Interface is forceing abstract class to implement its functions - c#

I have got a abstract class which is implementing 3 interfaces.
public abstract class ServiceBaseCore<Entity, EntityKey> : MarshalByRefObject, IComponentService, IEntityProvider<Entity, EntityKey>
where Entity : IEntityId<EntityKey>, new()
where EntityKey : IEntityKey, new()
{
// Provided functionality/body to some methods of interface
}
Problem: i am getting error that my abstract class is not providing implementation (definition/body) to functions of interface, where as what i read is that "if a class is abstract than there is no need to provide body to all/any functions of interface its implementing".
Note: the code was generated by codeSmith even though its showing error.
please tell me where i am wrong and what i am missing.
Thanks

Just create some abstract functions, and the compiler will stop complaining:
public abstract void MyMethodDeclaredInTheInterface();
EDIT: To speed up the process, just move the caret on the interface name in your abstract class, then ctrl + . and select "Implement interface YourInterface".
Then a little search and replace over the NotImplementedException should do the trick.

Create abstract methods for the interface. Otherwise, the class doesn't actually necessarily implement those methods in any way, even though derived classes might (the derived versions wouldn't be available to the base via vtables and therefore could not fulfill the interface contract). That would violate the idea behind interfaces.
Note: it's late and I'm tired, so I might be wrong about the rationale. But adding abstract methods for the methods required by the interfaces will take care of the problem.

You should be able to right click on the Interface name (near MyClass : IMyInterface) to see the context menu, and then choose 'Implement Interface'. Visual Studio will create all the required methods and properties to satsify the interface.

You may try some IDE to save much of your time. I know exactly, that Eclipse can do this automatically.

Related

How to automatic create override implementations of a base class?

I would like to know how could I create the implementation of an abstract method in all the specific classes that inherit from him.
I need it because I have an abstract class, I create one abstract method on it, but there is around 50 specific class to implement this method, and will be so boring implement one by one (even with the ctrl + . shortcut).
You can right-click on every class and select Implement Abstract Class which will create an empty metmber-body doing nothing but throw an NotImplementedException.
However I can´t see any reason why you should do that. If your method should have a default-implementation it should not be abstract in base-classd but virtual:
abstract class MyBaseClass {
virtual void DoSomething()
{
// do nothing
}
}
class Derived : MyBaseClass {
override void DoSomething()
{
Console.WriteLine();
}
}
You do not have to implement the method on all derived classes now. So as long as you´re testing (or for whatever weird reason you need this) you can stay on your default implementaion whereas when releasing the software you force every class to implement the member by chaning modifier from virtual to abstract and delete the method-body.
If I understand your problem correctly, you can follow the pattern of the adapters for Java event listeners.
They are an intermediate class sitting above the abstract class (interface in Java), providing a more or less meaningful (actually, empty) default implementation for all abstract functions. Your classes inherit (either just for now, or forever) from this adapter, overriding only some of the functions.
If all your classes inherit from this adapter as a permanent solution it is probably questionable why you had the abstract class to begin with. Defining an interface with no implementation makes sense only in order to avoid the restrictions concerning multiple inheritance in Java and C#. If the base class has some implementations anyway, you can as well provide a default for the remaining abstract methods, too. If that is undesired because in production code inheritors must be forced to implement their own methods, because there is no reasonable default, one could actually disable the implementing code with conditional translation (and, for example, make it dependent on a DEBUG or TEST flag during compilation).

Abstract base class and constructor visibility

I usually make a base class abstract to give the signal this is a base class - you cannot instantiate me! even if there are no abstract methods in it.
Furthermore, I always make the base class constructor protected, although there's no real functional need to do that - I just want to make another point that this is a base class - you cannot instantiate me!
Am I jumping through hoops in doing that? What do you do?
It seems a reasonable thing to do, yes. There'll be no functional difference between the constructor being public or being protected, but making it protected gives a clearer indication of the intended use.
I'm not sure that you should set the class as abstract if there are no abstract methods. If it has a full implementation of the functionality that is expected of the classes derived from it, why not let it be instantiated and used as is? If this is just a way to share functionality across a range of classes then a composition based design may be more appropriate ie. have each 'derived' class reference this class rather than derive from it.
Is there a particular scenario you have in mind where this is could be an appropriate design?
Edit
The only scenario I have found where an abstract class with no abstract methods makes sense is when the abstract class is partially implementing and interface. The derived classes are required to complete the implementation.
Link to example (edit: site gone, This blog post seems to be a copy of the content)
In an abstract class, there's no difference between a public or protected constructor. As a matter of fact, I believe the compiler should give a warning or error when defining the constructor of an abstract class as public. Too bad it doesn't.

