Namespace dict? - c#

I'm devising a template language. In it, there are 3 kinds of tokens: tags, directives, and variables. Each of these tokens have a name, and there's getting to be quite a few of them. They're extensible too.
To allow name reuse I want to add namespaces.
Right now all the variables are just stored in a dict. The key is the variable name, and the value is the variable value. That way I can quickly retrieve the value of a variable. However, supposing I want to allow dot-notation, namespace.variable, how can I store these variables, such that the namespace is optional? If the namespace is included the dict should only scan that namespace, if not, I guess it scans all namespaces.
Is there a container that will do this?

You should structure your symbol data internally as a dictionary of dictionary of string. The top level dictionary is for namespaces, and each dictionary below each namespace name is the container for all symbols in that namespace.
Looking up an unqualified symbol is simply a matter of looking for the symbol in each namespace in a particular order. In C# or Delphi, the order is determined by the order in which the namespaces are declared at the top of the source file, in reverse order of declaration (most recent is the first to be searched).

You can create your own implementation of IDictionary<string, object> instead of using the framework's Dictionary<TKey, TValue>.
Externally, there would be no change to the way you are consuming it.
Internally, it would consist of a Dictionary<string, Dictionary<string, object>>.
So, if your dictionary is asked for the value matching key "namespace.variable", internally it would split that string, get the Dictionary<string, Dictionary<string, object>> with key "namespace" and then return the value in that Dictionary<string, object> for key "variable."
To make the namespace optional, you have one entry where the key is string.Empty. Whether adding or getting items, any time a key is provided that does not contain ., you'll use the entry with key string.Empty.

My solution:
Class
public class NamespaceDictionary<T> : IDictionary<string, T>
{
private SortedDictionary<string, Dictionary<string, T>> _dict;
private const char _separator = '.';
public NamespaceDictionary()
{
_dict = new SortedDictionary<string, Dictionary<string, T>>();
}
public NamespaceDictionary(IEnumerable<KeyValuePair<string, T>> collection)
: this()
{
foreach (var item in collection)
Add(item);
}
#region Implementation of IEnumerable
public IEnumerator<KeyValuePair<string, T>> GetEnumerator()
{
return _dict.SelectMany(x => x.Value).GetEnumerator();
}
IEnumerator IEnumerable.GetEnumerator()
{
return GetEnumerator();
}
#endregion
private static Tuple<string, string> Split(string name)
{
int pos = name.LastIndexOf(_separator);
string ns = pos == -1 ? "" : name.Substring(0, pos);
string var = name.Substring(pos + 1);
return new Tuple<string, string>(ns, var);
}
#region Implementation of ICollection<KeyValuePair<string,TValue>>
public void Add(KeyValuePair<string, T> item)
{
Add(item.Key, item.Value);
}
public void Clear()
{
_dict.Clear();
}
public bool Contains(KeyValuePair<string, T> item)
{
throw new NotImplementedException();
}
public void CopyTo(KeyValuePair<string, T>[] array, int arrayIndex)
{
throw new NotImplementedException();
}
public bool Remove(KeyValuePair<string, T> item)
{
return Remove(item.Key);
}
public int Count
{
get { return _dict.Sum(p => p.Value.Count); }
}
public bool IsReadOnly
{
get { return false; }
}
#endregion
#region Implementation of IDictionary<string,TValue>
public bool ContainsKey(string name)
{
var tuple = Split(name);
return ContainsKey(tuple.Item1, tuple.Item2);
}
public bool ContainsKey(string ns, string key)
{
if (ns == "")
return _dict.Any(pair => pair.Value.ContainsKey(key));
return _dict.ContainsKey(ns) && _dict[ns].ContainsKey(key);
}
public void Add(string name, T value)
{
var tuple = Split(name);
Add(tuple.Item1, tuple.Item2, value);
}
public void Add(string ns, string key, T value)
{
if (!_dict.ContainsKey(ns))
_dict[ns] = new Dictionary<string, T>();
_dict[ns].Add(key, value);
}
public bool Remove(string ns, string key)
{
if (_dict.ContainsKey(ns) && _dict[ns].ContainsKey(key))
{
if (_dict[ns].Count == 1) _dict.Remove(ns);
else _dict[ns].Remove(key);
return true;
}
return false;
}
public bool Remove(string key)
{
var tuple = Split(key);
return Remove(tuple.Item1, tuple.Item2);
}
public bool TryGetValue(string name, out T value)
{
var tuple = Split(name);
return TryGetValue(tuple.Item1, tuple.Item2, out value);
}
public bool TryGetValue(string ns, string key, out T value)
{
if (ns == "")
{
foreach (var pair in _dict)
{
if (pair.Value.ContainsKey(key))
{
value = pair.Value[key];
return true;
}
}
}
else if (_dict.ContainsKey(ns) && _dict[ns].ContainsKey(key))
{
value = _dict[ns][key];
return true;
}
value = default(T);
return false;
}
public T this[string ns, string key]
{
get
{
if (ns == "")
{
foreach (var pair in _dict)
if (pair.Value.ContainsKey(key))
return pair.Value[key];
}
else if (_dict.ContainsKey(ns) && _dict[ns].ContainsKey(key))
return _dict[ns][key];
throw new KeyNotFoundException();
}
set
{
if (!_dict.ContainsKey(ns))
_dict[ns] = new Dictionary<string, T>();
_dict[ns][key] = value;
}
}
public T this[string name]
{
get
{
var tuple = Split(name);
return this[tuple.Item1, tuple.Item2];
}
set
{
var tuple = Split(name);
this[tuple.Item1, tuple.Item2] = value;
}
}
public ICollection<string> Keys
{
get { return _dict.SelectMany(p => p.Value.Keys).ToArray(); }
}
public ICollection<T> Values
{
get { return _dict.SelectMany(p => p.Value.Values).ToArray(); }
}
#endregion
}
Test
var dict = new NamespaceDictionary<int>();
dict.Add("ns1.var1", 1);
dict.Add("ns2.var1", 2);
dict.Add("var2", 3);
dict.Add("ns2.var2", 4);
dict.Add("ns3", "var1", 5);
dict["ns4.var1"] = 6;
Console.WriteLine(dict["var1"]);
Console.WriteLine(dict["ns2.var1"]);
Console.WriteLine(dict["var2"]);
Console.WriteLine(dict["ns2.var2"]);
Console.WriteLine(dict["ns2", "var2"]);
Console.WriteLine(dict["ns3.var1"]);
Console.WriteLine(dict["ns4", "var1"]);
Output
1
2
3
4
4
5
6
Help
I used a SortedDictionary thinking it would retain the order that the namespaces were added, but it's actually sorting the namespaces alphabetically. Is there an dict class that will retain the order the items were added, but not sort them?

Related

C#: Easiest way to initialize & populate this particular 2D/3D Dictionary?

I have a bit of a complex dictionary.
It's a dictionary which holds two enumerated types & a List<>
Dictionary<BiomeType, Dictionary<LocationType, List<string>>> myDictionary;
So when I want to use it, I do something like this:
//Add "myString" to the List<string>
myDictionary[BiomeType.Jungle][LocationType.City1].Add("myString"));
When I try to add "myString" to myList, it throws an obvious & foreseeable error: "KeyNotFoundException: The given key was not present in the dictionary."
Is there any way in C# to automatically have the Dictionary add the Key if it isn't already there? I have a lot of BiomeTypes & even more LocationTypes. It would be a PITA to have to create each List, then create each locationtype dictionary, and then to add it for every BiomeType. All that work just to initialize this complex dictionary. Is there no easy way to do this?
I'm using this for gamedev, to store objects in a Dictionary, so I can access them by doing something like
BiomeType playerCurrentBiomeType;
LocationType playerCurrentLocationType;
LoadLevel(myDictionary[playerCurrentBiomeType][playerCurrentLocationType]);
//ex. myDictionary[BiomeType.Jungle][LocationType.CapitalCity]
//ex. myDictionary[BiomeType.Desert][LocationType.CapitalCity]
//ex. myDictionary[BiomeType.Desert][LocationType.City3]
Perhaps, you can try this:
Dictionary<BiomeType, Dictionary<LocationType, List<string>>> myDictionary = new Dictionary<BiomeType, Dictionary<LocationType, List<string>>>();
BiomeType playerCurrentBiomeType;
LocationType playerCurrentLocationType;
if(!myDictionary.ContainsKey(playerCurrentBiomeType))
{
myDictionary.Add(playerCurrentBiomeType, new Dictionary<LocationType , List<string>>{{playerCurrentLocationType, new List<string>()}});
}
myDictionary[playerCurrentBiomeType][playerCurrentLocationType].Add("bla");
You could do this (although to be honest I'm not sure you should!)
The class below is a type that generally acts like a dictionary, does what you asked for, and has some other changes to hide from you the empty items it creates every time you ask the indexer for an item that doesn't exist.
public class SmellyDictionary<T1, T2>: IDictionary<T1, T2>, ICollection where T2 : ICollection, new()
{
private readonly IDictionary<T1, T2> _dict = new Dictionary<T1, T2>();
public T2 this[T1 key]
{
get
{
T2 value;
if (!_dict.TryGetValue(key, out value))
_dict[key] = value = new T2(); // This stinks!
return value;
}
set { _dict[key] = value; }
}
public bool Contains(KeyValuePair<T1, T2> item)
{
return _dict.Contains(item);
}
public bool ContainsKey(T1 key)
{
return _dict.ContainsKey(key) && _dict[key].Count > 0; // This hides the smell
}
public int Count { get { return _dict.Count(kvp => kvp.Value.Count > 0); } } // This hides the smell
public void Add(T1 key, T2 value)
{
T2 currentValue;
if (_dict.TryGetValue(key, out currentValue) && currentValue.Count > 0)
throw new ArgumentException("A non empty element with the same key already exists in the SmellyDictionary");
_dict[key] = value;
}
public void Add(KeyValuePair<T1, T2> item)
{
Add(item.Key, item.Value);
}
public bool Remove(T1 key)
{
return _dict.Remove(key);
}
public bool Remove(KeyValuePair<T1, T2> item)
{
return _dict.Remove(item);
}
public bool TryGetValue(T1 key, out T2 value)
{
return _dict.TryGetValue(key, out value);
}
public ICollection<T1> Keys { get { return _dict.Keys; } }
public ICollection<T2> Values { get { return _dict.Values; } }
public object SyncRoot { get { return ((ICollection)_dict).SyncRoot; } }
public bool IsSynchronized { get { return ((ICollection)_dict).IsSynchronized; } }
public IEnumerator<KeyValuePair<T1, T2>> GetEnumerator()
{
return _dict.GetEnumerator();
}
IEnumerator IEnumerable.GetEnumerator()
{
return GetEnumerator();
}
public void Clear()
{
_dict.Clear();
}
public void CopyTo(Array array, int index)
{
_dict.CopyTo((KeyValuePair<T1, T2>[])array, index);
}
public void CopyTo(KeyValuePair<T1, T2>[] array, int arrayIndex)
{
_dict.CopyTo(array, arrayIndex);
}
public bool IsReadOnly { get { return _dict.IsReadOnly; } }
}
Here's a slightly more sensible option. Just call this method to add a string to your dictionary.
private void AddCityToDictionary(Dictionary<BiomeType, Dictionary<LocationType, List<string>>> myDictionary, BiomeType biome, LocationType location, string city)
{
Dictionary<LocationType, List<string>> locationDictionary;
if (!myDictionary.TryGetValue(biome, out locationDictionary))
locationDictionary = myDictionary[biome] = new Dictionary<LocationType, List<string>>();
List<string> cityList;
if (!locationDictionary.TryGetValue(location, out cityList))
cityList = locationDictionary[location] = new List<string>();
cityList.Add(city);
}
Simply looping through every possible enum type & adding in a new value works to fully populate this multi-dimensional dictionary.
Dictionary<BiomeType, Dictionary<LocationType, List<string>>> myDictionary = new Dictionary<BiomeType, Dictionary<LocationType, List<string>>>(); //No thanks to troll users like Peter.
foreach (BiomeType biomeType in System.Enum.GetValues(typeof(BiomeType)))
{
Dictionary<LocationType, List<string>> newLocDict = new Dictionary<LocationType, List<string>>(); //No thanks to troll users like Peter.
foreach (LocationType locType in System.Enum.GetValues(typeof(LocationType)))
{
List<string> newList = new List<string>();
newLocDict.Add(locType, newList); //Add the final bit here & voila! Finished! No thanks to troll users like Peter.
}
myDictionary.Add(biomeType, newLocDict);
}
Robyn's solution works the same way if you don't want to fully populate the container with ALL enum values.

