calling trygetmember on chained null references - c#

Is it possible to have a DynamicObject implementation that can be called in chain keeping a null reference to end if anywhere in the path a null reference is encountered, without throwing any exceptions?
a.b.c.e
for example: if a is null then a.b.c.e is null, or if c is null c.e is null etc.?
Very much like the Maybe monad from Haskell.

You can do something like that, but not for the outermost object, i.e. if a is null, you can't access a.b.
You can make an empty instance of the A class, that returns empty instances for all it's properties. Then a.b would return an empty instance of B, which for the c property would return an empty instance of C, which for the e property would return an empty instance of E.
You would not get a null value, but you would get an empty instance, which you could check with:
E e = a.b.c.e;
if (e != E.Empty) { ... }
If any of the properties along the way returns an empty instance, the end result would be E.Empty.
public class A {
public B b;
public A(B newB) { b = newB; }
private static A _empty = new A(B.Empty);
public static A Empty { get { return _empty; }}
}
public class B {
public C c;
public B(C newC) { c = newC; }
private static B _empty = new B(C.Empty);
public static B Empty { get { return _empty; } }
}
public class C {
public E e;
public C(E newE) { e = newE; }
private static C _empty = new C(E.Empty);
public static C Empty { get { return _empty; } }
}
public class E {
public string name;
public E(string newName) { name = newName; }
private static E _empty = new E(null);
public static E Empty { get { return _empty; } }
}
Example:
A a1 = new A(new B(new C(new E("Hello world!"))));
A a2 = new A(new B(new C(E.Empty)));
A a3 = new A(B.Empty);
E e1 = a1.b.c.e; // e1.name returns "Hello world!"
E e2 = a2.b.c.e; // e2 == E.Empty
E e3 = a3.b.c.e; // e3 == E.Empty

Check this great article: Chained null checks and the Maybe monad
A great many programmers have met a situation where, while accessing a nested object property (e.g., person.Address.PostCode), they have to do several null checks. This requirement frequently pops up in XML parsing where missing elements and attributes can return null when you attempt to access them (and subsequently trying to access Value throws a NullReferenceException). In this article, I’ll show how a take on the Maybe monad in C#, coupled with use of extension methods, can be used to improve readability.

Here is a poor man's safe navigation extension method that just wraps an expression in a try catch looking for a nullref.
https://gist.github.com/1030887
public static class Extensions
{
public static TResult SafeInvoke<TModel, TResult>(this TModel model, Func<TModel, TResult> expression, TResult nullValue = default(TResult))
{
try
{
return expression(model);
}
catch (NullReferenceException)
{
return nullValue;
}
}
}
You can invoke the code fairly easily.
public class MyModel
{
public Name Name { get; set; }
}
public class Name
{
public string First { get; set; }
public string Last { get; set; }
}
var model = new MyModel();
var firstName = model.SafeInvoke(x => x.Name.First, "john");
var lastName = model.SafeInvoke(x => x.Name.Last, "doe");
Console.WriteLine("{0}, {1}", lastName, firstName)
// prints: "doe, john"

Related

Is there a way to perform a chained null check in a dynamic/expando?

C# has the usefull Null Conditional Operator. Well explained in this answer too.
I was wondering if it is possible to do a similar check like this when my object is a dynamic/expando object. Let me show you some code:
Given this class hierarchy
public class ClsLevel1
{
public ClsLevel2 ClsLevel2 { get; set; }
public ClsLevel1()
{
this.ClsLevel2 = new ClsLevel2(); // You can comment this line to test
}
}
public class ClsLevel2
{
public ClsLevel3 ClsLevel3 { get; set; }
public ClsLevel2()
{
this.ClsLevel3 = new ClsLevel3();
}
}
public class ClsLevel3
{
// No child
public ClsLevel3()
{
}
}
If i perform this kind of chained null check, it works
ClsLevel1 levelRoot = new ClsLevel1();
if (levelRoot?.ClsLevel2?.ClsLevel3 != null)
{
// will enter here if you DO NOT comment the content of the ClsLevel1 constructor
}
else
{
// will enter here if you COMMENT the content of the ClsLevel1
}
Now, i will try to reproduce this behaviour with dynamics (ExpandoObjects)
dynamic dinRoot = new ExpandoObject();
dynamic DinLevel1 = new ExpandoObject();
dynamic DinLevel2 = new ExpandoObject();
dynamic DinLevel3 = new ExpandoObject();
dinRoot.DinLevel1 = DinLevel1;
dinRoot.DinLevel1.DinLevel2 = DinLevel2;
//dinRoot.DinLevel1.DinLevel2.DinLevel3 = DinLevel3; // You can comment this line to test
if (dinRoot?.DinLevel1?.DinLevel2?.DinLevel3 != null)
{
// Obviously it will raise an exception because the DinLevel3 does not exists, it is commented right now.
}
Is there a way to simulate this behaviour with dynamics? I mean, check for a null in a long chain of members?
If you want to support this in a more natural way you can inherit from DynamicObject and provide a custom implementation:
class MyExpando : DynamicObject
{
private readonly Dictionary<string, object> _dictionary = new Dictionary<string, object>();
public override bool TryGetMember(GetMemberBinder binder, out object result)
{
var name = binder.Name.ToLower();
result = _dictionary.ContainsKey(name) ? _dictionary[name] : null;
return true;
}
public override bool TrySetMember(SetMemberBinder binder, object value)
{
_dictionary[binder.Name.ToLower()] = value;
return true;
}
}
Testing:
private static void Main(string[] args)
{
dynamic foo = new MyExpando();
if (foo.Boo?.Lol ?? true)
{
Console.WriteLine("It works!");
}
Console.ReadLine();
}
The output will be "It works!". Since Boo does not exist we get a null reference so that the Null Conditional Operator can work.
What we do here is to return a null reference to the output parameter of TryGetMember every time a property is not found and we always return true.
EDIT: fixed, as ExpandoObjects and extension methods do not work well together. Slightly less nice, but hopefully still usable.
Helper method(s):
public static class DynamicExtensions
{
public static Object TryGetProperty(ExpandoObject obj, String name)
{
return name.Split('.')
.Aggregate((Object)obj, (o, s) => o != null
? TryGetPropertyInternal(o, s)
: null);
}
private static Object TryGetPropertyInternal(Object obj, String name)
{
var dict = obj as IDictionary<String, Object>;
return (dict?.ContainsKey(name) ?? false) ? dict[name] : null;
}
}
Usage:
if (DynamicExtensions.TryGetProperty(dinRoot, "DinLevel1.DinLevel2.DinLevel3") != null)