Interface and base class mix, the right way to implement this

I have some user controls which I want to specify properties and methods for.
They inherit from a base class, because they all have properties such as "Foo" and "Bar", and the reason I used a base class is so that I dont have to manually implement all of these properties in each derived class.
However, I want to have a method that is only in the derived classes, not in the base class, as the base class doesn't know how to "do" the method, so I am thinking of using an interface for this. If i put it in the base class, I have to define some body to return a value (which would be invalid), and always make sure that the overriding method is not calling the base. method
Is the right way to go about this to use both the base class and an interface to expose the method? It seems very round-about, but every way i think about doing it seems wrong...
Let me know if the question is not clear, it's probably a dumb question but I want to do this right.
EDIT : Thanks to all the people with your excellent abstract suggestions, but this breaks the designer. If abstract was not a selectable option, what would you do?
Alternatively you could define the method as 'abstract' in the base class, which will not require the class to implement it. For example:
abstract class A
{
public abstract void B();
}
Of course this will force your base class to be abstract as well, but it sounds like this would work just fine for you.
See Abstract methods on MSDN.
Update
Since abstract is not an option for you due to designer issues, you could just define the method as part of your base class, and have it throw a NotImplementedException if it is called directly from the base class:
void DerivMethod()
{
// Must be implemented by derived class
throw new NotImplementedException();
}
Otherwise, using an interface would be fine, especially if the above leaves a bad taste in your mouth...
You should make your base class an Abstract class. Then the base class can implement the Interface by marking the method abstract.
http://msdn.microsoft.com/en-us/library/aa664435(VS.71).aspx
Mark the method as abstract in your base class. You'll be forced to implement it in the derived classes, but the base class will not need to have a method definition.
I agree with with others, but making your user control abstract has some issues for the designer. The designer will often not display the abstract user control.
I would implement the interface methods in the base class. You can throw a NotImplemented exception or Assert.Fail in the methods if you want to make sure the inheritors are overriding these methods properly.
Declare the function signature in the base class and use the "abstract" modifier.

Why is a base class in C# allowed to implement an interface contract without inheriting from it?

I've stumbled upon this "feature" of C# - the base class that implements interface methods does not have to derive from it.
Example:
public interface IContract
{
void Func();
}
// Note that Base does **not** derive from IContract
public abstract class Base
{
public void Func()
{
Console.WriteLine("Base.Func");
}
}
// Note that Derived does *not* provide implementation for IContract
public class Derived : Base, IContract
{
}
What happens is that Derived magically picks-up a public method, Base.Func, and decides that it will implement IContract.Func.
What is the reason behind this magic?
IMHO: this "quasi-implementation" feature is very-unintuitive and make code-inspection much harder. What do you think?
The reason is that your comment is simply incorrect:
// Note that Derived does not provide implementation for IContract
Sure it does. Follow the logic through.
Derived is required to provide a public member corresponding to each member of IContract.
All inheritable members of a base class are also members of a derived class; that's the definition of inheritance.
Therefore Derived provides an implementation for IContract; its inherited member is a member that fulfills the requirement
Therefore, no error.
this feature is very-unintuitive and make code-inspection much harder. What do you think?
I think you shouldn't use the feature if you don't like it. If you find it confusing and weird to read code that uses this feature then encourage your coworkers who use this feature to stop doing so.
How is this feature different from any other feature where a method from a base class is used from a derived class? There are a number of different ways in which a method from a base class may be used or mentioned in a derived class -- method calls, overrides, method group conversions, and so on.
Furthermore, this is relatively speaking a simple, straightforward case. If you really want to complain about confusing interface semantics in C#, I'd spend my time complaining about interface reimplementation semantics. That's the one that really seems to bake people's noodles. I always have to look that thing up in the spec to make sure I'm getting the semantics right.
Why do you think that this is strange and unnatural? Every public member of base class is also a public member of derived class. So there is no contradiction here. Anyhow you can implement interface explicitely if you like.

Interface or abstract class?