Enumerate keys and values of IDictionary when I don't know type of values

I have a reference to an object. I know it conforms to
IDictionary<string, T>
for some type T. (It may not conform to plain IDictionary, or to IReadyOnlyDictionary). All I know about T is that it descends from object. How can I get its keys, and get the value for a key? (I am fine with having the value be returned as an object, not as a T. I am also fine with never learning what T is.)
What I want to write, but can't, is something like this:
public void SomeMethod(object reallyADict) { // reallyADict implements IDictionary<string, T>.
foreach (string key in reallyADict.Keys) {
object value = reallyADict[key];
// . . .
}
}
**
Per request, a sample class is below.
using System;
using System.Collections.Generic;
using System.Collections;
namespace My.Collections
{
public class WrappedDictionary: IDictionary<string, int>
{
public WrappedDictionary() {
this.InnerDictionary = new Dictionary<string, int>{ {"one", 1}, {"two", 2 }};
}
private Dictionary<string, int> InnerDictionary { get; set;}
private ICollection<KeyValuePair<string, int>> InnerCollection {
get {
return this.InnerDictionary;
}
}
#region IDictionary implementation
void IDictionary<string, int>.Add(string key, int value) {
this.InnerDictionary.Add(key, value);
}
bool IDictionary<string, int>.ContainsKey(string key) {
return this.InnerDictionary.ContainsKey(key);
}
bool IDictionary<string, int>.Remove(string key) {
return this.InnerDictionary.Remove(key);
}
bool IDictionary<string, int>.TryGetValue(string key, out int value) {
return this.InnerDictionary.TryGetValue(key, out value);
}
int IDictionary<string, int>.this[string index] {
get {
return this.InnerDictionary[index];
}
set {
this.InnerDictionary[index] = value;
}
}
ICollection<string> IDictionary<string, int>.Keys {
get {
return this.InnerDictionary.Keys;
}
}
ICollection<int> IDictionary<string, int>.Values {
get {
return this.InnerDictionary.Values;
}
}
#endregion
#region ICollection implementation
void ICollection<KeyValuePair<string, int>>.Add(KeyValuePair<string, int> item) {
this.InnerCollection.Add(item);
}
void ICollection<KeyValuePair<string, int>>.Clear() {
this.InnerDictionary.Clear();
}
bool ICollection<KeyValuePair<string, int>>.Contains(KeyValuePair<string, int> item) {
return this.InnerCollection.Contains(item);
}
void ICollection<KeyValuePair<string, int>>.CopyTo(KeyValuePair<string, int>[] array, int arrayIndex) {
this.InnerCollection.CopyTo(array, arrayIndex);
}
bool ICollection<KeyValuePair<string, int>>.Remove(KeyValuePair<string, int> item) {
return this.InnerCollection.Remove(item);
}
int ICollection<KeyValuePair<string, int>>.Count {
get {
return this.InnerCollection.Count;
}
}
bool ICollection<KeyValuePair<string, int>>.IsReadOnly {
get {
return this.InnerCollection.IsReadOnly;
}
}
#endregion
#region IEnumerable implementation
IEnumerator<KeyValuePair<string, int>> IEnumerable<KeyValuePair<string, int>>.GetEnumerator() {
return this.InnerCollection.GetEnumerator();
}
#endregion
#region IEnumerable implementation
System.Collections.IEnumerator System.Collections.IEnumerable.GetEnumerator() {
return (this as IEnumerable).GetEnumerator();
}
#endregion
}
}
Unfortunatly you cannot cast the reallyADict to something like Dictionary<string,T>, because you need a specific type.
And Manfred's comment to use a generic method like
public IEnumerable<T> SomeMethod<T>(Dictionary<string, T> dict)
would be my approach, too. But you stated you really only have the dictionary as object.
So I solved this with Reflection:
public IEnumerable<object> SomeMethod(object reallyADict)
{
Type genericInterface = reallyADict?.GetType().GetInterface("IDictionary`2");
PropertyInfo propKeys = genericInterface?.GetProperty("Keys");
if (propKeys?.GetMethod == null) yield break;
IEnumerable<string> keys = (IEnumerable<string>)propKeys.GetValue(reallyADict);
PropertyInfo propIndex = genericInterface.GetProperty("Item");
if (propIndex?.GetMethod == null) yield break;
foreach (string key in keys)
yield return propIndex.GetMethod.Invoke(reallyADict, new object[] { key });
}
This method gets the Keys property from the reallyDict (if there is one) and uses it as an IEnumerable<string>.
Then it iterates over all those keys and uses the indexer property of the underlying dictionary to return the value. The indexer property has the name Item.

how to convert NameValueCollection to JSON string?

