Instance, would improve testability.
The target time zone will likely change, so you'd want a DateTimeZone parameter as well.
See also my blog post on this subject: Handling Birthdays, and Other Anniversaries
SQL version:
declare #dd smalldatetime = '1980-04-01'
declare #age int = YEAR(GETDATE())-YEAR(#dd)
if (#dd> DATEADD(YYYY, -#age, GETDATE())) set #age = #age -1
print #age
The following approach (extract from Time Period Library for .NET class DateDiff) considers the calendar of the culture info:
// ----------------------------------------------------------------------
private static int YearDiff( DateTime date1, DateTime date2 )
{
return YearDiff( date1, date2, DateTimeFormatInfo.CurrentInfo.Calendar );
} // YearDiff
// ----------------------------------------------------------------------
private static int YearDiff( DateTime date1, DateTime date2, Calendar calendar )
{
if ( date1.Equals( date2 ) )
{
return 0;
}
int year1 = calendar.GetYear( date1 );
int month1 = calendar.GetMonth( date1 );
int year2 = calendar.GetYear( date2 );
int month2 = calendar.GetMonth( date2 );
// find the the day to compare
int compareDay = date2.Day;
int compareDaysPerMonth = calendar.GetDaysInMonth( year1, month1 );
if ( compareDay > compareDaysPerMonth )
{
compareDay = compareDaysPerMonth;
}
// build the compare date
DateTime compareDate = new DateTime( year1, month2, compareDay,
date2.Hour, date2.Minute, date2.Second, date2.Millisecond );
if ( date2 > date1 )
{
if ( compareDate < date1 )
{
compareDate = compareDate.AddYears( 1 );
}
}
else
{
if ( compareDate > date1 )
{
compareDate = compareDate.AddYears( -1 );
}
}
return year2 - calendar.GetYear( compareDate );
} // YearDiff
Usage:
// ----------------------------------------------------------------------
public void CalculateAgeSamples()
{
PrintAge( new DateTime( 2000, 02, 29 ), new DateTime( 2009, 02, 28 ) );
// > Birthdate=29.02.2000, Age at 28.02.2009 is 8 years
PrintAge( new DateTime( 2000, 02, 29 ), new DateTime( 2012, 02, 28 ) );
// > Birthdate=29.02.2000, Age at 28.02.2012 is 11 years
} // CalculateAgeSamples
// ----------------------------------------------------------------------
public void PrintAge( DateTime birthDate, DateTime moment )
{
Console.WriteLine( "Birthdate={0:d}, Age at {1:d} is {2} years", birthDate, moment, YearDiff( birthDate, moment ) );
} // PrintAge
I used ScArcher2's solution for an accurate Year calculation of a persons age but I needed to take it further and calculate their Months and Days along with the Years.
public static Dictionary<string,int> CurrentAgeInYearsMonthsDays(DateTime? ndtBirthDate, DateTime? ndtReferralDate)
{
//----------------------------------------------------------------------
// Can't determine age if we don't have a dates.
//----------------------------------------------------------------------
if (ndtBirthDate == null) return null;
if (ndtReferralDate == null) return null;
DateTime dtBirthDate = Convert.ToDateTime(ndtBirthDate);
DateTime dtReferralDate = Convert.ToDateTime(ndtReferralDate);
//----------------------------------------------------------------------
// Create our Variables
//----------------------------------------------------------------------
Dictionary<string, int> dYMD = new Dictionary<string,int>();
int iNowDate, iBirthDate, iYears, iMonths, iDays;
string sDif = "";
//----------------------------------------------------------------------
// Store off current date/time and DOB into local variables
//----------------------------------------------------------------------
iNowDate = int.Parse(dtReferralDate.ToString("yyyyMMdd"));
iBirthDate = int.Parse(dtBirthDate.ToString("yyyyMMdd"));
//----------------------------------------------------------------------
// Calculate Years
//----------------------------------------------------------------------
sDif = (iNowDate - iBirthDate).ToString();
iYears = int.Parse(sDif.Substring(0, sDif.Length - 4));
//----------------------------------------------------------------------
// Store Years in Return Value
//----------------------------------------------------------------------
dYMD.Add("Years", iYears);
//----------------------------------------------------------------------
// Calculate Months
//----------------------------------------------------------------------
if (dtBirthDate.Month > dtReferralDate.Month)
iMonths = 12 - dtBirthDate.Month + dtReferralDate.Month - 1;
else
iMonths = dtBirthDate.Month - dtReferralDate.Month;
//----------------------------------------------------------------------
// Store Months in Return Value
//----------------------------------------------------------------------
dYMD.Add("Months", iMonths);
//----------------------------------------------------------------------
// Calculate Remaining Days
//----------------------------------------------------------------------
if (dtBirthDate.Day > dtReferralDate.Day)
//Logic: Figure out the days in month previous to the current month, or the admitted month.
