I'm writing an application that manipulates a text file. The first half of my function reads the textfile, while the second half writes to (optionally) the same file. Although I call .close() on the StreamReader object before opening the StreamWriter object, I still get a IOException: The process cannot access the file "file.txt" because it is being used by another process.
How do I force my program to release the file before continuing?
public static void manipulateFile(String fileIn, String fileOut,String obj)
{
StreamReader sr = new StreamReader(fileIn);
String line;
while ((line = sr.ReadLine()) != null)
{
//code to split up file into part1, part2, and part3[]
}
sr.Close();
//Write the file
if (fileOut != null)
{
StreamWriter sw = new StreamWriter(fileOut);
sw.Write(part1 + part2);
foreach (String s in part3)
{
sw.WriteLine(s);
}
sw.Close();
}
}
Your code as posted runs fine - I don't see the exception.
However calling Close() manually like that is a bad idea - if an exception is thrown your call to Close() might never be made. You should use a finally block, or better yet : a using statement.
using (StreamReader sr = new StreamReader(fileIn))
{
// ...
}
But the actual problem you are experiencing might not be specifically with this method, but a general problem with forgetting to close files properly in using blocks. I suggest you go through all your code base and look for all the places in your code where you use IDisposable objects and check that you dispose them correctly even when there could be exceptions.
Getting read access to a file that's already opened elsewhere isn't usually difficult. Most code would open a file for reading with FileShare.Read, allowing somebody else to read the file as well. StreamReader does so for example.
Getting write access is an entirely different ball of wax. That same FileShare.Read does not include FileShare.Write, allowing you to write the file while somebody else is reading it. That's very troublesome, you're jerking the mat out from under that somebody else, suddenly providing entirely different data.
All you have to do is find out who that 'somebody else' might be. SysInternals' Handles utility can tell you. Hopefully it is your own program, you could do something about that.
May sound like a stupid question, but are you sure you didn't edit the file with another application, which didn't release the file? I've had this situation before, mostly with Excel files where Excel didn't completely unloading from memory (or me just being dumb enough not to close the other application sometimes). Might happen with whatever application you use for .txt files, if any. Just a suggestion.
Related
I have a StreamWriter with an AutoFlush = true property. However, I still see the file only partially written when I randomly open it. I'm writing a file that needs to be fully written (JSON) or not during any given time.
var sw = new StreamWriter("C:\file.txt", true /* append */, Encoding.ASCII) { AutoFlush = true };
sw.WriteLine("....");
// long running (think like a logging application) -- 1000s of seconds
sw.Close();
In between the sw.WriteLine() call and sw.Close() I want to open the file, and always have it be in the "correct data format", i.e. my line should be complete.
Current Idea:
Increase the internal buffer of FileStream (and/or StreamWriter) to let's say 128KB. Then every 128KB-1, call .Flush() on the FileStream object. This leads me to my next question, when I do call Flush(), should I right before calling it get the Stream.Position and do a File.Lock(Position, 128KB-1)? Or does Flush take care of that?
Basically I don't want the reader to be able to read the contents in between Flush(), because it'll maybe partially broken.
using (StreamWriter sw = new StreamWriter("FILEPATH"))
{
sw.WriteLine("contents");
// if you open the file now, you may see partially written lines
// since the sw is still working on it.
}
// access the file now, since the stream writer has been properly closed and disposed.
If you need a "log-like" file which is never half-written, the way to go is not keeping it open.
Every time, you want to write your file, you should instantiate a new FileWriter, which will flush the file contents upon releasing the file like this:
private void LogLikeWrite(string filePath, string contents)
{
using (StreamWriter streamWriter = new StreamWriter(filePath, true)) // the true will make you append to the file instead of overwriting its contents
{
streamWriter.Write(contents);
}
}
This way your write operations will be flushed immediately.
If you are sharing the file between processes, your going to have a race condition unless you produce a locking mechanism of some kind. See https://stackoverflow.com/a/29127380/892327. This does require that you are able to modify both processes.
An alternative is to have process A wait for a file at a specified location. Process B writes to a intermediate file and once B has flushed, the file is copied to the location process A is expecting a file to be so that it can consume the file.
I am reading, then writing to a text file. I do this in multiple parts of my program. After I'm done writing, I always close it (I use streamreader/writer). There is usually about 3 seconds between the close and the next time it's opened.
However, the second time I need to write to the same file, I always get an access denied error because another process is using it. At no point is any other process ever using it, and restarting my program lets me read from it.