I tried:
NameValueCollection Data = new NameValueCollection();
Data.Add("foo","baa");
string json = new JavaScriptSerializer().Serialize(Data);
it returns: ["foo"] I expected {"foo" : "baa"}
How do I to do this?
One way to serialize NameValueCollection is by first converting it to Dictionary and then serialize the Dictionary. To convert to dictionary:
thenvc.AllKeys.ToDictionary(k => k, k => thenvc[k]);
If you need to do the conversion frequently, you can also create an extension method to NameValueCollection:
public static class NVCExtender
{
public static IDictionary<string, string> ToDictionary(
this NameValueCollection source)
{
return source.AllKeys.ToDictionary(k => k, k => source[k]);
}
}
so you can do the conversion in one line like this:
NameValueCollection Data = new NameValueCollection();
Data.Add("Foo", "baa");
var dict = Data.ToDictionary();
Then you can serialize the dictionary:
var json = new JavaScriptSerializer().Serialize(dict);
// you get {"Foo":"baa"}
But NameValueCollection can have multiple values for one key, for example:
NameValueCollection Data = new NameValueCollection();
Data.Add("Foo", "baa");
Data.Add("Foo", "again?");
If you serialize this you will get {"Foo":"baa,again?"}.
You can modify the converter to produce IDictionary<string, string[]> instead:
public static IDictionary<string, string[]> ToDictionary(
this NameValueCollection source)
{
return source.AllKeys.ToDictionary(k => k, k => source.GetValues(k));
}
So you can get serialized value like this: {"Foo":["baa","again?"]}.
NameValueCollection isn't an IDictionary, so the JavaScriptSerializer cannot serialize it as you expect directly. You'll need to first convert it into a dictionary, then serialize it.
Update: following questions regarding multiple values per key, the call to nvc[key] will simply return them separated by a comma, which may be ok. If not, one can always call GetValues and decide what to do with the values appropriately. Updated the code below to show one possible way.
public class StackOverflow_7003740
{
static Dictionary<string, object> NvcToDictionary(NameValueCollection nvc, bool handleMultipleValuesPerKey)
{
var result = new Dictionary<string, object>();
foreach (string key in nvc.Keys)
{
if (handleMultipleValuesPerKey)
{
string[] values = nvc.GetValues(key);
if (values.Length == 1)
{
result.Add(key, values[0]);
}
else
{
result.Add(key, values);
}
}
else
{
result.Add(key, nvc[key]);
}
}
return result;
}
public static void Test()
{
NameValueCollection nvc = new NameValueCollection();
nvc.Add("foo", "bar");
nvc.Add("multiple", "first");
nvc.Add("multiple", "second");
foreach (var handleMultipleValuesPerKey in new bool[] { false, true })
{
if (handleMultipleValuesPerKey)
{
Console.WriteLine("Using special handling for multiple values per key");
}
var dict = NvcToDictionary(nvc, handleMultipleValuesPerKey);
string json = new JavaScriptSerializer().Serialize(dict);
Console.WriteLine(json);
Console.WriteLine();
}
}
}
If your dictionary is not intended to contain many entries, you can use the class:
System.Collections.Specialized.ListDictionary
For completeness' sake, and because the question continues to get asked (e.g. here), as long as you are using Json.NET or DataContractJsonSerializer (but not JavaScriptSerializer), you could use the adapter pattern and wrap the NameValueCollection in an IDictionary<string, string[]> adapter, and serialize that using any serializer that fully supports serializing arbitrary dictionaries.
Once such adapter is as follows:
public class NameValueCollectionDictionaryAdapter<TNameValueCollection> : IDictionary<string, string[]>
where TNameValueCollection : NameValueCollection, new()
{
readonly TNameValueCollection collection;
public NameValueCollectionDictionaryAdapter() : this(new TNameValueCollection()) { }
public NameValueCollectionDictionaryAdapter(TNameValueCollection collection)
{
this.collection = collection;
}
// Method instead of a property to guarantee that nobody tries to serialize it.
public TNameValueCollection GetCollection() { return collection; }
#region IDictionary<string,string[]> Members
public void Add(string key, string[] value)
{
if (collection.GetValues(key) != null)
throw new ArgumentException("Duplicate key " + key);
if (value == null)
collection.Add(key, null);
else
foreach (var str in value)
collection.Add(key, str);
}
public bool ContainsKey(string key) { return collection.GetValues(key) != null; }
public ICollection<string> Keys { get { return collection.AllKeys; } }
public bool Remove(string key)
{
bool found = ContainsKey(key);
if (found)
collection.Remove(key);
return found;
}
public bool TryGetValue(string key, out string[] value)
{
return (value = collection.GetValues(key)) != null;
}
public ICollection<string[]> Values
{
get
{
return new ReadOnlyCollectionAdapter<KeyValuePair<string, string[]>, string[]>(this, p => p.Value);
}
}
public string[] this[string key]
{
get
{
var value = collection.GetValues(key);
if (value == null)
throw new KeyNotFoundException(key);
return value;
}
set
{
Remove(key);
Add(key, value);
}
}
#endregion
#region ICollection<KeyValuePair<string,string[]>> Members
public void Add(KeyValuePair<string, string[]> item) { Add(item.Key, item.Value); }
public void Clear() { collection.Clear(); }
public bool Contains(KeyValuePair<string, string[]> item)
{
string[] value;
if (!TryGetValue(item.Key, out value))
return false;
return EqualityComparer<string[]>.Default.Equals(item.Value, value); // Consistent with Dictionary<TKey, TValue>
}
public void CopyTo(KeyValuePair<string, string[]>[] array, int arrayIndex)
{
foreach (var item in this)
array[arrayIndex++] = item;
}
public int Count { get { return collection.Count; } }
public bool IsReadOnly { get { return false; } }
public bool Remove(KeyValuePair<string, string[]> item)
{
if (Contains(item))
return Remove(item.Key);
return false;
}
#endregion
#region IEnumerable<KeyValuePair<string,string[]>> Members
public IEnumerator<KeyValuePair<string, string[]>> GetEnumerator()
{
foreach (string key in collection)
yield return new KeyValuePair<string, string[]>(key, collection.GetValues(key));
}
#endregion
#region IEnumerable Members
System.Collections.IEnumerator System.Collections.IEnumerable.GetEnumerator() { return GetEnumerator(); }
#endregion
}
public static class NameValueCollectionExtensions
{
public static NameValueCollectionDictionaryAdapter<TNameValueCollection> ToDictionaryAdapter<TNameValueCollection>(this TNameValueCollection collection)
where TNameValueCollection : NameValueCollection, new()
{
if (collection == null)
throw new ArgumentNullException();
return new NameValueCollectionDictionaryAdapter<TNameValueCollection>(collection);
}
}
public class ReadOnlyCollectionAdapter<TIn, TOut> : CollectionAdapterBase<TIn, TOut, ICollection<TIn>>
{
public ReadOnlyCollectionAdapter(ICollection<TIn> collection, Func<TIn, TOut> toOuter)
: base(() => collection, toOuter)
{
}
public override void Add(TOut item) { throw new NotImplementedException(); }
public override void Clear() { throw new NotImplementedException(); }
public override bool IsReadOnly { get { return true; } }
public override bool Remove(TOut item) { throw new NotImplementedException(); }
}
public abstract class CollectionAdapterBase<TIn, TOut, TCollection> : ICollection<TOut>
where TCollection : ICollection<TIn>
{
readonly Func<TCollection> getCollection;
readonly Func<TIn, TOut> toOuter;
public CollectionAdapterBase(Func<TCollection> getCollection, Func<TIn, TOut> toOuter)
{
if (getCollection == null || toOuter == null)
throw new ArgumentNullException();
this.getCollection = getCollection;
this.toOuter = toOuter;
}
protected TCollection Collection { get { return getCollection(); } }
protected TOut ToOuter(TIn inner) { return toOuter(inner); }
#region ICollection<TOut> Members
public abstract void Add(TOut item);
public abstract void Clear();
public virtual bool Contains(TOut item)
{
var comparer = EqualityComparer<TOut>.Default;
foreach (var member in Collection)
if (comparer.Equals(item, ToOuter(member)))
return true;
return false;
}
public void CopyTo(TOut[] array, int arrayIndex)
{
foreach (var item in this)
array[arrayIndex++] = item;
}
public int Count { get { return Collection.Count; } }
public abstract bool IsReadOnly { get; }
public abstract bool Remove(TOut item);
#endregion
#region IEnumerable<TOut> Members
public IEnumerator<TOut> GetEnumerator()
{
foreach (var item in Collection)
yield return ToOuter(item);
}
#endregion
#region IEnumerable Members
IEnumerator IEnumerable.GetEnumerator() { return GetEnumerator(); }
#endregion
}
Then an adapted can be constructed for a given NameValueCollection Data simply by doing:
var adapter = Data.ToDictionaryAdapter();
Notes:
Using the adapter may be be more performant than simply creating a copied dictionary, and should work well with any serializer that fully supports dictionary serialization.
The adapter might also be useful in using a NameValueCollection with any other code that expects an IDictionary of some sort - this is the fundamental advantage of the adapter pattern.
That being said, JavaScriptSerializer cannot be used with the adapter because this serializer cannot serialize an arbitrary type implementing IDictionary<TKey, TValue> that does not also inherit from Dictionary<TKey, TValue>. For details see Serializing dictionaries with JavaScriptSerializer.
When using DataContractJsonSerializer, a NameValueCollection can be replaced with an adapter in the serialization graph by using the data contract surrogate mechanism.
When using Json.NET a NameValueCollection can be replaced with an adapter using a custom JsonConverter such as the following:
public class NameValueJsonConverter<TNameValueCollection> : JsonConverter
where TNameValueCollection : NameValueCollection, new()
{
public override bool CanConvert(Type objectType)
{
return typeof(TNameValueCollection).IsAssignableFrom(objectType);
}
public override object ReadJson(JsonReader reader, Type objectType, object existingValue, JsonSerializer serializer)
{
if (reader.SkipComments().TokenType == JsonToken.Null)
return null;
// Reuse the existing NameValueCollection if present
var collection = (TNameValueCollection)existingValue ?? new TNameValueCollection();
var dictionaryWrapper = collection.ToDictionaryAdapter();
serializer.Populate(reader, dictionaryWrapper);
return collection;
}
public override void WriteJson(JsonWriter writer, object value, JsonSerializer serializer)
{
var collection = (TNameValueCollection)value;
var dictionaryWrapper = new NameValueCollectionDictionaryAdapter<TNameValueCollection>(collection);
serializer.Serialize(writer, dictionaryWrapper);
}
}
public static partial class JsonExtensions
{
public static JsonReader SkipComments(this JsonReader reader)
{
while (reader.TokenType == JsonToken.Comment && reader.Read())
;
return reader;
}
}
Which could be used e.g. as follows:
string json = JsonConvert.SerializeObject(Data, Formatting.Indented, new NameValueJsonConverter<NameValueCollection>());
NameValueCollection supports all of the following
A null value for a given key;
Multiple values for a given key (in which case NameValueCollection.Item[String] returns a comma-separated list of values);
A single value containing an embedded comma (which cannot be distinguished from the case of multiple values when using NameValueCollection.Item[String]).
Thus the adapter must implement IDictionary<string, string[]> rather than IDictionary<string, string> and also take care to handle a null value array.
Sample fiddle (including some basic unit testing) here: https://dotnetfiddle.net/gVPSi7

Why doesn't Dictionary<TKey, TValue> support null key? [duplicate]