Finding a way to reuse my function that varies in one small way

So I am writing a C# application, using .net/c# 4.0
I have a method which takes in a custom type and a dictionary.
I reuse this for a variety of things but for some reason I cannot think of a way to encapsulate the logic. The problem is this line
if (FastIntParse.FastParse(_dict[_Rule.Key].hourly_data[a].PropertyA) >
_Rule.Value)
In another use it may be
if (FastIntParse.FastParse(_dict[_Rule.Key].hourly_data[a].PropertyB) >
_Rule.Value)
The only thing that varies in the various cases is the Property I am using to compare to the rule value. For some reason I cannot think of a way to reuse it because I don't have the value to pass in to some function since the value is derived IN the function. How can I write a function to abstract away it's need to know which value it needs to derive and pass that information in ie pass it which property it will need to check and not the value of said property.
int a;
for (int z= 0;z<=2;z++)
{
a = (z * z) * 24;
for (; (a%24) <= _Rule.AlertEndTime; a++)
{
if (FastIntParse.FastParse(_dict[_Rule.Key].hourly_data[a].PropertyA) >
_Rule.Value)
{
EnqueueRuleTrigger(_Rule);
break;
}
}
}
I keep rewriting this method inline wherever I need it with the proper property.... this is obviously quite wasteful and any change needs to be made in many places.
Thanks in advance
You can use an Expression and then pull out the property within the method, then use reflection to tie this up to the object within the method
class Program
{
static void Main(string[] args)
{
List<PropertyBag> bags = new List<PropertyBag>()
{
new PropertyBag() {Property1 = 1, Property2 = 2},
new PropertyBag() {Property1 = 3, Property2 = 4}
};
Runme(x => x.Property1, bags);
Runme(x => x.Property2, bags);
Console.ReadLine();
}
public static void Runme(Expression<Func<PropertyBag, int>> expression, List<PropertyBag> bags)
{
var memberExpression = expression.Body as MemberExpression;
var prop = memberExpression.Member as PropertyInfo;
bags.ForEach( bag =>
Console.WriteLine(prop.GetValue(bag, null))
);
}
}
public class PropertyBag
{
public int Property1 { get; set; }
public int Property2 { get; set; }
}
}
to solve the problem with access to different properties and with the use of different boolean-function (<, >, ==) you could use delegates like this:
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Reflection;
namespace ConsoleApplication1
{
delegate bool CompareFunction(Fii test, Foo item);
class Program
{
static List<Foo> list = new List<Foo>() {
new Foo() { PropertyA = 0, PropertyB = 9 },
new Foo() { PropertyA = 1, PropertyB = 10 }
};
static Fii test = new Fii() { PropertyA = 1 };
static void Main(string[] args)
{
Bar(list, delegate(Fii item1, Foo item2) { return item2.PropertyA < item1.PropertyA; });
Bar(list, delegate(Fii item1, Foo item2) { return item2.PropertyB > item1.PropertyA; });
Bar(list, delegate(Fii item1, Foo item2) { return item2.PropertyA == item1.PropertyA; });
Console.ReadLine();
}
static void Bar(List<Foo> list, CompareFunction cmp)
{
foreach (Foo item in list)
if (cmp(test, item))
Console.WriteLine("true");
else
Console.WriteLine("false");
}
}
class Foo
{
public int PropertyA { get; set; }
public int PropertyB { get; set; }
}
class Fii
{
public int PropertyA { get; set; }
}
}
Make your function take a lambda argument and pass it _ => _.PropertyA, _ => _.PropertyB etc.:
void CheckAndEnqueueRulesByProperty (Func<YourObject, string> propertyGetter)
{
...
if (FastIntParse.FastParse (propertyGetter (
_dict[_Rule.Key].hourly_data[a])) > _Rule.Value)
{
...
}
...
}
If you have many types of objects to check with the same logic, make this function generic.

C#: how to define an extension method as "with" in F#?

