Lock() in a static method - c#

I have a multi threaded application that writes to a settings xml file using a static method. I want to avoid that the file is being updated twice at the same time (causing accesss/write exception).
How do I do that?
This doesn't work:
namespace Program
{
public class Settings
{
private static void SetSettingsValue (string settings, string value)
{
// make this thread safe to avoid writing to a locked settings xml file
lock (typeof(Settings))
{
//write data to xml file
}
}
}
}

You should create a separate, static lock object and use that. DO NOT USE A STRING! Strings are automatically interned and there will be only one instance of each programmatically declared string so you can't guarantee exclusive access to the lock.
You should do this:
public class A {
private static Object LOCK = new Object();
private static void foo() {
lock(LOCK) {
// Do whatever
}
}
}
(The syntax may be incorrect; I'm a Java person mostly but the same rules about locking and String interning apply to C#)
The lock keyword enforces a mutual exclusion lock: only one thread can lock any particular object at a time. If a second thread calls foo then it will block until the first thread has exited the lock block.
Take home messages: for a static method lock on a private static variable. Don't lock on Strings or typeof(...) because you cannot guarantee that no-one else is using that object. Always lock on an object you know is not touched by anyone else by making it private and making it new.

The concept of lock() is to use an existing-object it can reference and use to control whether access is granted.
static object SpinLock = new object();
lock(SpinLock)
{
//Statements
}
When the execution leaves the lock() block the reference is released and any other threads waiting to execute the code block can proceed (one at a time, of course).

Related

how to prevent a deadlock when you need to lock multiple objects

Image this code:
You have 2 arrays, and you need to lock both of them in same moment (for any reason - you just need to keep locked both of them because they are somehow depending on each other) - you could nest the lock
lock (array1)
{
lock (array2)
{
... do your code
}
}
but this may result in a deadlock in case that someone in other part of your code would do
lock (array2)
{
lock (array1)
{
... do your code
}
}
and array 1 was locked - execution context switched - then array 2 was locked by second thread.
Is there a way to atomically lock them? such as
lock_array(array1, array2)
{
....
}
I know I could just create some extra "lock object" and lock that instead of both arrays everywhere in my code, but that just doesn't seem correct to me...
In general you should avoid locking on publicly accessible members (the arrays in your case). You'd rather have a private static object you'd lock on.
You should never allow locking on publicly accessible variable as Darin said. For example
public class Foo
{
public object Locker = new object();
}
public class Bar
{
public void DoStuff()
{
var foo = new Foo();
lock(foo.Locker)
{
// doing something here
}
}
}
rather do something like this.
public class Foo
{
private List<int> toBeProtected = new List<int>();
private object locker = new object();
public void Add(int value)
{
lock(locker)
{
toBeProtected.Add(value);
}
}
}
The reason for this is if you have multiple threads accessing multiple public synchronization constructs then run the very real possiblity of deadlock. Then you have to be very careful about how you code. If you are making your library available to others can you be sure that you can grab the lock? Perhaps someone using your library has also grabbed the lock and between the two of you have worked your way into a deadlock scenario. This is the reason Microsoft recommend not using SyncRoot.
I am not sure what you mean by lock to arrays.
You can easily perform operation on both arrays in single lock.
static readonly object a = new object();
lock(a){
//Perform operation on both arrays
}

Is it OK to use a string as a lock object?