This question already has answers here:
Why can't you use null as a key for a Dictionary<bool?, string>?
(11 answers)
Need an IDictionary<TKey,TValue> implementation that will allow a null key
(8 answers)
Closed last year.
Firstly, why doesn't Dictionary<TKey, TValue> support a single null key?
Secondly, is there an existing dictionary-like collection that does?
I want to store an "empty" or "missing" or "default" System.Type, thought null would work well for this.
More specifically, I've written this class:
class Switch
{
private Dictionary<Type, Action<object>> _dict;
public Switch(params KeyValuePair<Type, Action<object>>[] cases)
{
_dict = new Dictionary<Type, Action<object>>(cases.Length);
foreach (var entry in cases)
_dict.Add(entry.Key, entry.Value);
}
public void Execute(object obj)
{
var type = obj.GetType();
if (_dict.ContainsKey(type))
_dict[type](obj);
}
public static void Execute(object obj, params KeyValuePair<Type, Action<object>>[] cases)
{
var type = obj.GetType();
foreach (var entry in cases)
{
if (entry.Key == null || type.IsAssignableFrom(entry.Key))
{
entry.Value(obj);
break;
}
}
}
public static KeyValuePair<Type, Action<object>> Case<T>(Action action)
{
return new KeyValuePair<Type, Action<object>>(typeof(T), x => action());
}
public static KeyValuePair<Type, Action<object>> Case<T>(Action<T> action)
{
return new KeyValuePair<Type, Action<object>>(typeof(T), x => action((T)x));
}
public static KeyValuePair<Type, Action<object>> Default(Action action)
{
return new KeyValuePair<Type, Action<object>>(null, x => action());
}
}
For switching on types. There are two ways to use it:
Statically. Just call Switch.Execute(yourObject, Switch.Case<YourType>(x => x.Action()))
Precompiled. Create a switch, and then use it later with switchInstance.Execute(yourObject)
Works great except when you try to add a default case to the "precompiled" version (null argument exception).
Why:
As described before, the problem is that Dictionary requires an implementation of the Object.GetHashCode() method. null does not have an implementation, therefore no hash code associated.
Solution: I have used a solution similar to a NullObject pattern using generics that enables you to use the dictionary seamlessly (no need for a different dictionary implementation).
You can use it like this:
var dict = new Dictionary<NullObject<Type>, string>();
dict[typeof(int)] = "int type";
dict[typeof(string)] = "string type";
dict[null] = "null type";
Assert.AreEqual("int type", dict[typeof(int)]);
Assert.AreEqual("string type", dict[typeof(string)]);
Assert.AreEqual("null type", dict[null]);
You just need to create this struct once in a lifetime :
public struct NullObject<T>
{
[DefaultValue(true)]
private bool isnull;// default property initializers are not supported for structs
private NullObject(T item, bool isnull) : this()
{
this.isnull = isnull;
this.Item = item;
}
public NullObject(T item) : this(item, item == null)
{
}
public static NullObject<T> Null()
{
return new NullObject<T>();
}
public T Item { get; private set; }
public bool IsNull()
{
return this.isnull;
}
public static implicit operator T(NullObject<T> nullObject)
{
return nullObject.Item;
}
public static implicit operator NullObject<T>(T item)
{
return new NullObject<T>(item);
}
public override string ToString()
{
return (Item != null) ? Item.ToString() : "NULL";
}
public override bool Equals(object obj)
{
if (obj == null)
return this.IsNull();
if (!(obj is NullObject<T>))
return false;
var no = (NullObject<T>)obj;
if (this.IsNull())
return no.IsNull();
if (no.IsNull())
return false;
return this.Item.Equals(no.Item);
}
public override int GetHashCode()
{
if (this.isnull)
return 0;
var result = Item.GetHashCode();
if (result >= 0)
result++;
return result;
}
}
It doesn't support it because the dictionary hashes the key to determine the index, which it can't do on a null value.
A quick fix would be to create a dummy class, and insert the key value ?? dummyClassInstance.
Would need more information about what you're actually trying to do to give a less 'hacky' fix
It just hit me that your best answer is probably to just keep track of whether a default case has been defined:
class Switch
{
private Dictionary<Type, Action<object>> _dict;
private Action<object> defaultCase;
public Switch(params KeyValuePair<Type, Action<object>>[] cases)
{
_dict = new Dictionary<Type, Action<object>>(cases.Length);
foreach (var entry in cases)
if (entry.Key == null)
defaultCase = entry.Value;
else
_dict.Add(entry.Key, entry.Value);
}
public void Execute(object obj)
{
var type = obj.GetType();
if (_dict.ContainsKey(type))
_dict[type](obj);
else if (defaultCase != null)
defaultCase(obj);
}
...
The whole rest of your class would remain untouched.
NameValueCollection could take null key.
If you really want a dictionary that allows null keys, here's my quick implementation (not well-written or well-tested):
class NullableDict<K, V> : IDictionary<K, V>
{
Dictionary<K, V> dict = new Dictionary<K, V>();
V nullValue = default(V);
bool hasNull = false;
public NullableDict()
{
}
public void Add(K key, V value)
{
if (key == null)
if (hasNull)
throw new ArgumentException("Duplicate key");
else
{
nullValue = value;
hasNull = true;
}
else
dict.Add(key, value);
}
public bool ContainsKey(K key)
{
if (key == null)
return hasNull;
return dict.ContainsKey(key);
}
public ICollection<K> Keys
{
get
{
if (!hasNull)
return dict.Keys;
List<K> keys = dict.Keys.ToList();
keys.Add(default(K));
return new ReadOnlyCollection<K>(keys);
}
}
public bool Remove(K key)
{
if (key != null)
return dict.Remove(key);
bool oldHasNull = hasNull;
hasNull = false;
return oldHasNull;
}
public bool TryGetValue(K key, out V value)
{
if (key != null)
return dict.TryGetValue(key, out value);
value = hasNull ? nullValue : default(V);
return hasNull;
}
public ICollection<V> Values
{
get
{
if (!hasNull)
return dict.Values;
List<V> values = dict.Values.ToList();
values.Add(nullValue);
return new ReadOnlyCollection<V>(values);
}
}
public V this[K key]
{
get
{
if (key == null)
if (hasNull)
return nullValue;
else
throw new KeyNotFoundException();
else
return dict[key];
}
set
{
if (key == null)
{
nullValue = value;
hasNull = true;
}
else
dict[key] = value;
}
}
public void Add(KeyValuePair<K, V> item)
{
Add(item.Key, item.Value);
}
public void Clear()
{
hasNull = false;
dict.Clear();
}
public bool Contains(KeyValuePair<K, V> item)
{
if (item.Key != null)
return ((ICollection<KeyValuePair<K, V>>)dict).Contains(item);
if (hasNull)
return EqualityComparer<V>.Default.Equals(nullValue, item.Value);
return false;
}
public void CopyTo(KeyValuePair<K, V>[] array, int arrayIndex)
{
((ICollection<KeyValuePair<K, V>>)dict).CopyTo(array, arrayIndex);
if (hasNull)
array[arrayIndex + dict.Count] = new KeyValuePair<K, V>(default(K), nullValue);
}
public int Count
{
get { return dict.Count + (hasNull ? 1 : 0); }
}
public bool IsReadOnly
{
get { return false; }
}
public bool Remove(KeyValuePair<K, V> item)
{
V value;
if (TryGetValue(item.Key, out value) && EqualityComparer<V>.Default.Equals(item.Value, value))
return Remove(item.Key);
return false;
}
public IEnumerator<KeyValuePair<K, V>> GetEnumerator()
{
if (!hasNull)
return dict.GetEnumerator();
else
return GetEnumeratorWithNull();
}
private IEnumerator<KeyValuePair<K, V>> GetEnumeratorWithNull()
{
yield return new KeyValuePair<K, V>(default(K), nullValue);
foreach (var kv in dict)
yield return kv;
}
System.Collections.IEnumerator System.Collections.IEnumerable.GetEnumerator()
{
return GetEnumerator();
}
}
NHibernate comes with a NullableDictionary. That did it for me.
https://github.com/nhibernate/nhibernate-core/blob/master/src/NHibernate/Util/NullableDictionary.cs
Dictionary will hash the key supplie to get the index , in case of null , hash function can not return a valid value that's why it does not support null in key.
In your case you are trying to use null as a sentinel value (a "default") instead of actually needing to store null as a value. Rather than go to the hassle of creating a dictionary that can accept null keys, why not just create your own sentinel value. This is a variation on the "null object pattern":
class Switch
{
private class DefaultClass { }
....
public void Execute(object obj)
{
var type = obj.GetType();
Action<object> value;
// first look for actual type
if (_dict.TryGetValue(type, out value) ||
// look for default
_dict.TryGetValue(typeof(DefaultClass), out value))
value(obj);
}
public static void Execute(object obj, params KeyValuePair<Type, Action<object>>[] cases)
{
var type = obj.GetType();
foreach (var entry in cases)
{
if (entry.Key == typeof(DefaultClass) || type.IsAssignableFrom(entry.Key))
{
entry.Value(obj);
break;
}
}
}
...
public static KeyValuePair<Type, Action<object>> Default(Action action)
{
return new KeyValuePair<Type, Action<object>>(new DefaultClass(), x => action());
}
}
Note that your first Execute function differs significantly from your second. It may be the case that you want something like this:
public void Execute(object obj)
{
Execute(obj, (IEnumerable<KeyValuePair<Type, Action<object>>>)_dict);
}
public static void Execute(object obj, params KeyValuePair<Type, Action<object>>[] cases)
{
Execute(obj, (IEnumerable<KeyValuePair<Type, Action<object>>>)cases);
}
public static void Execute(object obj, IEnumerable<KeyValuePair<Type, Action<object>>> cases)
{
var type = obj.GetType();
Action<object> defaultEntry = null;
foreach (var entry in cases)
{
if (entry.Key == typeof(DefaultClass))
defaultEntry = entry.Value;
if (type.IsAssignableFrom(entry.Key))
{
entry.Value(obj);
return;
}
}
if (defaultEntry != null)
defaultEntry(obj);
}
I come across this thread some days ago and needed a well thought out and clever solution to handle null keys. I took the time and implemented one by me to handle more scenarios.
You can find my implementation of NullableKeyDictionary currently in my pre-release package Teronis.NetStandard.Collections (0.1.7-alpha.37).
Implementation
public class NullableKeyDictionary<KeyType, ValueType> : INullableKeyDictionary<KeyType, ValueType>, IReadOnlyNullableKeyDictionary<KeyType, ValueType>, IReadOnlyCollection<KeyValuePair<INullableKey<KeyType>, ValueType>> where KeyType : notnull
public interface INullableKeyDictionary<KeyType, ValueType> : IDictionary<KeyType, ValueType>, IDictionary<NullableKey<KeyType>, ValueType> where KeyType : notnull
public interface IReadOnlyNullableKeyDictionary<KeyType, ValueType> : IReadOnlyDictionary<KeyType, ValueType>, IReadOnlyDictionary<NullableKey<KeyType>, ValueType> where KeyType : notnull
Usage (Excerpt of the Xunit test)
// Assign.
var dictionary = new NullableKeyDictionary<string, string>();
IDictionary<string, string> nonNullableDictionary = dictionary;
INullableKeyDictionary<string, string> nullableDictionary = dictionary;
// Assert.
dictionary.Add("value");
/// Assert.Empty does cast to IEnumerable, but our implementation of IEnumerable
/// returns an enumerator of type <see cref="KeyValuePair{NullableKey, TValue}"/>.
/// So we test on correct enumerator implementation wether it can move or not.
Assert.False(nonNullableDictionary.GetEnumerator().MoveNext());
Assert.NotEmpty(nullableDictionary);
Assert.Throws<ArgumentException>(() => dictionary.Add("value"));
Assert.True(dictionary.Remove());
Assert.Empty(nullableDictionary);
dictionary.Add("key", "value");
Assert.True(nonNullableDictionary.GetEnumerator().MoveNext());
Assert.NotEmpty(nullableDictionary);
Assert.Throws<ArgumentException>(() => dictionary.Add("key", "value"));
dictionary.Add("value");
Assert.Equal(1, nonNullableDictionary.Count);
Assert.Equal(2, nullableDictionary.Count);
The following overloads exists for Add(..):
void Add([AllowNull] KeyType key, ValueType value)
void Add(NullableKey<KeyType> key, [AllowNull] ValueType value)
void Add([AllowNull] ValueType value); // Shortcut for adding value with null key.
This class should behave same and intuitive as the dictionary does.
For Remove(..) keys you can use the following overloads:
void Remove([AllowNull] KeyType key)
void Remove(NullableKey<KeyType> key)
void Remove(); // Shortcut for removing value with null key.
The indexers do accept [AllowNull] KeyType or NullableKey<KeyType>. So supported scenarios, like they are stated in other posts, are supported:
var dict = new NullableKeyDictionary<Type, string>
dict[typeof(int)] = "int type";
dict[typeof(string)] = "string type";
dict[null] = "null type";
// Or:
dict[NullableKey<Type>.Null] = "null type";
I highly appreciate feedback and suggestions for improvements. :)
EDIT: Real answer to the question actually being asked: Why can't you use null as a key for a Dictionary<bool?, string>?
The reason the generic dictionary doesn't support null is because TKey might be a value type, which doesn't have null.
new Dictionary<int, string>[null] = "Null"; //error!
To get one that does, you could either use the non-generic Hashtable (which uses object keys and values), or roll your own with DictionaryBase.
Edit: just to clarify why null is illegal in this case, consider this generic method:
bool IsNull<T> (T value) {
return value == null;
}
But what happens when you call IsNull<int>(null)?
Argument '1': cannot convert from '<null>' to 'int'
You get a compiler error, since you can't convert null to an int. We can fix it, by saying that we only want nullable types:
bool IsNull<T> (T value) where T : class {
return value == null;
}
And, that's A-Okay. The restriction is that we can no longer call IsNull<int>, since int is not a class (nullable object)

No generic implementation of OrderedDictionary?