F# has a convenient feature "with", example:
type Product = { Name:string; Price:int };;
let p = { Name="Test"; Price=42; };;
let p2 = { p with Name="Test2" };;
F# created keyword "with" as the record types are by default immutable.
Now, is it possible to define a similar extension in C#?
seems it's a bit tricky, as in C# i'm not sure how to convert a string
Name="Test2"
to a delegate or expression?
public static T With<T, U>(this T obj, Expression<Func<T, U>> property, U value)
where T : ICloneable {
if (obj == null)
throw new ArgumentNullException("obj");
if (property == null)
throw new ArgumentNullException("property");
var memExpr = property.Body as MemberExpression;
if (memExpr == null || !(memExpr.Member is PropertyInfo))
throw new ArgumentException("Must refer to a property", "property");
var copy = (T)obj.Clone();
var propInfo = (PropertyInfo)memExpr.Member;
propInfo.SetValue(copy, value, null);
return copy;
}
public class Foo : ICloneable {
public int Id { get; set; }
public string Bar { get; set; }
object ICloneable.Clone() {
return new Foo { Id = this.Id, Bar = this.Bar };
}
}
public static void Test() {
var foo = new Foo { Id = 1, Bar = "blah" };
var newFoo = foo.With(x => x.Bar, "boo-ya");
Console.WriteLine(newFoo.Bar); //boo-ya
}
Or, using a copy constructor:
public class Foo {
public Foo(Foo other) {
this.Id = other.Id;
this.Bar = other.Bar;
}
public Foo() { }
public int Id { get; set; }
public string Bar { get; set; }
}
public static void Test() {
var foo = new Foo { Id = 1, Bar = "blah" };
var newFoo = new Foo(foo) { Bar = "boo-ya" };
Console.WriteLine(newFoo.Bar);
}
And a slight variation on George's excellent suggestion, that allows for multiple assignments:
public static T With<T>(this T obj, params Action<T>[] assignments)
where T : ICloneable {
if (obj == null)
throw new ArgumentNullException("obj");
if (assignments == null)
throw new ArgumentNullException("assignments");
var copy = (T)obj.Clone();
foreach (var a in assignments) {
a(copy);
}
return copy;
}
public static void Test() {
var foo = new Foo { Id = 1, Bar = "blah" };
var newFoo = foo.With(x => x.Id = 2, x => x.Bar = "boo-ya");
Console.WriteLine(newFoo.Bar);
}
I would probably use the second one since (1) any general purpose solution is going to be unnecessarily slow and convoluted; (2) it has the closest syntax to what you want (and the syntax does what you expect); (3) F# copy-and-update expressions are implemented similarly.
Maybe something like this:
void Main()
{
var NewProduct = ExistingProduct.With(P => P.Name = "Test2");
}
// Define other methods and classes here
public static class Extensions
{
public T With<T>(this T Instance, Action<T> Act) where T : ICloneable
{
var Result = Instance.Clone();
Act(Result);
return Result;
}
}
As an alternative to lambda function, you can use parameters with default values. The only minor issue is that you have to pick some default value that means do not change this parameter (for reference types), but null should be a safe choice:
class Product {
public string Name { get; private set; }
public int Price { get; private set; }
public Product(string name, int price) {
Name = name; Price = price;
}
// Creates a new product using the current values and changing
// the values of the specified arguments to a new value
public Product With(string name = null, int? price = null) {
return new Product(name ?? Name, price ?? Price);
}
}
// Then you can write:
var prod2 = prod1.With(name = "New product");
You have to define the method yourself, but that's always the case (unless you're going to use reflection, which less efficient). I think the syntax is reasonably nice too. If you want to make it as nice as in F#, then you'll have to use F# :-)
There is no native ability to do this in C# short of an extension method, but at what cost? a and b are reference types and any suggestion that b is based ("with") on a causes immediate confusion as to how many objects we are working with. Is there only one? Is b a copy of a ? Does b point to a ?
C# is not F#.
Please see a previous SO question of mine as answered by Eric Lippert:
"Amongst my rules of thumb for writing clear code is: put all side effects in statements; non-statement expressions should have no side effects."
More fluent C# / .NET

Closures and reference setting

I think I have a fundamental misunderstanding here. Why does the test fail?
public static class ObjectExtensions
{
public static Action To<T>(this T newValue, T oldValue) where T : class
{
return () => oldValue = newValue;
}
}
public static class Assign
{
public static T TheValue<T>(T theValue)
{
return theValue;
}
}
public class Tests
{
public void Test()
{
var a = new TestType { Name = "a" };
var b = "b";
Assign.TheValue(b).To(a.Name)();
Assert.That(a.Name == "b"); //fails (a.Name == "a")
}
}
public class TestType { public string Name {get;set;} }
It fails because the arguments to To are passed by value.
Just because oldValue is set to "b" doesn't mean that a.Name will be changed at all. In the call To(a.Name), the expression a.Name is evaluated to a string reference, and that reference is passed to the method by value.
That's basic parameter passing in C#. Just using a closure doesn't change that.
What you can do is change the To method like this:
public static Action To<T>(this T newValue, Action<T> setter) where T : class
{
return () => setter(newValue);
}
then change the call to:
Assign.TheValue(b).To(x => a.Name = x)();
Put another way,
var a = new TestType { Name = "a" };
Assign.TheValue(b).To(a.Name)();
is equivalent to
Assign.TheValue(b).To("a")();
just like
int x = 5;
Convert.ToDecimal(x);
is equivalent to
Convert.ToDecimal(5);