This is the open/write/close code:
System.IO.StreamWriter file = new System.IO.StreamWriter(saveFileLocation.Text);
file.WriteLine(account);
file.Close();
Assuming there is no multi-threading then the issue is with proper disposal. The correct way to dispose of a stream or in general types that implement IDisposable is to wrap them in a using statement. The using statement ensures proper disposal and uses a finally block to ensure that the stream is closed even in exceptional circumstances.
using(var file = new System.IO.StreamWriter(saveFileLocation.Text))
{
//do work...
file.WriteLine(account);
}//when file goes out of scope it will close
Do this for all your streams.
use using statement or try{ }finally{ file.Close(); }
Are you sure an exception isn't being thrown, preventing close from being called? Either way this is better code:
using (System.IO.StreamWriter file = new System.IO.StreamWriter(saveFileLocation.Text))
{
file.WriteLine(account);
}
I have a program that continuously writes its log to a text file.
I don't have the source code of it, so I can not modify it in any way and it is also protected with Themida.
I need to read the log file and execute some scripts depending on the content of the file.
I can not delete the file because the program that is continuously writing to it has locked the file.
So what will be the better way to read the file and only read the new lines of the file?
Saving the last line position? Or is there something that will be useful for solving it in C#?
Perhaps use the FileSystemWatcher along with opening the file with FileShare (as it is being used by another process). Hans Passant has provided a nice answer for this part here:
var fs = new FileStream(path, FileMode.Open, FileAccess.Read, FileShare.ReadWrite);
using (var sr = new StreamReader(fs)) {
// etc...
}
Have a look at this question and the accepted answer which may also help.
using (var fs = new FileStream("test.txt", FileMode.Open, FileAccess.Read, FileShare.ReadWrite | FileShare.Delete))
using (var reader = new StreamReader(fs))
{
while (true)
{
var line = reader.ReadLine();
if (!String.IsNullOrWhiteSpace(line))
Console.WriteLine("Line read: " + line);
}
}
I tested the above code and it works if you are trying to read one line at a time. The only issue is that if the line is flushed to the file before it is finished being written then you will read the line in multiple parts. As long as the logging system is writing each line all at once it should be okay.
If not then you may want to read into a buffer instead of using ReadLine, so you can parse the buffer yourself by detecting each Environment.NewLine substring.
You can just keep calling ReadToEnd() in a tight loop. Even after it reaches the end of the file it'll just return an empty string "". If some more data is written to the file it will pick it up on a subsequent call.
while (true)
{
string moreData = streamReader.ReadToEnd();
Thread.Sleep(100);
}
Bear in mind you might read partial lines this way. Also if you are dealing with very large files you will probably need another approach.
Use the filesystemwatcher to detect changes and get new lines using last read position and seek the file.
http://msdn.microsoft.com/en-us/library/system.io.filestream.seek.aspx
The log file is being "continuously" updated so you really shouldn't use FileSystemWatcher to raise an event each time the file changes. This would be triggering continuously, and you already know it will be very frequently changing.
I'd suggest using a timer event to periodically process the file. Read this SO answer for a good pattern to use System.Threading.Timer1. Keep a file stream open for reading or reopen each time and Seek to the end position of your last successful read. By "last successful read" I mean that you should encapsulate the reading and validating of a complete log line. Once you've successfully read and validated a log line, then you have a new position for the next Seek.
1 Note that System.Threading.Timer will execute on a system supplied thread that is kept in business by the ThreadPool. For short tasks this is more desirable that a dedicated thread.
Use this answer on another post c# continuously read file.
This one is quite efficient, and it checks once per second if the file size has changed. So the file is usually not read-locked as a result.
The other answers are quite valid and simple. A couple of them will read-lock the file continuously, but that's probably not a problem for most.
I've researched several questions but none of the answers I found has helped. The goal of this function is to modify an xml file. I read the original file and write the old stuff and the new stuff to the new file. All of this works perfectly. The problem arises when I'm done and need to delete the old file and move the new one.
The error being received is that the jnv_config.xml is in use by another process (the reader file.)
Removing the Close and/or Dispose does not solve the problem.
using (XmlReader reader = XmlReader.Create("jnv_config.xml"))
using (XmlWriter writer = XmlWriter.Create("jnv_temp.xml"))
{
writer.WriteStartDocument();
while (reader.Read())
{
// Read the file, write to the other file - this part works perfectly.
// No filestreams nor anything else is created in here.
}
writer.WriteEndElement();
writer.WriteEndDocument();
reader.Close();
writer.Close();
reader.Dispose();
writer.Dispose();
}
// Delete the old file and copy the new one
File.Delete("jnv_config.xml");
//File.Move("jnv_temp.xml", "jnv_config.xml");
I'm using VS2012 (NET 4.5), C#, Standard Windows Forms project.