There doesn't appear to be a generic implementation of OrderedDictionary (which is in the System.Collections.Specialized namespace) in .NET 3.5. Is there one that I'm missing?
I've found implementations out there to provide the functionality, but wondered if/why there isn't a generic implementation out-of-the-box and if anyone knows whether it's something in .NET 4.0?
Implementing a generic OrderedDictionary isn't terribly difficult, but it's unnecessarily time consuming and frankly this class is a huge oversight on Microsoft's part. There are multiple ways of implementing this, but I chose to use a KeyedCollection for my internal storage. I also chose to implement various methods for sorting the way that List<T> does since this is essentially a hybrid IList and IDictionary. I've included my implementation here for posterity.
Here's the interface. Notice that it includes System.Collections.Specialized.IOrderedDictionary, which is the non-generic version of this interface that was provided by Microsoft.
// http://unlicense.org
using System;
using System.Collections.Generic;
using System.Collections.Specialized;
namespace mattmc3.Common.Collections.Generic {
public interface IOrderedDictionary<TKey, TValue> : IDictionary<TKey, TValue>, IOrderedDictionary {
new TValue this[int index] { get; set; }
new TValue this[TKey key] { get; set; }
new int Count { get; }
new ICollection<TKey> Keys { get; }
new ICollection<TValue> Values { get; }
new void Add(TKey key, TValue value);
new void Clear();
void Insert(int index, TKey key, TValue value);
int IndexOf(TKey key);
bool ContainsValue(TValue value);
bool ContainsValue(TValue value, IEqualityComparer<TValue> comparer);
new bool ContainsKey(TKey key);
new IEnumerator<KeyValuePair<TKey, TValue>> GetEnumerator();
new bool Remove(TKey key);
new void RemoveAt(int index);
new bool TryGetValue(TKey key, out TValue value);
TValue GetValue(TKey key);
void SetValue(TKey key, TValue value);
KeyValuePair<TKey, TValue> GetItem(int index);
void SetItem(int index, TValue value);
}
}
Here's the implementation along with helper classes:
// http://unlicense.org
using System;
using System.Collections.ObjectModel;
using System.Diagnostics;
using System.Collections;
using System.Collections.Specialized;
using System.Collections.Generic;
using System.Linq;
namespace mattmc3.Common.Collections.Generic {
/// <summary>
/// A dictionary object that allows rapid hash lookups using keys, but also
/// maintains the key insertion order so that values can be retrieved by
/// key index.
/// </summary>
public class OrderedDictionary<TKey, TValue> : IOrderedDictionary<TKey, TValue> {
#region Fields/Properties
private KeyedCollection2<TKey, KeyValuePair<TKey, TValue>> _keyedCollection;
/// <summary>
/// Gets or sets the value associated with the specified key.
/// </summary>
/// <param name="key">The key associated with the value to get or set.</param>
public TValue this[TKey key] {
get {
return GetValue(key);
}
set {
SetValue(key, value);
}
}
/// <summary>
/// Gets or sets the value at the specified index.
/// </summary>
/// <param name="index">The index of the value to get or set.</param>
public TValue this[int index] {
get {
return GetItem(index).Value;
}
set {
SetItem(index, value);
}
}
public int Count {
get { return _keyedCollection.Count; }
}
public ICollection<TKey> Keys {
get {
return _keyedCollection.Select(x => x.Key).ToList();
}
}
public ICollection<TValue> Values {
get {
return _keyedCollection.Select(x => x.Value).ToList();
}
}
public IEqualityComparer<TKey> Comparer {
get;
private set;
}
#endregion
#region Constructors
public OrderedDictionary() {
Initialize();
}
public OrderedDictionary(IEqualityComparer<TKey> comparer) {
Initialize(comparer);
}
public OrderedDictionary(IOrderedDictionary<TKey, TValue> dictionary) {
Initialize();
foreach (KeyValuePair<TKey, TValue> pair in dictionary) {
_keyedCollection.Add(pair);
}
}
public OrderedDictionary(IOrderedDictionary<TKey, TValue> dictionary, IEqualityComparer<TKey> comparer) {
Initialize(comparer);
foreach (KeyValuePair<TKey, TValue> pair in dictionary) {
_keyedCollection.Add(pair);
}
}
#endregion
#region Methods
private void Initialize(IEqualityComparer<TKey> comparer = null) {
this.Comparer = comparer;
if (comparer != null) {
_keyedCollection = new KeyedCollection2<TKey, KeyValuePair<TKey, TValue>>(x => x.Key, comparer);
}
else {
_keyedCollection = new KeyedCollection2<TKey, KeyValuePair<TKey, TValue>>(x => x.Key);
}
}
public void Add(TKey key, TValue value) {
_keyedCollection.Add(new KeyValuePair<TKey, TValue>(key, value));
}
public void Clear() {
_keyedCollection.Clear();
}
public void Insert(int index, TKey key, TValue value) {
_keyedCollection.Insert(index, new KeyValuePair<TKey, TValue>(key, value));
}
public int IndexOf(TKey key) {
if (_keyedCollection.Contains(key)) {
return _keyedCollection.IndexOf(_keyedCollection[key]);
}
else {
return -1;
}
}
public bool ContainsValue(TValue value) {
return this.Values.Contains(value);
}
public bool ContainsValue(TValue value, IEqualityComparer<TValue> comparer) {
return this.Values.Contains(value, comparer);
}
public bool ContainsKey(TKey key) {
return _keyedCollection.Contains(key);
}
public KeyValuePair<TKey, TValue> GetItem(int index) {
if (index < 0 || index >= _keyedCollection.Count) {
throw new ArgumentException(String.Format("The index was outside the bounds of the dictionary: {0}", index));
}
return _keyedCollection[index];
}
/// <summary>
/// Sets the value at the index specified.
/// </summary>
/// <param name="index">The index of the value desired</param>
/// <param name="value">The value to set</param>
/// <exception cref="ArgumentOutOfRangeException">
/// Thrown when the index specified does not refer to a KeyValuePair in this object
/// </exception>
public void SetItem(int index, TValue value) {
if (index < 0 || index >= _keyedCollection.Count) {
throw new ArgumentException("The index is outside the bounds of the dictionary: {0}".FormatWith(index));
}
var kvp = new KeyValuePair<TKey, TValue>(_keyedCollection[index].Key, value);
_keyedCollection[index] = kvp;
}
public IEnumerator<KeyValuePair<TKey, TValue>> GetEnumerator() {
return _keyedCollection.GetEnumerator();
}
public bool Remove(TKey key) {
return _keyedCollection.Remove(key);
}
public void RemoveAt(int index) {
if (index < 0 || index >= _keyedCollection.Count) {
throw new ArgumentException(String.Format("The index was outside the bounds of the dictionary: {0}", index));
}
_keyedCollection.RemoveAt(index);
}
/// <summary>
/// Gets the value associated with the specified key.
/// </summary>
/// <param name="key">The key associated with the value to get.</param>
public TValue GetValue(TKey key) {
if (_keyedCollection.Contains(key) == false) {
throw new ArgumentException("The given key is not present in the dictionary: {0}".FormatWith(key));
}
var kvp = _keyedCollection[key];
return kvp.Value;
}
/// <summary>
/// Sets the value associated with the specified key.
/// </summary>
/// <param name="key">The key associated with the value to set.</param>
/// <param name="value">The the value to set.</param>
public void SetValue(TKey key, TValue value) {
var kvp = new KeyValuePair<TKey, TValue>(key, value);
var idx = IndexOf(key);
if (idx > -1) {
_keyedCollection[idx] = kvp;
}
else {
_keyedCollection.Add(kvp);
}
}
public bool TryGetValue(TKey key, out TValue value) {
if (_keyedCollection.Contains(key)) {
value = _keyedCollection[key].Value;
return true;
}
else {
value = default(TValue);
return false;
}
}
#endregion
#region sorting
public void SortKeys() {
_keyedCollection.SortByKeys();
}
public void SortKeys(IComparer<TKey> comparer) {
_keyedCollection.SortByKeys(comparer);
}
public void SortKeys(Comparison<TKey> comparison) {
_keyedCollection.SortByKeys(comparison);
}
public void SortValues() {
var comparer = Comparer<TValue>.Default;
SortValues(comparer);
}
public void SortValues(IComparer<TValue> comparer) {
_keyedCollection.Sort((x, y) => comparer.Compare(x.Value, y.Value));
}
public void SortValues(Comparison<TValue> comparison) {
_keyedCollection.Sort((x, y) => comparison(x.Value, y.Value));
}
#endregion
#region IDictionary<TKey, TValue>
void IDictionary<TKey, TValue>.Add(TKey key, TValue value) {
Add(key, value);
}
bool IDictionary<TKey, TValue>.ContainsKey(TKey key) {
return ContainsKey(key);
}
ICollection<TKey> IDictionary<TKey, TValue>.Keys {
get { return Keys; }
}
bool IDictionary<TKey, TValue>.Remove(TKey key) {
return Remove(key);
}
bool IDictionary<TKey, TValue>.TryGetValue(TKey key, out TValue value) {
return TryGetValue(key, out value);
}
ICollection<TValue> IDictionary<TKey, TValue>.Values {
get { return Values; }
}
TValue IDictionary<TKey, TValue>.this[TKey key] {
get {
return this[key];
}
set {
this[key] = value;
}
}
#endregion
#region ICollection<KeyValuePair<TKey, TValue>>
void ICollection<KeyValuePair<TKey, TValue>>.Add(KeyValuePair<TKey, TValue> item) {
_keyedCollection.Add(item);
}
void ICollection<KeyValuePair<TKey, TValue>>.Clear() {
_keyedCollection.Clear();
}
bool ICollection<KeyValuePair<TKey, TValue>>.Contains(KeyValuePair<TKey, TValue> item) {
return _keyedCollection.Contains(item);
}
void ICollection<KeyValuePair<TKey, TValue>>.CopyTo(KeyValuePair<TKey, TValue>[] array, int arrayIndex) {
_keyedCollection.CopyTo(array, arrayIndex);
}
int ICollection<KeyValuePair<TKey, TValue>>.Count {
get { return _keyedCollection.Count; }
}
bool ICollection<KeyValuePair<TKey, TValue>>.IsReadOnly {
get { return false; }
}
bool ICollection<KeyValuePair<TKey, TValue>>.Remove(KeyValuePair<TKey, TValue> item) {
return _keyedCollection.Remove(item);
}
#endregion
#region IEnumerable<KeyValuePair<TKey, TValue>>
IEnumerator<KeyValuePair<TKey, TValue>> IEnumerable<KeyValuePair<TKey, TValue>>.GetEnumerator() {
return GetEnumerator();
}
#endregion
#region IEnumerable
IEnumerator IEnumerable.GetEnumerator() {
return GetEnumerator();
}
#endregion
#region IOrderedDictionary