Discriminated union in C#

[Note: This question had the original title "C (ish) style union in C#"
but as Jeff's comment informed me, apparently this structure is called a 'discriminated union']
Excuse the verbosity of this question.
There are a couple of similar sounding questions to mine already in SO but they seem to concentrate on the memory saving benefits of the union or using it for interop.
Here is an example of such a question.
My desire to have a union type thing is somewhat different.
I am writing some code at the moment which generates objects that look a bit like this
public class ValueWrapper
{
public DateTime ValueCreationDate;
// ... other meta data about the value
public object ValueA;
public object ValueB;
}
Pretty complicated stuff I think you will agree. The thing is that ValueA can only be of a few certain types (let's say string, int and Foo (which is a class) and ValueB can be another small set of types. I don't like treating these values as objects (I want the warm snugly feeling of coding with a bit of type safety).
So I thought about writing a trivial little wrapper class to express the fact that ValueA logically is a reference to a particular type. I called the class Union because what I am trying to achieve reminded me of the union concept in C.
public class Union<A, B, C>
{
private readonly Type type;
public readonly A a;
public readonly B b;
public readonly C c;
public A A{get {return a;}}
public B B{get {return b;}}
public C C{get {return c;}}
public Union(A a)
{
type = typeof(A);
this.a = a;
}
public Union(B b)
{
type = typeof(B);
this.b = b;
}
public Union(C c)
{
type = typeof(C);
this.c = c;
}
/// <summary>
/// Returns true if the union contains a value of type T
/// </summary>
/// <remarks>The type of T must exactly match the type</remarks>
public bool Is<T>()
{
return typeof(T) == type;
}
/// <summary>
/// Returns the union value cast to the given type.
/// </summary>
/// <remarks>If the type of T does not exactly match either X or Y, then the value <c>default(T)</c> is returned.</remarks>
public T As<T>()
{
if(Is<A>())
{
return (T)(object)a; // Is this boxing and unboxing unavoidable if I want the union to hold value types and reference types?
//return (T)x; // This will not compile: Error = "Cannot cast expression of type 'X' to 'T'."
}
if(Is<B>())
{
return (T)(object)b;
}
if(Is<C>())
{
return (T)(object)c;
}
return default(T);
}
}
Using this class ValueWrapper now looks like this
public class ValueWrapper2
{
public DateTime ValueCreationDate;
public Union<int, string, Foo> ValueA;
public Union<double, Bar, Foo> ValueB;
}
which is something like what I wanted to achieve but I am missing one fairly crucial element - that is compiler enforced type checking when calling the Is and As functions as the following code demonstrates
public void DoSomething()
{
if(ValueA.Is<string>())
{
var s = ValueA.As<string>();
// .... do somethng
}
if(ValueA.Is<char>()) // I would really like this to be a compile error
{
char c = ValueA.As<char>();
}
}
IMO It is not valid to ask ValueA if it is a char since its definition clearly says it is not - this is a programming error and I would like the compiler to pick up on this. [Also if I could get this correct then (hopefully) I would get intellisense too - which would be a boon.]
In order to achieve this I would want to tell the compiler that the type T can be one of A, B or C
public bool Is<T>() where T : A
or T : B // Yes I know this is not legal!
or T : C
{
return typeof(T) == type;
}
Does anyone have any idea if what I want to achieve is possible? Or am I just plain stupid for writing this class in the first place?
I don't really like the type-checking and type-casting solutions provided above, so here's 100% type-safe union which will throw compilation errors if you attempt to use the wrong datatype:
using System;
namespace Juliet
{
class Program
{
static void Main(string[] args)
{
Union3<int, char, string>[] unions = new Union3<int,char,string>[]
{
new Union3<int, char, string>.Case1(5),
new Union3<int, char, string>.Case2('x'),
new Union3<int, char, string>.Case3("Juliet")
};
foreach (Union3<int, char, string> union in unions)
{
string value = union.Match(
num => num.ToString(),
character => new string(new char[] { character }),
word => word);
Console.WriteLine("Matched union with value '{0}'", value);
}
Console.ReadLine();
}
}
public abstract class Union3<A, B, C>
{
public abstract T Match<T>(Func<A, T> f, Func<B, T> g, Func<C, T> h);
// private ctor ensures no external classes can inherit
private Union3() { }
public sealed class Case1 : Union3<A, B, C>
{
public readonly A Item;
public Case1(A item) : base() { this.Item = item; }
public override T Match<T>(Func<A, T> f, Func<B, T> g, Func<C, T> h)
{
return f(Item);
}
}
public sealed class Case2 : Union3<A, B, C>
{
public readonly B Item;
public Case2(B item) { this.Item = item; }
public override T Match<T>(Func<A, T> f, Func<B, T> g, Func<C, T> h)
{
return g(Item);
}
}
public sealed class Case3 : Union3<A, B, C>
{
public readonly C Item;
public Case3(C item) { this.Item = item; }
public override T Match<T>(Func<A, T> f, Func<B, T> g, Func<C, T> h)
{
return h(Item);
}
}
}
}
I like the direction of the accepted solution but it doesn't scale well for unions of more than three items (e.g. a union of 9 items would require 9 class definitions).
Here is another approach that is also 100% type-safe at compile-time, but that is easy to grow to large unions.
public class UnionBase<A>