For my new Pet-Project I have a question for design, that is decided already, but I want some other opinions on that too.
I have two classes (simplified):
class MyObject
{
string name {get;set;}
enum relation {get;set;}
int value {get;set;}
}
class MyObjectGroup
{
string name {get;set;}
enum relation {get;set;}
int value {get;set;}
List<MyObject> myobjects {get;set;}
}
Later in the Project MyObjectGroup and MyObject should be used equally. For this I could go two ways:
Create an interface: IObject
Create an abstract class: ObjectBase
I decided to go the way of the interface, that I later in code must not write ObjectBase every time but IObject just for ease - but what are other positives for this way?
And second, what about adding IXmlSerializable to the whole story?
Let the interface inherit from IXmlSerializable or does it have more positives to implement IXmlSerializable in abstract base class?
Generally speaking, the approach I use in this kind of situation is to have both an interface and an abstract class. The interfaces defines, well, the interface. The abstract class is merely a helper.
You really can't go wrong with this approach. Interfaces give you the flexibility to change implementation. Abstract classes give you boilerplate and helper code that you aren't forced to use, which you otherwise would be if your methods were defined in terms of an abstract class explicitly.
These are some of the differences between Interfaces and Abstract classes.
1A. A class may inherit (Implement) one or more interfaces. So in C#, interfaces are used to achieve multiple inheritance.
1B. A class may inherit only one abstract class.
2A. An interface cannot provide any code, just the signature.
2B. An abstract class can provide complete, default code and/or just the details that have to be overridden.
3A. An interface cannot have access modifiers for the subs, functions, properties etc everything is assumed as public.
3B. An abstract class can contain access modifiers for the subs, functions, properties.
4A. Interfaces are used to define the peripheral abilities of a class. For eg. A Ship and a Car can implement a IMovable interface.
4B. An abstract class defines the core identity of a class and there it is used for objects.
5A. If various implementations only share method signatures then it is better to use Interfaces.
5B. If various implementations are of the same kind and use common behaviour or status then abstract class is better to use.
6A. If we add a new method to an Interface then we have to track down all the implementations of the interface and define implementation for the new method.
6B. If we add a new method to an abstract class then we have the option of providing default implementation and therefore all the existing code might work properly.
7A. An interface can not have fields defined.
7B. An abstract class can have fields and constants defined.
8A. An interface can not have constructor.
8B. An abstract class can have default constructors implemented.
9A. An interface can only inherit from other interfaces.
9B. An abstract class can inherit from interfaces, abstract class, or even class.
The interface would be my default until there is a reason to use a base class, as it makes fewer decisions for us.
I wouldn't involve IXmlSerializable unless I had to though; it is a messy, tricky interface that is often a cause of woe.
What exactly are your serialization requirements? There may be better options... however, for many serializers a base-class would be easier than an interface. For example, for XmlSerializer you could have:
[XmlInclude(typeof(MyObject))] // : ObjectBase
[XmlInclude(typeof(MyObjectGroup))] // : ObjectBase
public abstract class ObjectBase { /* */ }
(the exact approach depends on the serializer)
Generally, you should consider interfaces as contracts that some types implement and abstract classes as nodes in inheritance hierarchy that don't exist by themselves (i.e. there is an "is a" relationship between the derived class and the base abstract class). However, in practice, you might need to use interfaces in other cases, like when you need multiple inheritance.
For instance, IXmlSerializable is not an "entity" by itself. It defines a contract that an entity can implement. Interfaces live "outside" the inheritance hierarchy.
An Interface will allow you to define a 'contract' that the object will need to fulfil by delivering properties and methods as described by the interface. You can refer to objects by variables of interface-type which can cause some confusion as to what exactly is being offered.
A base class offers the opportunity to build an inheritance 'tree' where more complex classes (of a common 'type') are built on the foundations of a simpler 'base' classes. The classic and annoying example in OO is normally a base class of 'Shape' and which is inherited by Triangle, Square, etc.
The main point is that with an Interface you need to provide the entire contract with every class that implements it, with an inheritance tree (base classes) you are only changing/adding the properties and methods that are unique to the child class, common properties and methods remain in the base class.
In your example above I'd have the 'MyObjectGroup' object inherit the base 'MyObject' class, nothing to be gained from an interface here that I can see.
There are two thing is in Architect’s mind when designing classes.
Behavior of an object.
object’s implementation.
If an entity has more than one implementation, then separating the behavior of an object from its implementation is one of the key for maintainability and decoupling.
Separation can be achieved by either Abstract class or Interface but which one is the best? Lets take an example to check this.
Lets take a development scenario where things (request, class model, etc) are changing very frequently and you have to deliver certain versions of application.
Initial problem statement : you have to create a “Train” class for Indian railway which has behavior of maxSpeed in 1970 .
1. Business Modeling with abstract class
V 0.0 (Initial problem)
Initial problem statement : you have to create a Train class for Indian railway which has behavior of maxSpeed in 1970 .
public abstract class Train {
public int maxSpeed();
}
V 1.0 (Changed problem 1)
changed problem statement : You have to create a Diesel Train class for Indian railway which has behavior of maxSpeed, in 1975.
public abstract class DieselTrain extends train {
public int maxFuelCapacity ();
}
V 2.0 (Changed problem 2)
chanded problem statement : you have to create a ElectricalTrain class for Indian railway which has behavior of maxSpeed , maxVoltage in 1980.
public abstract class ElectricalTrain extends train {
public int maxvoltage ();
}
V 3.0 (Changed problem 3 )