IDictionaryEnumerator IOrderedDictionary.GetEnumerator() {
return new DictionaryEnumerator<TKey, TValue>(this);
}
void IOrderedDictionary.Insert(int index, object key, object value) {
Insert(index, (TKey)key, (TValue)value);
}
void IOrderedDictionary.RemoveAt(int index) {
RemoveAt(index);
}
object IOrderedDictionary.this[int index] {
get {
return this[index];
}
set {
this[index] = (TValue)value;
}
}
#endregion
#region IDictionary
void IDictionary.Add(object key, object value) {
Add((TKey)key, (TValue)value);
}
void IDictionary.Clear() {
Clear();
}
bool IDictionary.Contains(object key) {
return _keyedCollection.Contains((TKey)key);
}
IDictionaryEnumerator IDictionary.GetEnumerator() {
return new DictionaryEnumerator<TKey, TValue>(this);
}
bool IDictionary.IsFixedSize {
get { return false; }
}
bool IDictionary.IsReadOnly {
get { return false; }
}
ICollection IDictionary.Keys {
get { return (ICollection)this.Keys; }
}
void IDictionary.Remove(object key) {
Remove((TKey)key);
}
ICollection IDictionary.Values {
get { return (ICollection)this.Values; }
}
object IDictionary.this[object key] {
get {
return this[(TKey)key];
}
set {
this[(TKey)key] = (TValue)value;
}
}
#endregion
#region ICollection
void ICollection.CopyTo(Array array, int index) {
((ICollection)_keyedCollection).CopyTo(array, index);
}
int ICollection.Count {
get { return ((ICollection)_keyedCollection).Count; }
}
bool ICollection.IsSynchronized {
get { return ((ICollection)_keyedCollection).IsSynchronized; }
}
object ICollection.SyncRoot {
get { return ((ICollection)_keyedCollection).SyncRoot; }
}
#endregion
}
public class KeyedCollection2<TKey, TItem> : KeyedCollection<TKey, TItem> {
private const string DelegateNullExceptionMessage = "Delegate passed cannot be null";
private Func<TItem, TKey> _getKeyForItemDelegate;
public KeyedCollection2(Func<TItem, TKey> getKeyForItemDelegate)
: base() {
if (getKeyForItemDelegate == null) throw new ArgumentNullException(DelegateNullExceptionMessage);
_getKeyForItemDelegate = getKeyForItemDelegate;
}
public KeyedCollection2(Func<TItem, TKey> getKeyForItemDelegate, IEqualityComparer<TKey> comparer)
: base(comparer) {
if (getKeyForItemDelegate == null) throw new ArgumentNullException(DelegateNullExceptionMessage);
_getKeyForItemDelegate = getKeyForItemDelegate;
}
protected override TKey GetKeyForItem(TItem item) {
return _getKeyForItemDelegate(item);
}
public void SortByKeys() {
var comparer = Comparer<TKey>.Default;
SortByKeys(comparer);
}
public void SortByKeys(IComparer<TKey> keyComparer) {
var comparer = new Comparer2<TItem>((x, y) => keyComparer.Compare(GetKeyForItem(x), GetKeyForItem(y)));
Sort(comparer);
}
public void SortByKeys(Comparison<TKey> keyComparison) {
var comparer = new Comparer2<TItem>((x, y) => keyComparison(GetKeyForItem(x), GetKeyForItem(y)));
Sort(comparer);
}
public void Sort() {
var comparer = Comparer<TItem>.Default;
Sort(comparer);
}
public void Sort(Comparison<TItem> comparison) {
var newComparer = new Comparer2<TItem>((x, y) => comparison(x, y));
Sort(newComparer);
}
public void Sort(IComparer<TItem> comparer) {
List<TItem> list = base.Items as List<TItem>;
if (list != null) {
list.Sort(comparer);
}
}
}
public class Comparer2<T> : Comparer<T> {
//private readonly Func<T, T, int> _compareFunction;
private readonly Comparison<T> _compareFunction;
#region Constructors
public Comparer2(Comparison<T> comparison) {
if (comparison == null) throw new ArgumentNullException("comparison");
_compareFunction = comparison;
}
#endregion
public override int Compare(T arg1, T arg2) {
return _compareFunction(arg1, arg2);
}
}
public class DictionaryEnumerator<TKey, TValue> : IDictionaryEnumerator, IDisposable {
readonly IEnumerator<KeyValuePair<TKey, TValue>> impl;
public void Dispose() { impl.Dispose(); }
public DictionaryEnumerator(IDictionary<TKey, TValue> value) {
this.impl = value.GetEnumerator();
}
public void Reset() { impl.Reset(); }
public bool MoveNext() { return impl.MoveNext(); }
public DictionaryEntry Entry {
get {
var pair = impl.Current;
return new DictionaryEntry(pair.Key, pair.Value);
}
}
public object Key { get { return impl.Current.Key; } }
public object Value { get { return impl.Current.Value; } }
public object Current { get { return Entry; } }
}
}
And no implementation would be complete without a few tests (but tragically, SO won't let me post that much code in one post), so I'll have to leave you to write your tests. But, I left a few of them in so that you could get an idea of how it works:
// http://unlicense.org
using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.VisualStudio.TestTools.UnitTesting;
using mattmc3.Common.Collections.Generic;
namespace mattmc3.Tests.Common.Collections.Generic {
[TestClass]
public class OrderedDictionaryTests {
private OrderedDictionary<string, string> GetAlphabetDictionary(IEqualityComparer<string> comparer = null) {
OrderedDictionary<string, string> alphabet = (comparer == null ? new OrderedDictionary<string, string>() : new OrderedDictionary<string, string>(comparer));
for (var a = Convert.ToInt32('a'); a <= Convert.ToInt32('z'); a++) {
var c = Convert.ToChar(a);
alphabet.Add(c.ToString(), c.ToString().ToUpper());
}
Assert.AreEqual(26, alphabet.Count);
return alphabet;
}
private List<KeyValuePair<string, string>> GetAlphabetList() {
var alphabet = new List<KeyValuePair<string, string>>();
for (var a = Convert.ToInt32('a'); a <= Convert.ToInt32('z'); a++) {
var c = Convert.ToChar(a);
alphabet.Add(new KeyValuePair<string, string>(c.ToString(), c.ToString().ToUpper()));
}
Assert.AreEqual(26, alphabet.Count);
return alphabet;
}
[TestMethod]
public void TestAdd() {
var od = new OrderedDictionary<string, string>();
Assert.AreEqual(0, od.Count);
Assert.AreEqual(-1, od.IndexOf("foo"));
od.Add("foo", "bar");
Assert.AreEqual(1, od.Count);
Assert.AreEqual(0, od.IndexOf("foo"));
Assert.AreEqual(od[0], "bar");
Assert.AreEqual(od["foo"], "bar");
Assert.AreEqual(od.GetItem(0).Key, "foo");
Assert.AreEqual(od.GetItem(0).Value, "bar");
}
[TestMethod]
public void TestRemove() {
var od = new OrderedDictionary<string, string>();
od.Add("foo", "bar");
Assert.AreEqual(1, od.Count);
od.Remove("foo");
Assert.AreEqual(0, od.Count);
}
[TestMethod]
public void TestRemoveAt() {
var od = new OrderedDictionary<string, string>();
od.Add("foo", "bar");
Assert.AreEqual(1, od.Count);
od.RemoveAt(0);
Assert.AreEqual(0, od.Count);
}
[TestMethod]
public void TestClear() {
var od = GetAlphabetDictionary();
Assert.AreEqual(26, od.Count);
od.Clear();
Assert.AreEqual(0, od.Count);
}
[TestMethod]
public void TestOrderIsPreserved() {
var alphabetDict = GetAlphabetDictionary();
var alphabetList = GetAlphabetList();
Assert.AreEqual(26, alphabetDict.Count);
Assert.AreEqual(26, alphabetList.Count);
var keys = alphabetDict.Keys.ToList();
var values = alphabetDict.Values.ToList();
for (var i = 0; i < 26; i++) {
var dictItem = alphabetDict.GetItem(i);
var listItem = alphabetList[i];
var key = keys[i];
var value = values[i];
Assert.AreEqual(dictItem, listItem);
Assert.AreEqual(key, listItem.Key);
Assert.AreEqual(value, listItem.Value);
}
}
[TestMethod]
public void TestTryGetValue() {
var alphabetDict = GetAlphabetDictionary();
string result = null;
Assert.IsFalse(alphabetDict.TryGetValue("abc", out result));
Assert.IsNull(result);
Assert.IsTrue(alphabetDict.TryGetValue("z", out result));
Assert.AreEqual("Z", result);
}
[TestMethod]
public void TestEnumerator() {
var alphabetDict = GetAlphabetDictionary();
var keys = alphabetDict.Keys.ToList();
Assert.AreEqual(26, keys.Count);
var i = 0;
foreach (var kvp in alphabetDict) {
var value = alphabetDict[kvp.Key];
Assert.AreEqual(kvp.Value, value);
i++;
}
}
[TestMethod]
public void TestInvalidIndex() {
var alphabetDict = GetAlphabetDictionary();
try {
var notGonnaWork = alphabetDict[100];
Assert.IsTrue(false, "Exception should have thrown");
}
catch (Exception ex) {
Assert.IsTrue(ex.Message.Contains("index is outside the bounds"));
}
}
[TestMethod]
public void TestMissingKey() {
var alphabetDict = GetAlphabetDictionary();
try {
var notGonnaWork = alphabetDict["abc"];
Assert.IsTrue(false, "Exception should have thrown");
}
catch (Exception ex) {
Assert.IsTrue(ex.Message.Contains("key is not present"));
}
}
[TestMethod]
public void TestUpdateExistingValue() {
var alphabetDict = GetAlphabetDictionary();
Assert.IsTrue(alphabetDict.ContainsKey("c"));
Assert.AreEqual(2, alphabetDict.IndexOf("c"));
Assert.AreEqual(alphabetDict[2], "C");
alphabetDict[2] = "CCC";
Assert.IsTrue(alphabetDict.ContainsKey("c"));
Assert.AreEqual(2, alphabetDict.IndexOf("c"));
Assert.AreEqual(alphabetDict[2], "CCC");
}
[TestMethod]
public void TestInsertValue() {
var alphabetDict = GetAlphabetDictionary();
Assert.IsTrue(alphabetDict.ContainsKey("c"));
Assert.AreEqual(2, alphabetDict.IndexOf("c"));
Assert.AreEqual(alphabetDict[2], "C");
Assert.AreEqual(26, alphabetDict.Count);
Assert.IsFalse(alphabetDict.ContainsValue("ABC"));
alphabetDict.Insert(2, "abc", "ABC");
Assert.IsTrue(alphabetDict.ContainsKey("c"));
Assert.AreEqual(2, alphabetDict.IndexOf("abc"));
Assert.AreEqual(alphabetDict[2], "ABC");
Assert.AreEqual(27, alphabetDict.Count);
Assert.IsTrue(alphabetDict.ContainsValue("ABC"));
}
[TestMethod]
public void TestValueComparer() {
var alphabetDict = GetAlphabetDictionary();
Assert.IsFalse(alphabetDict.ContainsValue("a"));
Assert.IsTrue(alphabetDict.ContainsValue("a", StringComparer.OrdinalIgnoreCase));
}
[TestMethod]
public void TestSortByKeys() {
var alphabetDict = GetAlphabetDictionary();
var reverseAlphabetDict = GetAlphabetDictionary();
Comparison<string> stringReverse = ((x, y) => (String.Equals(x, y) ? 0 : String.Compare(x, y) >= 1 ? -1 : 1));
reverseAlphabetDict.SortKeys(stringReverse);
for (int j = 0, k = 25; j < alphabetDict.Count; j++, k--) {
var ascValue = alphabetDict.GetItem(j);
var dscValue = reverseAlphabetDict.GetItem(k);
Assert.AreEqual(ascValue.Key, dscValue.Key);
Assert.AreEqual(ascValue.Value, dscValue.Value);
}
}
-- UPDATE --