Are you sure that it's this XmlReader that still has the file open? Have you tried using Process Explorer to confirm that there are no open file handles for the config file before this code executes?
Check if the file is ready before you delete it. If your working with large files perhaps call code via a loop for a couple of seconds.
private void IsFileOpen(FileInfo file)
{
FileStream stream = null;
try {
stream = file.Open(FileMode.Open, FileAccess.ReadWrite, FileShare.None);
}
catch (Exception ex) {
if (ex is IOException && IsFileLocked(ex)) {
// do something here, either close the file if you have a handle or as a last resort terminate the process - which could cause corruption and lose data
}
}
}
private static bool IsFileLocked(Exception exception)
{
int errorCode = Marshal.GetHRForException(exception) & ((1 << 16) - 1);
return errorCode == 32 || errorCode == 33;
}
It has been my experience that many NTFS file-handling functions (especially DELETEs) are slightly asynchronous. Trying adding a Sleep or Wait for at least 0.2 sec before the RENAME.
As that did not work, I would instead suggest putting the Sleep/Wait before and then slowly increasing it until it works. If you get to some unreasonably large time span (like say 10 seconds) and it still does not work, then I think that you can fairly conclude that the problem is that you XmlReader is not being released as long as you stay in this code.
In which case you may need to do something to insure that it is getting Disposed completely, like forcing GC to run.
I have a function that is reading a file and adding some of the string in a list and returning this list. Because I wanted that nobody and nothing could change, delete or whatever the current file that I was reading I locked it. Everything was fine, I did it somehow like this:
public static List<string> Read(string myfile)
{
using (FileStream fs = File.Open(myfile, FileMode.Open, FileAccess.Read, FileShare.None))
{
//read lines, add string to a list
//return list
}
}
Thats fine. Now I have another function in another class that is doing stuff with the list and calling other functions and so on. Now sometimes I want to move the file that I was reading. And here is the problem: because Im now in a new function and the function Read(string myfile) is already processed, there is no more lock in the file.
//in another class
public static void DoStuff(/*somefile*/)
{
List<string> = Read(/*somefile*/);
//the file (somefile) is not more locked!
//do stuff
if (something)
Move(/*somefile*/) //could get an error, file maybe not more there or changed...
}
So another function/user could change the file, rename it, deleting it or whatever => Im not able to move this file. Or I will move the changed file, but I dont what that. If I would use threading, another thread with the same function could lock the file again and I could not move it.
Thats why I somehow need to lock this file for a longer time. Is there an easy way? Or do I have to replace my using (FileStream fs = File.Open(myfile, FileMode.Open, FileAccess.Read, FileShare.None) code? Any suggestions? thank you
If you want to keep the file locked for longer then you need to refactor your code so that the Stream object is kept around for longer - I would change the Read method to accept a FileStream, a little bit like this
using (FileStream fs = File.Open(myfile, FileMode.Open, FileAccess., FileShare.None))
{
List<string> = Read(fs);
if (something)
{
File.Move(/* somefile */)
}
}
The problem you are going to have is that File.Move method is going to fail as this file is already locked (by you, but File.Move doesn't know that).
Depending on what exactly it is you want to do it might be possible to work out a way of keeping the file locked while also "moving" the file, (for example if you know something in advance you could open the file specifying FileOptions.DeleteOnClose and write a new file with the same contents in the desired destination), however this isn't really the same as moving the file and so it all depends on what exactly it is you are trying to do.
In general such things are almost always going to be more trouble than they are worth - you are better off just unlocking the file just before you move it and catching/ handling any exception that is thrown as a result of the move.
The only way you could keep it locked is to keep it exclusively open, like you have done in your code.
Maybe you need to //do stuff within your using statement, and then straight after call Move
No amount of locking will prevent this. A lock only protects the data in the file. The user (or any other program) can still move or rename the file. The file's attributes, including name, time stamps and file attributes are stored separately and can be changed at will.
This is just something you'll have to deal with in any Windows program. It is rare enough that simply catching the exception is good enough to let you know that something happened to the file. The user will rarely be surprised. If you really need to know up front then you can use FileSystemWatcher to get a notification when it happens.
You are locking the file only when Read method is called.
If you want to keep it locked and release it only when you decide, make your methods OpenFile(string filename) and CloseFile(string filename). Then remove the using statement from Read method.
Open it when you start working (lock). Read it when you need it. When you have to move it, simply create a new file with the same name and copy the content. Close the original file (unlock) and delete it.