// Subtract the birthday from the total days which will give us how many days the person has lived since their birthdate day the previous month.
// then take the referral date and simply add the number of days the person has lived this month.
//If referral date is january, we need to go back to the following year's December to get the days in that month.
if (dtReferralDate.Month == 1)
iDays = DateTime.DaysInMonth(dtReferralDate.Year - 1, 12) - dtBirthDate.Day + dtReferralDate.Day;
else
iDays = DateTime.DaysInMonth(dtReferralDate.Year, dtReferralDate.Month - 1) - dtBirthDate.Day + dtReferralDate.Day;
else
iDays = dtReferralDate.Day - dtBirthDate.Day;
//----------------------------------------------------------------------
// Store Days in Return Value
//----------------------------------------------------------------------
dYMD.Add("Days", iDays);
return dYMD;
}
This is simple and appears to be accurate for my needs. I am making an assumption for the purpose of leap years that regardless of when the person chooses to celebrate the birthday they are not technically a year older until 365 days have passed since their last birthday (i.e 28th February does not make them a year older).
DateTime now = DateTime.Today;
DateTime birthday = new DateTime(1991, 02, 03);//3rd feb
int age = now.Year - birthday.Year;
if (now.Month < birthday.Month || (now.Month == birthday.Month && now.Day < birthday.Day))//not had bday this year yet
age--;
return age;
Given a date range, I need to know how many Mondays (or Tuesdays, Wednesdays, etc) are in that range.
I am currently working in C#.
Try this:
static int CountDays(DayOfWeek day, DateTime start, DateTime end)
{
TimeSpan ts = end - start; // Total duration
int count = (int)Math.Floor(ts.TotalDays / 7); // Number of whole weeks
int remainder = (int)(ts.TotalDays % 7); // Number of remaining days
int sinceLastDay = (int)(end.DayOfWeek - day); // Number of days since last [day]
if (sinceLastDay < 0) sinceLastDay += 7; // Adjust for negative days since last [day]
// If the days in excess of an even week are greater than or equal to the number days since the last [day], then count this one, too.
if (remainder >= sinceLastDay) count++;
return count;
}
Since you're using C#, if you're using C#3.0, you can use LINQ.
Assuming you have an Array/List/IQueryable etc that contains your dates as DateTime types:
DateTime[] dates = { new DateTime(2008,10,6), new DateTime(2008,10,7)}; //etc....
var mondays = dates.Where(d => d.DayOfWeek == DayOfWeek.Monday); // = {10/6/2008}
Added:
Not sure if you meant grouping them and counting them, but here's how to do that in LINQ as well:
var datesgrouped = from d in dates
group d by d.DayOfWeek into grouped
select new { WeekDay = grouped.Key, Days = grouped };
foreach (var g in datesgrouped)
{
Console.Write (String.Format("{0} : {1}", g.WeekDay,g.Days.Count());
}
It's fun to look at different algorithms for calculating day of week, and #Gabe Hollombe's pointing to WP on the subject was a great idea (and I remember implementing Zeller's Congruence in COBOL about twenty years ago), but it was rather along the line of handing someone a blueprint of a clock when all they asked what time it was.
In C#:
private int CountMondays(DateTime startDate, DateTime endDate)
{
int mondayCount = 0;
for (DateTime dt = startDate; dt < endDate; dt = dt.AddDays(1.0))
{
if (dt.DayOfWeek == DayOfWeek.Monday)
{
mondayCount++;
}
}
return mondayCount;
}
This of course does not evaluate the end date for "Mondayness", so if this was desired, make the for loop evaluate
dt < endDate.AddDays(1.0)
Here's some pseudocode:
DifferenceInDays(Start, End) / 7 // Integer division discarding remainder
+ 1 if DayOfWeek(Start) <= DayImLookingFor
+ 1 if DayOfWeek(End) >= DayImLookingFor
- 1
Where DifferenceInDays returns End - Start in days, and DayOfWeek returns the day of the week as an integer. It doesn't really matter what mapping DayOfWeek uses, as long as it is increasing and matches up with DayImLookingFor.
Note that this algorithm assumes the date range is inclusive. If End should not be part of the range, you'll have to adjust the algorithm slightly.
Translating to C# is left as an exercise for the reader.
Any particular language and therefore date format?
If dates are represented as a count of days, then the difference between two values plus one (day), and divide by 7, is most of the answer. If both end dates are the day in question, add one.