I need to make a critical section in an area on the basis of a finite set of strings. I want the lock to be shared for the same string instance, (somewhat similar to String.Intern approach).
I am considering the following implementation:
public class Foo
{
private readonly string _s;
private static readonly HashSet<string> _locks = new HashSet<string>();
public Foo(string s)
{
_s = s;
_locks.Add(s);
}
public void LockMethod()
{
lock(_locks.Single(l => l == _s))
{
...
}
}
}
Are there any problems with this approach? Is it OK to lock on a string object in this way, and are there any thread safety issues in using the HashSet<string>?
Is it better to, for example, create a Dictionary<string, object> that creates a new lock object for each string instance?
Final Implementation
Based on the suggestions I went with the following implementation:
public class Foo
{
private readonly string _s;
private static readonly ConcurrentDictionary<string, object> _locks = new ConcurrentDictionary<string, object>();
public Foo(string s)
{
_s = s;
}
public void LockMethod()
{
lock(_locks.GetOrAdd(_s, _ => new object()))
{
...
}
}
}
Locking on strings is discouraged, the main reason is that (because of string-interning) some other code could lock on the same string instance without you knowing this. Creating a potential for deadlock situations.
Now this is probably a far fetched scenario in most concrete situations. It's more a general rule for libraries.
But on the other hand, what is the perceived benefit of strings?
So, point for point:
Are there any problems with this approach?
Yes, but mostly theoretical.
Is it OK to lock on a string object in this way, and are there any thread safety issues in using the HashSet?
The HashSet<> is not involved in the thread-safety as long as the threads only read concurrently.
Is it better to, for example, create a Dictionary that creates a new lock object for each string instance?
Yes. Just to be on the safe side. In a large system the main aim for avoiding deadlock is to keep the lock-objects as local and private as possible. Only a limited amount of code should be able to access them.
I'd say it's a really bad idea, personally. That isn't what strings are for.
(Personally I dislike the fact that every object has a monitor in the first place, but that's a slightly different concern.)
If you want an object which represents a lock which can be shared between different instances, why not create a specific type for that? You can given the lock a name easily enough for diagnostic purposes, but locking is really not the purpose of a string. Something like this:
public sealed class Lock
{
private readonly string name;
public string Name { get { return name; } }
public Lock(string name)
{
if (name == null)
{
throw new ArgumentNullException("name");
}
this.name = name;
}
}
Given the way that strings are sometimes interned and sometimes not (in a way which can occasionally be difficult to discern by simple inspection), you could easily end up with accidentally shared locks where you didn't intend them.
Locking on strings can be problematic, because interned strings are essentially global.
Interned strings are per process, so they are even shared among different AppDomains. Same goes for type objects (so don't lock on typeof(x)) either.
I had a similar issue not long ago where I was looking for a good way to lock a section of code based on a string value. Here's what we have in place at the moment, that solves the problem of interned strings and has the granularity we want.
The main idea is to maintain a static ConcurrentDictionary of sync objects with a string key. When a thread enters the method, it immediately establishes a lock and attempts to add the sync object to the concurrent dictionary. If we can add to the concurrent dictionary, it means that no other threads have a lock based on our string key and we can continue our work. Otherwise, we'll use the sync object from the concurrent dictionary to establish a second lock, which will wait for the running thread to finish processing. When the second lock is released, we can attempt to add the current thread's sync object to the dictionary again.
One word of caution: the threads aren't queued- so if multiple threads with the same string key are competing simultaneously for a lock, there are no guarantees about the order in which they will be processed.
Feel free to critique if you think I've overlooked something.
public class Foo
{
private static ConcurrentDictionary<string, object> _lockDictionary = new ConcurrentDictionary<string, object>();
public void DoSomethingThreadCriticalByString(string lockString)
{
object thisThreadSyncObject = new object();
lock (thisThreadSyncObject)
{
try
{
for (; ; )
{
object runningThreadSyncObject = _lockDictionary.GetOrAdd(lockString, thisThreadSyncObject);
if (runningThreadSyncObject == thisThreadSyncObject)
break;
lock (runningThreadSyncObject)
{
// Wait for the currently processing thread to finish and try inserting into the dictionary again.
}
}
// Do your work here.
}
finally
{
// Remove the key from the lock dictionary
object dummy;
_lockDictionary.TryRemove(lockString, out dummy);
}
}
}
}

use the same lock object at two different code block?