{
dynamic value;
public UnionBase(A a) { value = a; }
protected UnionBase(object x) { value = x; }
protected T InternalMatch<T>(params Delegate[] ds)
{
var vt = value.GetType();
foreach (var d in ds)
{
var mi = d.Method;
// These are always true if InternalMatch is used correctly.
Debug.Assert(mi.GetParameters().Length == 1);
Debug.Assert(typeof(T).IsAssignableFrom(mi.ReturnType));
var pt = mi.GetParameters()[0].ParameterType;
if (pt.IsAssignableFrom(vt))
return (T)mi.Invoke(null, new object[] { value });
}
throw new Exception("No appropriate matching function was provided");
}
public T Match<T>(Func<A, T> fa) { return InternalMatch<T>(fa); }
}
public class Union<A, B> : UnionBase<A>
{
public Union(A a) : base(a) { }
public Union(B b) : base(b) { }
protected Union(object x) : base(x) { }
public T Match<T>(Func<A, T> fa, Func<B, T> fb) { return InternalMatch<T>(fa, fb); }
}
public class Union<A, B, C> : Union<A, B>
{
public Union(A a) : base(a) { }
public Union(B b) : base(b) { }
public Union(C c) : base(c) { }
protected Union(object x) : base(x) { }
public T Match<T>(Func<A, T> fa, Func<B, T> fb, Func<C, T> fc) { return InternalMatch<T>(fa, fb, fc); }
}
public class Union<A, B, C, D> : Union<A, B, C>
{
public Union(A a) : base(a) { }
public Union(B b) : base(b) { }
public Union(C c) : base(c) { }
public Union(D d) : base(d) { }
protected Union(object x) : base(x) { }
public T Match<T>(Func<A, T> fa, Func<B, T> fb, Func<C, T> fc, Func<D, T> fd) { return InternalMatch<T>(fa, fb, fc, fd); }
}
public class Union<A, B, C, D, E> : Union<A, B, C, D>
{
public Union(A a) : base(a) { }
public Union(B b) : base(b) { }
public Union(C c) : base(c) { }
public Union(D d) : base(d) { }
public Union(E e) : base(e) { }
protected Union(object x) : base(x) { }
public T Match<T>(Func<A, T> fa, Func<B, T> fb, Func<C, T> fc, Func<D, T> fd, Func<E, T> fe) { return InternalMatch<T>(fa, fb, fc, fd, fe); }
}
public class DiscriminatedUnionTest : IExample
{
public Union<int, bool, string, int[]> MakeUnion(int n)
{
return new Union<int, bool, string, int[]>(n);
}
public Union<int, bool, string, int[]> MakeUnion(bool b)
{
return new Union<int, bool, string, int[]>(b);
}
public Union<int, bool, string, int[]> MakeUnion(string s)
{
return new Union<int, bool, string, int[]>(s);
}
public Union<int, bool, string, int[]> MakeUnion(params int[] xs)
{
return new Union<int, bool, string, int[]>(xs);
}
public void Print(Union<int, bool, string, int[]> union)
{
var text = union.Match(
n => "This is an int " + n.ToString(),
b => "This is a boolean " + b.ToString(),
s => "This is a string" + s,
xs => "This is an array of ints " + String.Join(", ", xs));
Console.WriteLine(text);
}
public void Run()
{
Print(MakeUnion(1));
Print(MakeUnion(true));
Print(MakeUnion("forty-two"));
Print(MakeUnion(0, 1, 1, 2, 3, 5, 8));
}
}
I wrote some blog posts on this subject that might be useful:
Union Types in C#
Implementing Tic-Tac-Toe Using State Classes
Let's say you have a shopping cart scenario with three states: "Empty", "Active" and "Paid", each with different behavior.
You create have a ICartState interface that all states have in common (and it could just be an empty marker interface)
You create three classes that implement that interface. (The classes do not have to be in an inheritance relationship)
The interface contains a "fold" method, whereby you pass a lambda in for each state or case that you need to handle.
You could use the F# runtime from C# but as a lighter weight alternative, I have written a little T4 template for generating code like this.
Here's the interface:
partial interface ICartState
{
ICartState Transition(
Func<CartStateEmpty, ICartState> cartStateEmpty,
Func<CartStateActive, ICartState> cartStateActive,
Func<CartStatePaid, ICartState> cartStatePaid
);
}
And here's the implementation:
class CartStateEmpty : ICartState
{
ICartState ICartState.Transition(
Func<CartStateEmpty, ICartState> cartStateEmpty,
Func<CartStateActive, ICartState> cartStateActive,
Func<CartStatePaid, ICartState> cartStatePaid
)
{
// I'm the empty state, so invoke cartStateEmpty
return cartStateEmpty(this);
}
}
class CartStateActive : ICartState
{
ICartState ICartState.Transition(
Func<CartStateEmpty, ICartState> cartStateEmpty,
Func<CartStateActive, ICartState> cartStateActive,
Func<CartStatePaid, ICartState> cartStatePaid
)
{
// I'm the active state, so invoke cartStateActive
return cartStateActive(this);
}
}
class CartStatePaid : ICartState
{
ICartState ICartState.Transition(
Func<CartStateEmpty, ICartState> cartStateEmpty,
Func<CartStateActive, ICartState> cartStateActive,
Func<CartStatePaid, ICartState> cartStatePaid
)
{
// I'm the paid state, so invoke cartStatePaid
return cartStatePaid(this);
}
}
Now let's say you extend the CartStateEmpty and CartStateActive with an AddItem method which is not implemented by CartStatePaid.
And also let's say that CartStateActive has a Pay method that the other states dont have.
Then here's some code that shows it in use -- adding two items and then paying for the cart:
public ICartState AddProduct(ICartState currentState, Product product)
{
return currentState.Transition(
cartStateEmpty => cartStateEmpty.AddItem(product),
cartStateActive => cartStateActive.AddItem(product),
cartStatePaid => cartStatePaid // not allowed in this case
);
}
public void Example()
{
var currentState = new CartStateEmpty() as ICartState;
//add some products
currentState = AddProduct(currentState, Product.ProductX);