chanded problem statement : you have to create a HybridTrain (uses both diesel and electrcity) class for Indian railway which has behavior of maxSpeed , maxVoltage,maxVoltage in 1985 .
public abstract class HybridTrain extends ElectricalTrain , DisealTrain {
{ Not possible in java }
}
{here Business modeling with abstract class fails}
2. Business Modeling with interface
Just change abstract word to interface and ……
your Business Modeling with interface will succeeds.
http://javaqna.wordpress.com/2008/08/24/why-the-use-on-interfaces-instead-of-abstract-classes-is-encouraged-in-java-programming/
Interface:
If your child classes should all implement a certain group of methods/functionalities but each of the child classes is free to provide its own implementation then use interfaces.
For e.g. if you are implementing a class hierarchy for vehicles implement an interface called Vehicle which has properties like Colour MaxSpeed etc. and methods like Drive(). All child classes like Car Scooter AirPlane SolarCar etc. should derive from this base interface but provide a seperate implementation of the methods and properties exposed by Vehicle.
–> If you want your child classes to implement multiple unrelated functionalities in short multiple inheritance use interfaces.
For e.g. if you are implementing a class called SpaceShip that has to have functionalities from a Vehicle as well as that from a UFO then make both Vehicle and UFO as interfaces and then create a class SpaceShip that implements both Vehicle and UFO .
Abstract Classes:
–> When you have a requirement where your base class should provide default implementation of certain methods whereas other methods should be open to being overridden by child classes use abstract classes.
For e.g. again take the example of the Vehicle class above. If we want all classes deriving from Vehicle to implement the Drive() method in a fixed way whereas the other methods can be overridden by child classes. In such a scenario we implement the Vehicle class as an abstract class with an implementation of Drive while leave the other methods / properties as abstract so they could be overridden by child classes.
–> The purpose of an abstract class is to provide a common definition of a base class that multiple derived classes can share.
For example a class library may define an abstract class that is used as a parameter to many of its functions and require programmers using that library to provide their own implementation of the class by creating a derived class.
You could actually go with BOTH. ObjectBase saves you the trouble of implementing the common properties more than once and implements IObject for you. Everywhere you use it refer to IObject so you can do testing with mocks later
I'd rather go for base abstract class, because, theoretically (well, it's just one theory, I'm not proving or saying that any other is worse then this) - interfaces should be used, when you want to show, that some object is capable of doing something (like IComparable - you show that whatever implements it, can be compared to something else), whereas when you have 2 instances that just share something common or have 1 logical parent - abstract classes should be used.
You could also go for both approaches, using base class, that will implement an interface, that will explicitly point what your class can do.
Note that you cannot override operators in Interfaces. That is the only real problem with them as far as I'm concerned.
All else being equal, go with the interface. Easier to mock out for unit testing.
But generally, all I use base classes for is when there's some common code that I'd rather put in one place, rather than each instance of the derived class. If it's for something like what you're describing, where the way they're used is the same, but their underlying mechanics are different, an interface sounds more appropriate.
I've been using abstract classes in my projects, but in future projects, I'll use interfaces.
The advantage of "multiple inheritance" is extremely useful.
Having the ability to provide a completely new implementation of the class, both in code, or for testing purposes, is always welcome.
Lastly, if in the future you'll want to have the ability to customize your code by external developers, you don't have to give them your real code - they can just use the interfaces...
If you have function in class,you should use abstact class instead of interface.
In general,an interface is used to be on behalf of a type.
Choosing interfaces and abstract classes is not an either/or proposition. If you need to change your design, make it an interface. However, you may have abstract classes that provide some default behavior. Abstract classes are excellent candidates inside of application frameworks.
Abstract classes let you define some behaviors; they force your subclasses to provide others. For example, if you have an application framework, an abstract class may provide default services such as event and message handling. Those services allow your application to plug in to your application framework. However, there is some application-specific functionality that only your application can perform. Such functionality might include startup and shutdown tasks, which are often application-dependent. So instead of trying to define that behavior itself, the abstract base class can declare abstract shutdown and startup methods. The base class knows that it needs those methods, but an abstract class lets your class admit that it doesn't know how to perform those actions; it only knows that it must initiate the actions. When it is time to start up, the abstract class can call the startup method. When the base class calls this method, Java calls the method defined by the child class.
Many developers forget that a class that defines an abstract method can call that method as well. Abstract classes are an excellent way to create planned inheritance hierarchies. They're also a good choice for nonleaf classes in class hierarchies.
The definition of the abstract class may describe code and state, and classes that derive from them may not derive from other classes at the same time. That's what the technical difference is.
Therefore, from the point of view of usage & philosophy, the difference is that by setting up an abstract class, you constrain any other functionality that the objects of that class may implement, and provide those objects with some basic functionality that is common for any such object (which is a kind of constraint, too), while by setting up an interface, you set up no constraints for other functionality and make no real-code provisions for that functionality which you have in mind. Use the abstract classes when you about know everything that objects of this class are supposed to be doing for the benefit of their users. Use the interfaces when the objects might also do something else that you can't even guess by now.

Categories

Resources