Can I use the same lock object at two methods, accessed by two different threads? Goal is to make task1 and task2 thread safe.
object lockObject = new object();
// Thread 1
void Method1()
{
lock(lockObject)
{
// task1
}
}
// Thread 2
void Method2()
{
lock(lockObject)
{
// task2
}
}
Yes, you can use the same lock object (it's technically a monitor in the computer science sense, and is implemented with calls to methods in System.Monitor) in two different methods.
So, say that you had some static resource r, and you wanted two threads to access that resource, but only one thread can use it at a time (this is the classic goal of a lock). Then you would write code like
public class Foo
{
private static object _LOCK = new object();
public void Method1()
{
lock (_LOCK)
{
// Use resource r
}
}
public void Method2()
{
lock (_LOCK)
{
// Use resource r
}
}
}
You need to lock around every use of r in your program, since otherwise two threads can use r at the same time. Furthermore, you must use the same lock, since otherwise again two threads would be able to use r at the same time. So, if you are using r in two different methods, you must use the same lock from both methods.
EDIT: As #diev points out in the comments, if the resource were per-instance on objects of type Foo, we would not make _LOCK static, but would make _LOCK instance-level data.
If you want to prevent different threads from performing task1 and task2 at the same time, then you must use the same lock object.
If the two tasks do not contend for the same resources, you could use different lock objects.
Yes.
You can and it works. If you don't use the same object, the blocks could execute at the same time. If you do use the same object, they can't.
Also, you mean lock(lockObject), not using(lockObject).

locking c# using private variables

according to Eric Gunnerson
Don’t
Use lock(this)
Use lock(typeof())
Do
Lock on a private variable, not on something the user can see
Use “object key = new object()” if you need a private key to lock on
what is the reason??
what is the reason??
Because anything that is not private means that could be used from the outside to lock on by someone else or some code that is outside from your control leading to deadlocks.
The best practice is to lock on private static variables, like this:
private static object _syncRoot = new object();
and then:
lock(_syncRoot)
{
...
}
private instance variables could also be dangerous since the instance of your class is not something that you as implementer of the class own. It's the consumer of the class that owns the instance.
You should really search for old questions on this before posting a new one.
Lock
Also Darin Dimitrov is wrong when he says locks on private variables are dangerous. Locks on private variables serve the purpose of synchronizing the resources of a particular instance of your class. It can happen when you have
// A Client which listens to several servers
public class Client
{
private static object logSync = new object();
private readonly Dictionary<string, Server> servers = new Dictionary<string, Server>();// .... some code for initialization ...
// Disposing a server.
public void Dispose (string serverName)
{
// the lock needed here is on private variable. This purpose cannot be achieved with a
// lock on private static object. Well you can achieve the purpose but you will block
// all Client instances when you do so, which is pointless.
// Also notice that services is readonly, which is convenient
// because that is the object we took a lock on. The lock is on the same object always
// there is no need to unnecessarily create objects for locks.
lock(services)
{
// ... Do something cleanup here ...
Server server;
if (servers.TryGetValue(serverName, out server))
{
server.Dispose();
servers.Remove(serverName);
}
}
}
// on some message that has to be logged
public void OnMessage(string message, Server server)
{
// This makes sure that all clients log to the same sink and
// the messages are processed in the order of receipt
lock (logSync)
{
Log(evt);
}
}
}

Properly locking a List<T> in MultiThreaded Scenarios?