Source for this and other really useful missing core .NET libraries here: https://github.com/mattmc3/dotmore/blob/master/dotmore/Collections/Generic/OrderedDictionary.cs
You're right. There's no generic equivalent of OrderedDictionary in the framework itself.
(That's still the case for .NET 4 too, as far as I'm aware.)
For the record, there is a generic KeyedCollection that allows objects to be indexed by an int and a key. The key must be embedded in the value.
Here's a bizarre find: the System.Web.Util namespace in System.Web.Extensions.dll contains a generic OrderedDictionary<TKey,TValue>
// Type: System.Web.Util.OrderedDictionary`2
// Assembly: System.Web.Extensions, Version=4.0.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35
// Assembly location: C:\Windows\Microsoft.NET\Framework\v4.0.30319\System.Web.Extensions.dll
namespace System.Web.Util
{
internal class OrderedDictionary<TKey, TValue> : IDictionary<TKey, TValue>, ICollection<KeyValuePair<TKey, TValue>>, IEnumerable<KeyValuePair<TKey, TValue>>, IEnumerable
Not sure why MS placed it there instead of the System.Collections.Generic package, but I assume you can simply copy paste the code and use it (it's internal, so can't use it directly). Looks like the implementation uses a standard dictionary and separate Key/Value lists. Pretty straightforward...
Source code: https://referencesource.microsoft.com/#System.Web.Extensions/Util/OrderedDictionary.cs
A different implementation in System.Runtime.Collections that wraps the non-generic System.Collections.Specialized.OrderedDictionary: https://referencesource.microsoft.com/#System.ServiceModel.Internals/System/Runtime/Collections/OrderedDictionary.cs
For what it's worth, here is how I solved it:
public class PairList<TKey, TValue> : List<KeyValuePair<TKey, TValue>> {
Dictionary<TKey, int> itsIndex = new Dictionary<TKey, int>();
public void Add(TKey key, TValue value) {
Add(new KeyValuePair<TKey, TValue>(key, value));
itsIndex.Add(key, Count-1);
}
public TValue Get(TKey key) {
var idx = itsIndex[key];
return this[idx].Value;
}
}
It can be initialized like this:
var pairList = new PairList<string, string>
{
{ "pitcher", "Ken" },
{ "catcher", "Brad"},
{ "left fielder", "Stan"},
};
and accessed like this:
foreach (var pair in pairList)
{
Console.WriteLine("position: {0}, player: {1}",
pair.Key, pair.Value);
}
// Guaranteed to print in the order of initialization
A major conceptual problem with a generic version of OrderedDictionary is that users of a OrderedDictionary<TKey,TValue> would expect expect to be able to index it either numerically using an int, or by lookup using a TKey. When the only type of key was Object, as was the case with non-generic OrderedDictionary, the type of argument passed to the indexer would be sufficient to distinguish whether what type of indexing operation should be performed. As it is, though, it's unclear how the indexer of an OrderedDictionary<int, TValue> should behave.
If classes like Drawing.Point had recommended and followed a rule that piecewise-mutable structures should expose their mutable elements as fields rather than properties, and refrain from using property setters that modify this, then an OrderedDictionary<TKey,TValue> could efficiently expose a ByIndex property that returned an Indexer struct which held a reference to the dictionary, and had an indexed property whose getter and setter would call GetByIndex and SetByIndex upon it. Thus, one could say something like MyDict.ByIndex[5] += 3; to add 3 to the sixth element of the dictionary.
Unfortunately, for the compiler to accept such a thing, it would be necessary to make the ByIndex property return a new class instance rather than a struct every time it's invoked, eliminating the advantages one would get by avoiding boxing.
In VB.NET, one could get around that issue by using a named indexed property (so MyDict.ByIndex[int] would be a member of MyDict, rather than requiring MyDict.ByIndex to be a member of MyDict which includes an indexer), but C# doesn't allow such things.
It might still have been worthwhile to offer an OrderedDictionary<TKey,TValue> where TKey:class, but much of the reason for providing generics in the first place was to allow their use with value types.
For a lot of purposes I've found one can get by with a List<KeyValuePair<K, V>>. (Not if you need it to extend Dictionary, obviously, and not if you need better than O(n) key-value lookup.)
Right, it's an unfortunate omission. I miss Python's OrderedDict
A dictionary that remembers the order that keys were first inserted. If a new entry overwrites an existing entry, the original insertion position is left unchanged. Deleting an entry and reinserting it will move it to the end.
So I wrote my own OrderedDictionary<K,V> class in C#. How does it work? It maintains two collections - a vanilla unordered dictionary and an ordered list of keys. With this solution, the standard dictionary operations keep their fast complexities, and look up by index is fast too.
https://gist.github.com/hickford/5137384
Here's the interface
/// <summary>
/// A dictionary that remembers the order that keys were first inserted. If a new entry overwrites an existing entry, the original insertion position is left unchanged. Deleting an entry and reinserting it will move it to the end.
/// </summary>
/// <typeparam name="TKey">The type of keys</typeparam>
/// <typeparam name="TValue">The type of values</typeparam>
public interface IOrderedDictionary<TKey, TValue> : IDictionary<TKey, TValue>
{
/// <summary>
/// The value of the element at the given index.
/// </summary>
TValue this[int index] { get; set; }
/// <summary>
/// Find the position of an element by key. Returns -1 if the dictionary does not contain an element with the given key.
/// </summary>
int IndexOf(TKey key);
/// <summary>
/// Insert an element at the given index.
/// </summary>
void Insert(int index, TKey key, TValue value);
/// <summary>
/// Remove the element at the given index.
/// </summary>
void RemoveAt(int index);
}
For those looking for an "official" package option in NuGet, an implementation of a generic OrderedDictionary has been accepted into .NET CoreFX Lab. If all goes well, the type will eventually be approved and integrated to the main .NET CoreFX repo.
There is a possibility that this implementation will be rejected.
The committed implementation can be referenced here
https://github.com/dotnet/corefxlab/blob/57be99a176421992e29009701a99a370983329a6/src/Microsoft.Experimental.Collections/Microsoft/Collections/Extensions/OrderedDictionary.cs
The NuGet package that definitively has this type available for use can be found here
https://www.nuget.org/packages/Microsoft.Experimental.Collections/1.0.6-e190117-3
Or you can install the package within Visual Studio. Browse for the package "Microsoft.Experimental.Collections" and make sure the "Include prerelease" checkbox is selected.
Will update this post if and when the type is made officially available.
There is SortedDictionary<TKey, TValue>. Although semantically close, I am not claiming it's the same as OrderedDictionary simply because they are not. Even from performance characteristics. However the very interesting and quite important difference between Dictionary<TKey, TValue> (and to that extent OrderedDictionary and implementations provided in answers) and SortedDictionary is that the latter is using binary tree underneath. This is critical distinction because it makes the class immune to memory constraints applied to generic class. See this thread about OutOfMemoryExceptions thrown when generic class is used for handling large set of key-value pairs.
How to figure out the max value for capacity parameter passed to Dictionary constructor to avoid OutOfMemoryException?
As a follow up to the comment from #V.B. here's an accessible implementation of the System.Runtime.Collections.OrderedDictionary<,>. I was originally going to access it by reflection and provide it via a factory but the dll this is in does not seem to be very accessible at all so I just pulled the source itself.
One thing to note is the indexer here will not throw KeyNotFoundException. I absolutely hate that convention and that was the 1 liberty i took in this implementation. If that's important to you, just replace the line for return default(TValue);. Uses C# 6 (compatible with Visual Studio 2013)
/// <summary>
/// System.Collections.Specialized.OrderedDictionary is NOT generic.
/// This class is essentially a generic wrapper for OrderedDictionary.
/// </summary>
/// <remarks>
/// Indexer here will NOT throw KeyNotFoundException
/// </remarks>
public class OrderedDictionary<TKey, TValue> : IDictionary<TKey, TValue>, IDictionary
{
private readonly OrderedDictionary _privateDictionary;
public OrderedDictionary()
{
_privateDictionary = new OrderedDictionary();
}
public OrderedDictionary(IDictionary<TKey, TValue> dictionary)
{
if (dictionary == null) return;
_privateDictionary = new OrderedDictionary();
foreach (var pair in dictionary)
{
_privateDictionary.Add(pair.Key, pair.Value);
}
}
public bool IsReadOnly => false;
public int Count => _privateDictionary.Count;
int ICollection.Count => _privateDictionary.Count;
object ICollection.SyncRoot => ((ICollection)_privateDictionary).SyncRoot;
bool ICollection.IsSynchronized => ((ICollection)_privateDictionary).IsSynchronized;
bool IDictionary.IsFixedSize => ((IDictionary)_privateDictionary).IsFixedSize;
bool IDictionary.IsReadOnly => _privateDictionary.IsReadOnly;
ICollection IDictionary.Keys => _privateDictionary.Keys;
ICollection IDictionary.Values => _privateDictionary.Values;
void IDictionary.Add(object key, object value)
{
_privateDictionary.Add(key, value);
}
void IDictionary.Clear()
{
_privateDictionary.Clear();
}
bool IDictionary.Contains(object key)
{
return _privateDictionary.Contains(key);
}
IDictionaryEnumerator IDictionary.GetEnumerator()
{
return _privateDictionary.GetEnumerator();