currentState = AddProduct(currentState, Product.ProductY);
//pay
const decimal paidAmount = 12.34m;
currentState = currentState.Transition(
cartStateEmpty => cartStateEmpty, // not allowed in this case
cartStateActive => cartStateActive.Pay(paidAmount),
cartStatePaid => cartStatePaid // not allowed in this case
);
}
Note that this code is completely typesafe -- no casting or conditionals anywhere, and compiler errors if you try to pay for an empty cart, say.
I have written a library for doing this at https://github.com/mcintyre321/OneOf
Install-Package OneOf
It has the generic types in it for doing DUs e.g. OneOf<T0, T1> all the way to
OneOf<T0, ..., T9>. Each of those has a .Match, and a .Switch statement which you can use for compiler safe typed behaviour, e.g.:
```
OneOf<string, ColorName, Color> backgroundColor = getBackground();
Color c = backgroundColor.Match(
str => CssHelper.GetColorFromString(str),
name => new Color(name),
col => col
);
```
I am not sure I fully understand your goal. In C, a union is a structure that uses the same memory locations for more than one field. For example:
typedef union
{
float real;
int scalar;
} floatOrScalar;
The floatOrScalar union could be used as a float, or an int, but they both consume the same memory space. Changing one changes the other. You can achieve the same thing with a struct in C#:
[StructLayout(LayoutKind.Explicit)]
struct FloatOrScalar
{
[FieldOffset(0)]
public float Real;
[FieldOffset(0)]
public int Scalar;
}
The above structure uses 32bits total, rather than 64bits. This is only possible with a struct. Your example above is a class, and given the nature of the CLR, makes no guarantee about memory efficiency. If you change a Union<A, B, C> from one type to another, you are not necessarily reusing memory...most likely, you are allocating a new type on the heap and dropping a different pointer in the backing object field. Contrary to a real union, your approach may actually cause more heap thrashing than you would otherwise get if you did not use your Union type.
char foo = 'B';
bool bar = foo is int;
This results in a warning, not an error. If you're looking for your Is and As functions to be analogs for the C# operators, then you shouldn't be restricting them in that way anyhow.
If you allow multiple types, you cannot achieve type safety (unless the types are related).
You can't and won't achieve any kind of type safety, you could only achieve byte-value-safety using FieldOffset.
It would make much more sense to have a generic ValueWrapper<T1, T2> with T1 ValueA and T2 ValueB, ...
P.S.: when talking about type-safety I mean compile-time type-safety.
If you need a code wrapper (performing bussiness logic on modifications you can use something along the lines of:
public class Wrapper
{
public ValueHolder<int> v1 = 5;
public ValueHolder<byte> v2 = 8;
}
public struct ValueHolder<T>
where T : struct
{
private T value;
public ValueHolder(T value) { this.value = value; }
public static implicit operator T(ValueHolder<T> valueHolder) { return valueHolder.value; }
public static implicit operator ValueHolder<T>(T value) { return new ValueHolder<T>(value); }
}
For an easy way out you could use (it has performance issues, but it is very simple):
public class Wrapper
{
private object v1;
private object v2;
public T GetValue1<T>() { if (v1.GetType() != typeof(T)) throw new InvalidCastException(); return (T)v1; }
public void SetValue1<T>(T value) { v1 = value; }
public T GetValue2<T>() { if (v2.GetType() != typeof(T)) throw new InvalidCastException(); return (T)v2; }
public void SetValue2<T>(T value) { v2 = value; }
}
//usage:
Wrapper wrapper = new Wrapper();
wrapper.SetValue1("aaaa");
wrapper.SetValue2(456);
string s = wrapper.GetValue1<string>();
DateTime dt = wrapper.GetValue1<DateTime>();//InvalidCastException
Here is my attempt. It does compile time checking of types, using generic type constraints.
class Union {
public interface AllowedType<T> { };
internal object val;
internal System.Type type;
}
static class UnionEx {
public static T As<U,T>(this U x) where U : Union, Union.AllowedType<T> {
return x.type == typeof(T) ?(T)x.val : default(T);
}
public static void Set<U,T>(this U x, T newval) where U : Union, Union.AllowedType<T> {
x.val = newval;
x.type = typeof(T);
}
public static bool Is<U,T>(this U x) where U : Union, Union.AllowedType<T> {
return x.type == typeof(T);
}
}
class MyType : Union, Union.AllowedType<int>, Union.AllowedType<string> {}
class TestIt
{
static void Main()
{
MyType bla = new MyType();
bla.Set(234);
System.Console.WriteLine(bla.As<MyType,int>());
System.Console.WriteLine(bla.Is<MyType,string>());
System.Console.WriteLine(bla.Is<MyType,int>());
bla.Set("test");
System.Console.WriteLine(bla.As<MyType,string>());
System.Console.WriteLine(bla.Is<MyType,string>());
System.Console.WriteLine(bla.Is<MyType,int>());
// compile time errors!
// bla.Set('a');
// bla.Is<MyType,char>()
}
}
It could use some prettying-up. Especially, I couldn't figure out how to get rid of the type parameters to As/Is/Set (isn't there a way to specify one type parameter and let C# figure the other one?)
So I've hit this same problem many times, and I just came up with a solution that gets the syntax I want (at the expense of some ugliness in the implementation of the Union type.)
To recap: we want this sort of usage at the call site.
Union<int, string> u;
u = 1492;
int yearColumbusDiscoveredAmerica = u;
u = "hello world";
string traditionalGreeting = u;