Edited: corrected 'modulo 7' to 'divide by 7' - thanks. And that is integer division.
You could try this, if you want to get specific week days between two dates
public List<DateTime> GetSelectedDaysInPeriod(DateTime startDate, DateTime endDate, List<DayOfWeek> daysToCheck)
{
var selectedDates = new List<DateTime>();
if (startDate >= endDate)
return selectedDates; //No days to return
if (daysToCheck == null || daysToCheck.Count == 0)
return selectedDates; //No days to select
try
{
//Get the total number of days between the two dates
var totalDays = (int)endDate.Subtract(startDate).TotalDays;
//So.. we're creating a list of all dates between the two dates:
var allDatesQry = from d in Enumerable.Range(1, totalDays)
select new DateTime(
startDate.AddDays(d).Year,
startDate.AddDays(d).Month,
startDate.AddDays(d).Day);
//And extracting those weekdays we explicitly wanted to return
var selectedDatesQry = from d in allDatesQry
where daysToCheck.Contains(d.DayOfWeek)
select d;
//Copying the IEnumerable to a List
selectedDates = selectedDatesQry.ToList();
}
catch (Exception ex)
{
//Log error
//...
//And re-throw
throw;
}
return selectedDates;
}
Add the smallest possible number to make the first day a Monday. Subtract the smallest possible number to make the last day a Monday. Calculate the difference in days and divide by 7.
Convert the dates to Julian Day Number, then do a little bit of math. Since Mondays are zero mod 7, you could do the calculation like this:
JD1=JulianDayOf(the_first_date)
JD2=JulianDayOf(the_second_date)
Round JD1 up to nearest multiple of 7
Round JD2 up to nearest multiple of 7
d = JD2-JD1
nMondays = (JD2-JD1+7)/7 # integer divide
I have had the same need today. I started with the cjm function since I don't understand the JonB function and since the Cyberherbalist function is not linear.
I had have to correct
DifferenceInDays(Start, End) / 7 // Integer division discarding remainder
+ 1 if DayOfWeek(Start) <= DayImLookingFor
+ 1 if DayOfWeek(End) >= DayImLookingFor
- 1
to
DifferenceInDays(Start, End) / 7 // Integer division discarding remainder
+ 1 if DayImLookingFor is between Start.Day and End.Day
With the between function that return true if, starting from the start day, we meet first the dayImLookingFor before the endDay.
I have done the between function by computing the number of day from startDay to the other two days:
private int CountDays(DateTime start, DateTime end, DayOfWeek selectedDay)
{
if (start.Date > end.Date)
{
return 0;
}
int totalDays = (int)end.Date.Subtract(start.Date).TotalDays;
DayOfWeek startDay = start.DayOfWeek;
DayOfWeek endDay = end.DayOfWeek;
///look if endDay appears before or after the selectedDay when we start from startDay.
int startToEnd = (int)endDay - (int)startDay;
if (startToEnd < 0)
{
startToEnd += 7;
}
int startToSelected = (int)selectedDay - (int)startDay;
if (startToSelected < 0)
{
startToSelected += 7;
}
bool isSelectedBetweenStartAndEnd = startToEnd >= startToSelected;
if (isSelectedBetweenStartAndEnd)
{
return totalDays / 7 + 1;
}
else
{
return totalDays / 7;
}
}
This will return a collection of integers showing how many times each day of the week occurs within a date range
int[] CountDays(DateTime firstDate, DateTime lastDate)
{
var totalDays = lastDate.Date.Subtract(firstDate.Date).TotalDays + 1;
var weeks = (int)Math.Floor(totalDays / 7);
var result = Enumerable.Repeat<int>(weeks, 7).ToArray();
if (totalDays % 7 != 0)
{
int firstDayOfWeek = (int)firstDate.DayOfWeek;
int lastDayOfWeek = (int)lastDate.DayOfWeek;
if (lastDayOfWeek < firstDayOfWeek)
lastDayOfWeek += 7;
for (int dayOfWeek = firstDayOfWeek; dayOfWeek <= lastDayOfWeek; dayOfWeek++)
result[dayOfWeek % 7]++;
}
return result;
}
Or a slight variation which lets you do FirstDate.TotalDaysOfWeeks(SecondDate) and returns a Dictionary
public static Dictionary<DayOfWeek, int> TotalDaysOfWeeks(this DateTime firstDate, DateTime lastDate)
{
var totalDays = lastDate.Date.Subtract(firstDate.Date).TotalDays + 1;
var weeks = (int)Math.Floor(totalDays / 7);
var resultArray = Enumerable.Repeat<int>(weeks, 7).ToArray();
if (totalDays % 7 != 0)
{
int firstDayOfWeek = (int)firstDate.DayOfWeek;
int lastDayOfWeek = (int)lastDate.DayOfWeek;
if (lastDayOfWeek < firstDayOfWeek)
lastDayOfWeek += 7;
for (int dayOfWeek = firstDayOfWeek; dayOfWeek <= lastDayOfWeek; dayOfWeek++)
resultArray[dayOfWeek % 7]++;
}
var result = new Dictionary<DayOfWeek, int>();
for (int dayOfWeek = 0; dayOfWeek < 7; dayOfWeek++)
result[(DayOfWeek)dayOfWeek] = resultArray[dayOfWeek];
return result;
}
A bit Modified Code is here works and Tested by me
private int CountDays(DayOfWeek day, DateTime startDate, DateTime endDate)
{
int dayCount = 0;
for (DateTime dt = startDate; dt < endDate; dt = dt.AddDays(1.0))
{
if (dt.DayOfWeek == day)
{
dayCount++;
}
}
return dayCount;
}
Example:
int Days = CountDays(DayOfWeek.Friday, Convert.ToDateTime("2019-07-04"),
Convert.ToDateTime("2019-07-27")).ToString();
I had a similar problem for a report. I needed the number of workdays between two dates.