}
void IDictionary.Remove(object key)
{
_privateDictionary.Remove(key);
}
object IDictionary.this[object key]
{
get { return _privateDictionary[key]; }
set { _privateDictionary[key] = value; }
}
void ICollection.CopyTo(Array array, int index)
{
_privateDictionary.CopyTo(array, index);
}
public TValue this[TKey key]
{
get
{
if (key == null) throw new ArgumentNullException(nameof(key));
if (_privateDictionary.Contains(key))
{
return (TValue) _privateDictionary[key];
}
return default(TValue);
}
set
{
if (key == null) throw new ArgumentNullException(nameof(key));
_privateDictionary[key] = value;
}
}
public ICollection<TKey> Keys
{
get
{
var keys = new List<TKey>(_privateDictionary.Count);
keys.AddRange(_privateDictionary.Keys.Cast<TKey>());
return keys.AsReadOnly();
}
}
public ICollection<TValue> Values
{
get
{
var values = new List<TValue>(_privateDictionary.Count);
values.AddRange(_privateDictionary.Values.Cast<TValue>());
return values.AsReadOnly();
}
}
public void Add(KeyValuePair<TKey, TValue> item)
{
Add(item.Key, item.Value);
}
public void Add(TKey key, TValue value)
{
if (key == null) throw new ArgumentNullException(nameof(key));
_privateDictionary.Add(key, value);
}
public void Clear()
{
_privateDictionary.Clear();
}
public bool Contains(KeyValuePair<TKey, TValue> item)
{
if (item.Key == null || !_privateDictionary.Contains(item.Key))
{
return false;
}
return _privateDictionary[item.Key].Equals(item.Value);
}
public bool ContainsKey(TKey key)
{
if (key == null) throw new ArgumentNullException(nameof(key));
return _privateDictionary.Contains(key);
}
public void CopyTo(KeyValuePair<TKey, TValue>[] array, int arrayIndex)
{
if (array == null) throw new ArgumentNullException(nameof(array));
if (arrayIndex < 0) throw new ArgumentOutOfRangeException(nameof(arrayIndex));
if (array.Rank > 1 || arrayIndex >= array.Length
|| array.Length - arrayIndex < _privateDictionary.Count)
throw new ArgumentException("Bad Copy ToArray", nameof(array));
var index = arrayIndex;
foreach (DictionaryEntry entry in _privateDictionary)
{
array[index] =
new KeyValuePair<TKey, TValue>((TKey) entry.Key, (TValue) entry.Value);
index++;
}
}
public IEnumerator<KeyValuePair<TKey, TValue>> GetEnumerator()
{
foreach (DictionaryEntry entry in _privateDictionary)
{
yield return
new KeyValuePair<TKey, TValue>((TKey) entry.Key, (TValue) entry.Value);
}
}
IEnumerator IEnumerable.GetEnumerator()
{
return GetEnumerator();
}
public bool Remove(KeyValuePair<TKey, TValue> item)
{
if (false == Contains(item)) return false;
_privateDictionary.Remove(item.Key);
return true;
}
public bool Remove(TKey key)
{
if (key == null) throw new ArgumentNullException(nameof(key));
if (false == _privateDictionary.Contains(key)) return false;
_privateDictionary.Remove(key);
return true;
}
public bool TryGetValue(TKey key, out TValue value)
{
if (key == null) throw new ArgumentNullException(nameof(key));
var keyExists = _privateDictionary.Contains(key);
value = keyExists ? (TValue) _privateDictionary[key] : default(TValue);
return keyExists;
}
}
Pull requests/discussion accepted on GitHub
I implemented a generic OrderedDictionary<TKey, TValue> by wraping around SortedList<TKey, TValue> and adding a private Dictionary<TKey, int> _order. Then I created an internal implementation of Comparer<TKey>, passing a reference to the _order dictionary. Then I use this comparer for the internal SortedList. This class keeps the order of elements passed to the constructor and order of additions.
This implementation has almost the same big O characteristics as SortedList<TKey, TValue> since adding and removing to _order is O(1). Each element will take (according to the book 'C# 4 in a Nutshell', p. 292, table 7-1) additional memory space of 22 (overhead) + 4 (int order) + TKey size (let's assume 8) = 34. Together with SortedList<TKey, TValue>'s overhead of two bytes, the total overhead is 36 bytes, while the same book says that non-generic OrderedDictionary has an overhead of 59 bytes.
If I pass sorted=true to constructor, then _order is not used at all, the OrderedDictionary<TKey, TValue> is exactly SortedList<TKey, TValue> with minor overhead for wrapping, if at all meaningful.
I am going to store not-so-many large reference objects in the OrderedDictionary<TKey, TValue>, so for me this ca. 36 bytes overhead is tolerable.
The main code is below. The complete updated code is on this gist.
public class OrderedList<TKey, TValue> : IDictionary<TKey, TValue>, IDictionary
{
private readonly Dictionary<TKey, int> _order;
private readonly SortedList<TKey, TValue> _internalList;
private readonly bool _sorted;
private readonly OrderComparer _comparer;
public OrderedList(IDictionary<TKey, TValue> dictionary, bool sorted = false)
{
_sorted = sorted;
if (dictionary == null)
dictionary = new Dictionary<TKey, TValue>();
if (_sorted)
{
_internalList = new SortedList<TKey, TValue>(dictionary);
}
else
{
_order = new Dictionary<TKey, int>();
_comparer = new OrderComparer(ref _order);
_internalList = new SortedList<TKey, TValue>(_comparer);
// Keep order of the IDictionary
foreach (var kvp in dictionary)
{
Add(kvp);
}
}
}
public OrderedList(bool sorted = false)
: this(null, sorted)
{
}
private class OrderComparer : Comparer<TKey>
{
public Dictionary<TKey, int> Order { get; set; }
public OrderComparer(ref Dictionary<TKey, int> order)
{
Order = order;
}
public override int Compare(TKey x, TKey y)
{
var xo = Order[x];
var yo = Order[y];
return xo.CompareTo(yo);
}
}
private void ReOrder()
{
var i = 0;
_order = _order.OrderBy(kvp => kvp.Value).ToDictionary(kvp => kvp.Key, kvp => i++);
_comparer.Order = _order;
_lastOrder = _order.Values.Max() + 1;
}
public void Add(TKey key, TValue value)
{
if (!_sorted)
{
_order.Add(key, _lastOrder);
_lastOrder++;
// Very rare event
if (_lastOrder == int.MaxValue)
ReOrder();
}
_internalList.Add(key, value);
}
public bool Remove(TKey key)
{
var result = _internalList.Remove(key);
if (!_sorted)
_order.Remove(key);
return result;
}
// Other IDictionary<> + IDictionary members implementation wrapping around _internalList
// ...
}
This is not yet another version/solution of an OrderedDictionary<,> but an experiment I did testing each of 4 versions mentioned in the answers: of #Colonel Panic, #mattmc3, #V.B. #Chris Marisic. It is meant as a feedback. Well, partial because I have to admit I haven't dissected the code, so there may be differences in functionality or safety checks. But still, I thought feedback would be useful on their performance. And as you'll see time can get from a couple of milliseconds to a quarter of hour.
Then I scribbled a naive minimal version with 2 lists of key and value class objects with O(n) search just to see the magnitude of the benefit of O(1) access.
Testbed is Microsoft Visual Studio Community 2019 with Unity 3D, 4 consecutive times for each test and the code that I wanted to replicate a real-ish scenario in is
using System.Text;
using UnityEngine;
public class TessyOne : MonoBehaviour
{
public const int iterations = 50000;
private System.Diagnostics.Stopwatch stopwatch;
private System.Random random;
public float stopwatchDuration;
public class Ala
{
public int inta;
public float fla;
public string stra;
public Ben bena;
public Ala(int i, float f, string s, Ben b)
{
inta = i; fla = f; stra = s; bena = b;
}
}
public class Ben
{
public int inte;
public float fle;
public string stre;
public Ben(int i, float f, string s)
{
inte = i; fle = f; stre = s;
}
}
//public Naive.OrderedDictionary<Ala, Ben> alasToBens = new Naive.OrderedDictionary<Ala, Ben>();
//public Hickford.OrderedDictionary<Ala, Ben> alasToBens = new Hickford.OrderedDictionary<Ala, Ben>();
//public Mattmc3.OrderedDictionary<Ala, Ben> alasToBens = new Mattmc3.OrderedDictionary<Ala, Ben>();
public Marisic.OrderedDictionary<Ala, Ben> alasToBens = new Marisic.OrderedDictionary<Ala, Ben>();
//public VB.OrderedList<Ala, Ben> alasToBens = new VB.OrderedList<Ala, Ben>(null, false);
Ala[] alarray = new Ala[iterations];
Ben[] berray = new Ben[iterations];
// This is the entry point of the application
private void Start()
{
stopwatch = new System.Diagnostics.Stopwatch();
random = new System.Random(2020);
for(int i = 0; i < iterations; ++i)
{
berray[i] = new Ben(random.Next(),
(float)random.NextDouble(),
MakeRandomString((ushort)random.Next(1, 10)));
alarray[i] = new Ala(random.Next(),
(float)random.NextDouble(),
MakeRandomString((ushort)random.Next(1, 10)),
berray[i]);
// uncomment for testing ContainsKey() and Remove(), comment for Add()
alasToBens.Add(alarray[i], berray[i]);
}
stopwatch.Start();
for(int i = iterations - 1; i > -1; --i)
{
//alasToBens.Add(alarray[i], berray[i]);
//alasToBens.ContainsKey(alarray[i]);
alasToBens.Remove(alarray[i]);
}
stopwatch.Stop();
stopwatchDuration = stopwatch.ElapsedMilliseconds;
}
public string MakeRandomString(ushort length)
{
StringBuilder sb = new StringBuilder();
for(ushort u = 0; u < length; ++u)
{
sb.Append((char)Random.Range(33, 126)); // regular ASCII chars
}
return sb.ToString();
}
}
Note that the tests are for worst case scenarios in the case of naive version at least, as it iterates through the collection from index 0 through iterations and searching is done from end to start. I measured Add(), ContainsKey() and Remove() in milliseconds for a dictionary of 50000 entries.
Results:
+----------+----------------+----------------+--------------------------------+
| ms | Add() | ContainsKey() | Remove() |
+----------+----------------+----------------+--------------------------------+
| Hickford | 7, 8, 7, 8 | 2, 2, 3, 2 | 7400, 7503, 7419, 7421 |
| Mattmc3 | 23, 24, 24, 23 | 3, 3, 3, 3 | 890404, 913465, 875387, 877792 |
| Marisic | 27, 28, 28, 27 | 4, 4, 4, 4 | 27401, 27627, 27341, 27349 |
| V.B. | 76, 76, 75, 75 | 59, 60, 60, 60 | 66, 67, 67, 67 |
| | | | |
| Naive | 19651, 19761 | 25335, 25416 | 25259, 25306 |
+----------+----------------+----------------+--------------------------------+

Categories

Resources