var answers = new SortedList<string, Union<int, string, DateTime>>();
answers["life, the universe, and everything"] = 42;
answers["D-Day"] = new DateTime(1944, 6, 6);
answers["C#"] = "is awesome";
We want the following examples to fail to compile, however, so that we get a modicum of type safety.
DateTime dateTimeColumbusDiscoveredAmerica = u;
Foo fooInstance = u;
For extra credit, let's also not take up more space than absolutely needed.
With all that said, here's my implementation for two generic type parameters. The implementation for three, four, and so on type parameters is straight-forward.
public abstract class Union<T1, T2>
{
public abstract int TypeSlot
{
get;
}
public virtual T1 AsT1()
{
throw new TypeAccessException(string.Format(
"Cannot treat this instance as a {0} instance.", typeof(T1).Name));
}
public virtual T2 AsT2()
{
throw new TypeAccessException(string.Format(
"Cannot treat this instance as a {0} instance.", typeof(T2).Name));
}
public static implicit operator Union<T1, T2>(T1 data)
{
return new FromT1(data);
}
public static implicit operator Union<T1, T2>(T2 data)
{
return new FromT2(data);
}
public static implicit operator Union<T1, T2>(Tuple<T1, T2> data)
{
return new FromTuple(data);
}
public static implicit operator T1(Union<T1, T2> source)
{
return source.AsT1();
}
public static implicit operator T2(Union<T1, T2> source)
{
return source.AsT2();
}
private class FromT1 : Union<T1, T2>
{
private readonly T1 data;
public FromT1(T1 data)
{
this.data = data;
}
public override int TypeSlot
{
get { return 1; }
}
public override T1 AsT1()
{
return this.data;
}
public override string ToString()
{
return this.data.ToString();
}
public override int GetHashCode()
{
return this.data.GetHashCode();
}
}
private class FromT2 : Union<T1, T2>
{
private readonly T2 data;
public FromT2(T2 data)
{
this.data = data;
}
public override int TypeSlot
{
get { return 2; }
}
public override T2 AsT2()
{
return this.data;
}
public override string ToString()
{
return this.data.ToString();
}
public override int GetHashCode()
{
return this.data.GetHashCode();
}
}
private class FromTuple : Union<T1, T2>
{
private readonly Tuple<T1, T2> data;
public FromTuple(Tuple<T1, T2> data)
{
this.data = data;
}
public override int TypeSlot
{
get { return 0; }
}
public override T1 AsT1()
{
return this.data.Item1;
}
public override T2 AsT2()
{
return this.data.Item2;
}
public override string ToString()
{
return this.data.ToString();
}
public override int GetHashCode()
{
return this.data.GetHashCode();
}
}
}
And my attempt on minimal yet extensible solution using nesting of Union/Either type.
Also usage of default parameters in Match method naturally enables "Either X Or Default" scenario.
using System;
using System.Reflection;
using NUnit.Framework;
namespace Playground
{
[TestFixture]
public class EitherTests
{
[Test]
public void Test_Either_of_Property_or_FieldInfo()
{
var some = new Some(false);
var field = some.GetType().GetField("X");
var property = some.GetType().GetProperty("Y");
Assert.NotNull(field);
Assert.NotNull(property);
var info = Either<PropertyInfo, FieldInfo>.Of(field);
var infoType = info.Match(p => p.PropertyType, f => f.FieldType);
Assert.That(infoType, Is.EqualTo(typeof(bool)));
}
[Test]
public void Either_of_three_cases_using_nesting()
{
var some = new Some(false);
var field = some.GetType().GetField("X");
var parameter = some.GetType().GetConstructors()[0].GetParameters()[0];
Assert.NotNull(field);
Assert.NotNull(parameter);
var info = Either<ParameterInfo, Either<PropertyInfo, FieldInfo>>.Of(parameter);
var name = info.Match(_ => _.Name, _ => _.Name, _ => _.Name);
Assert.That(name, Is.EqualTo("a"));
}
public class Some
{
public bool X;
public string Y { get; set; }
public Some(bool a)
{
X = a;
}
}
}
public static class Either
{
public static T Match<A, B, C, T>(
this Either<A, Either<B, C>> source,
Func<A, T> a = null, Func<B, T> b = null, Func<C, T> c = null)
{
return source.Match(a, bc => bc.Match(b, c));
}
}
public abstract class Either<A, B>
{
public static Either<A, B> Of(A a)
{
return new CaseA(a);
}
public static Either<A, B> Of(B b)
{
return new CaseB(b);
}
public abstract T Match<T>(Func<A, T> a = null, Func<B, T> b = null);
private sealed class CaseA : Either<A, B>
{
private readonly A _item;
public CaseA(A item) { _item = item; }
public override T Match<T>(Func<A, T> a = null, Func<B, T> b = null)
{
return a == null ? default(T) : a(_item);
}
}
private sealed class CaseB : Either<A, B>
{
private readonly B _item;
public CaseB(B item) { _item = item; }
public override T Match<T>(Func<A, T> a = null, Func<B, T> b = null)
{
return b == null ? default(T) : b(_item);
}
}
}
}
You could throw exceptions once there's an attempt to access variables that haven't been initialized, ie if it's created with an A parameter and later on there's an attempt to access B or C, it could throw, say, UnsupportedOperationException. You'd need a getter to make it work though.
The C# Language Design Team discussed discriminated unions in January 2017 https://github.com/dotnet/csharplang/blob/master/meetings/2017/LDM-2017-01-10.md#discriminated-unions-via-closed-types
You can vote for the feature request at https://github.com/dotnet/csharplang/issues/113
You can export a pseudo-pattern matching function, like I use for the Either type in my Sasa library. There's currently runtime overhead, but I eventually plan to add a CIL analysis to inline all the delegates into a true case statement.