I could have cycled through the dates and counted but my discrete math training wouldn't let me. Here is a function I wrote in VBA to get the number of workdays between two dates. I'm sure .net has a similar WeekDay function.
1
2 ' WorkDays
3 ' returns the number of working days between two dates
4 Public Function WorkDays(ByVal dtBegin As Date, ByVal dtEnd As Date) As Long
5
6 Dim dtFirstSunday As Date
7 Dim dtLastSaturday As Date
8 Dim lngWorkDays As Long
9
10 ' get first sunday in range
11 dtFirstSunday = dtBegin + ((8 - Weekday(dtBegin)) Mod 7)
12
13 ' get last saturday in range
14 dtLastSaturday = dtEnd - (Weekday(dtEnd) Mod 7)
15
16 ' get work days between first sunday and last saturday
17 lngWorkDays = (((dtLastSaturday - dtFirstSunday) + 1) / 7) * 5
18
19 ' if first sunday is not begin date
20 If dtFirstSunday <> dtBegin Then
21
22 ' assume first sunday is after begin date
23 ' add workdays from begin date to first sunday
24 lngWorkDays = lngWorkDays + (7 - Weekday(dtBegin))
25
26 End If
27
28 ' if last saturday is not end date
29 If dtLastSaturday <> dtEnd Then
30
31 ' assume last saturday is before end date
32 ' add workdays from last saturday to end date
33 lngWorkDays = lngWorkDays + (Weekday(dtEnd) - 1)
34
35 End If
36
37 ' return working days
38 WorkDays = lngWorkDays
39
40 End Function
private System.Int32 CountDaysOfWeek(System.DayOfWeek dayOfWeek, System.DateTime date1, System.DateTime date2)
{
System.DateTime EndDate;
System.DateTime StartDate;
if (date1 > date2)
{
StartDate = date2;
EndDate = date1;
}
else
{
StartDate = date1;
EndDate = date2;
}
while (StartDate.DayOfWeek != dayOfWeek)
StartDate = StartDate.AddDays(1);
return EndDate.Subtract(StartDate).Days / 7 + 1;
}
Four years later, I thought I'd run a test:
[TestMethod]
public void ShouldFindFridaysInTimeSpan()
{
//reference: http://stackoverflow.com/questions/248273/count-number-of-mondays-in-a-given-date-range
var spanOfSixtyDays = new TimeSpan(60, 0, 0, 0);
var setOfDates = new List<DateTime>(spanOfSixtyDays.Days);
var now = DateTime.Now;
for(int i = 0; i < spanOfSixtyDays.Days; i++)
{
setOfDates.Add(now.AddDays(i));
}
Assert.IsTrue(setOfDates.Count == 60,
"The expected number of days is not here.");
var fridays = setOfDates.Where(i => i.DayOfWeek == DayOfWeek.Friday);
Assert.IsTrue(fridays.Count() > 0,
"The expected Friday days are not here.");
Assert.IsTrue(fridays.First() == setOfDates.First(i => i.DayOfWeek == DayOfWeek.Friday),
"The expected first Friday day is not here.");
Assert.IsTrue(fridays.Last() == setOfDates.Last(i => i.DayOfWeek == DayOfWeek.Friday),
"The expected last Friday day is not here.");
}
My use of TimeSpan is a bit of overkill---actually I wanted to query TimeSpan directly.