Okay, I just can't get my head around multi-threading scenarios properly. Sorry for asking a similar question again, I'm just seeing many different "facts" around the internet.
public static class MyClass {
private static List<string> _myList = new List<string>;
private static bool _record;
public static void StartRecording()
{
_myList.Clear();
_record = true;
}
public static IEnumerable<string> StopRecording()
{
_record = false;
// Return a Read-Only copy of the list data
var result = new List<string>(_myList).AsReadOnly();
_myList.Clear();
return result;
}
public static void DoSomething()
{
if(_record) _myList.Add("Test");
// More, but unrelated actions
}
}
The idea is that if Recording is activated, calls to DoSomething() get recorded in an internal List, and returned when StopRecording() is called.
My specification is this:
StartRecording is not considered Thread-Safe. The user should call this while no other Thread is calling DoSomething(). But if it somehow could be, that would be great.
StopRecording is also not officially thread-safe. Again, it would be great if it could be, but that is not a requirement.
DoSomething has to be thread-safe
The usual way seems to be:
public static void DoSomething()
{
object _lock = new object();
lock(_lock){
if(_record) _myList.Add("Test");
}
// More, but unrelated actions
}
Alternatively, declaring a static variable:
private static object _lock;
public static void DoSomething()
{
lock(_lock){
if(_record) _myList.Add("Test");
}
// More, but unrelated actions
}
However, this answer says that this does not prevent other code from accessing it.
So I wonder
How would I properly lock a list?
Should I create the lock object in my function or as a static class variable?
Can I wrap the functionality of Start and StopRecording in a lock-block as well?
StopRecording() does two things: Set a boolean variable to false (to prevent DoSomething() from adding more stuff) and then copying the list to return a copy of the data to the caller). I assume that _record = false; is atomic and will be in effect immediately? So normally I wouldn't have to worry about Multi-Threading here at all, unless some other Thread calls StartRecording() again?
At the end of the day, I am looking for a way to express "Okay, this list is mine now, all other threads have to wait until I am done with it".
I will lock on the _myList itself here since it is private, but using a separate variable is more common. To improve on a few points:
public static class MyClass
{
private static List<string> _myList = new List<string>;
private static bool _record;
public static void StartRecording()
{
lock(_myList) // lock on the list
{
_myList.Clear();
_record = true;
}
}
public static IEnumerable<string> StopRecording()
{
lock(_myList)
{
_record = false;
// Return a Read-Only copy of the list data
var result = new List<string>(_myList).AsReadOnly();
_myList.Clear();
return result;
}
}
public static void DoSomething()
{
lock(_myList)
{
if(_record) _myList.Add("Test");
}
// More, but unrelated actions
}
}
Note that this code uses lock(_myList) to synchronize access to both _myList and _record. And you need to sync all actions on those two.
And to agree with the other answers here, lock(_myList) does nothing to _myList, it just uses _myList as a token (presumably as key in a HashSet). All methods must play fair by asking permission using the same token. A method on another thread can still use _myList without locking first, but with unpredictable results.
We can use any token so we often create one specially:
private static object _listLock = new object();
And then use lock(_listLock) instead of lock(_myList) everywhere.
This technique would have been advisable if myList had been public, and it would have been absolutely necessary if you had re-created myList instead of calling Clear().
Creating a new lock in DoSomething() would certainly be wrong - it would be pointless, as each call to DoSomething() would use a different lock. You should use the second form, but with an initializer:
private static object _lock = new object();
It's true that locking doesn't stop anything else from accessing your list, but unless you're exposing the list directly, that doesn't matter: nothing else will be accessing the list anyway.
Yes, you can wrap Start/StopRecording in locks in the same way.
Yes, setting a Boolean variable is atomic, but that doesn't make it thread-safe. If you only access the variable within the same lock, you're fine in terms of both atomicity and volatility though. Otherwise you might see "stale" values - e.g. you set the value to true in one thread, and another thread could use a cached value when reading it.
There are a few ways to lock the list. You can lock on _myList directly providing _myList is never changed to reference a new list.
lock (_myList)
{
// do something with the list...
}
You can create a locking object specifically for this purpose.
private static object _syncLock = new object();
lock (_syncLock)
{
// do something with the list...
}
If the static collection implements the System.Collections.ICollection interface (List(T) does), you can also synchronize using the SyncRoot property.
lock (((ICollection)_myList).SyncRoot)
{
// do something with the list...
}
The main point to understand is that you want one and only one object to use as your locking sentinal, which is why creating the locking sentinal inside the DoSomething() function won't work. As Jon said, each thread that calls DoSomething() will get its own object, so the lock on that object will succeed every time and grant immediate access to the list. By making the locking object static (via the list itself, a dedicated locking object, or the ICollection.SyncRoot property), it becomes shared across all threads and can effectively serialize access to your list.
The first way is wrong, as each caller will lock on a different object.
You could just lock on the list.
lock(_myList)
{
_myList.Add(...)
}
You may be misinterpreting the this answer, what is actually being stated is that they lock statement is not actually locking the object in question from being modified, rather it is preventing any other code using that object as a locking source from executing.
What this really means is that when you use the same instance as the locking object the code inside the lock block should not get executed.
In essence you are not really attempting to "lock" your list, you are attempting to have a common instance that can be used as a reference point for when you want to modify your list, when this is in use or "locked" you want to prevent other code from executing that would potentially modify the list.

Categories

Resources