It's not possible to do with exactly the syntax you've used but with a bit more verbosity and copy/paste it's easy to make overload resolution do the job for you:
// this code is ok
var u = new Union("");
if (u.Value(Is.OfType()))
{
u.Value(Get.ForType());
}
// and this one will not compile
if (u.Value(Is.OfType()))
{
u.Value(Get.ForType());
}
By now it should be pretty obvious how to implement it:
public class Union
{
private readonly Type type;
public readonly A a;
public readonly B b;
public readonly C c;
public Union(A a)
{
type = typeof(A);
this.a = a;
}
public Union(B b)
{
type = typeof(B);
this.b = b;
}
public Union(C c)
{
type = typeof(C);
this.c = c;
}
public bool Value(TypeTestSelector _)
{
return typeof(A) == type;
}
public bool Value(TypeTestSelector _)
{
return typeof(B) == type;
}
public bool Value(TypeTestSelector _)
{
return typeof(C) == type;
}
public A Value(GetValueTypeSelector _)
{
return a;
}
public B Value(GetValueTypeSelector _)
{
return b;
}
public C Value(GetValueTypeSelector _)
{
return c;
}
}
public static class Is
{
public static TypeTestSelector OfType()
{
return null;
}
}
public class TypeTestSelector
{
}
public static class Get
{
public static GetValueTypeSelector ForType()
{
return null;
}
}
public class GetValueTypeSelector
{
}
There are no checks for extracting the value of the wrong type, e.g.:
var u = Union(10);
string s = u.Value(Get.ForType());
So you might consider adding necessary checks and throw exceptions in such cases.
I am currently trying to create a Julia Runtime in .NET. Julia has types like Union{Int, String}... Etc. I am currently trying to simulate this .NET (without doing weird IL that would not be able to be called from c#).
Here is a compile time implementation of a union of structures. I will be creating more unions for object unions, and cross object and struct unions (this will be the most complex case).
public struct Union<T1,T2> where T1 : struct where T2 : struct{
private byte type;
[FieldOffset(1)] private T1 a1;
[FieldOffset(1)] private T2 a2;
public T1 A1 {
get => a1;
set {
a1 = value;
type = 1;
}
}
public T2 A2 {
get => a2;
set {
a2 = value;
type = 2;
}
}
public Union(int _ = 0) {
type = 0;
a1 = default;
a2 = default;
}
public Union(T1 a) : this() => A1 = a;
public Union(T2 a) : this() => A2 = a;
public bool HasValue => type < 1 || type > 2;
public bool IsNull => !HasValue;
public bool IsT1 => type == 1;
public bool IsT2 => type == 2;
public Type GetType() {
switch (type) {
case 1: return typeof(T1);
case 2: return typeof(T2);
default: return null;
}
}
}
You can use the above like the following:
Union<int, long> myUnion(5); \\Set int inside
myUnion.a2 = 5;
Type theTypeInside = myUnion.GetType(); //long
myUnion.a1 = 5;
theTypeInside = myUnion.GetType(); //int
I will also be creating dynamic union generators or aligned unions for the cross object and struct union.
Take a look at:Generated Struct Union Output to see the current compile time unions I am using.
If you want to create a union of any size take a look at Generator for Struct Unions
If anyone has any improvements for the above let me know! Implementing julia into .NET is an extraordinarily hard task!
I use own of Union Type.
Consider an example to make it clearer.
Imagine we have Contact class:
public class Contact
{
public string Name { get; set; }
public string EmailAddress { get; set; }
public string PostalAdrress { get; set; }
}
These are all defined as simple strings, but really are they just strings?
Of course not. The Name can consist of First Name and Last Name. Or is an Email just a set of symbols? I know that at least it should contain # and it is necessarily.
Let's improve us domain model
public class PersonalName
{
public PersonalName(string firstName, string lastName) { ... }
public string Name() { return _fistName + " " _lastName; }
}
public class EmailAddress
{
public EmailAddress(string email) { ... }
}
public class PostalAdrress
{
public PostalAdrress(string address, string city, int zip) { ... }
}
In this classes will be validations during creating and we will eventually have valid models. Consturctor in PersonaName class require FirstName and LastName at the same time. This means that after the creation, it can not have invalid state.
And contact class respectively
public class Contact
{
public PersonalName Name { get; set; }
public EmailAdress EmailAddress { get; set; }
public PostalAddress PostalAddress { get; set; }
}
In this case we have same problem, object of Contact class may be in invalid state. I mean it may have EmailAddress but haven't Name
var contact = new Contact { EmailAddress = new EmailAddress("foo#bar.com") };
Let's fix it and create Contact class with constructor which requires PersonalName, EmailAddress and PostalAddress:
public class Contact
{
public Contact(
PersonalName personalName,
EmailAddress emailAddress,
PostalAddress postalAddress
)
{
...
}
}
But here we have another problem. What if Person have only EmailAdress and haven't PostalAddress?
If we think about it there we realize that there are three possibilities of valid state of Contact class object:
A contact only has an email address
A contact only has a postal address
A contact has both an email address and a postal address
Let's write out domain models. For the beginning we will create Contact Info class which state will be corresponding with above cases.
public class ContactInfo
{
public ContactInfo(EmailAddress emailAddress) { ... }
public ContactInfo(PostalAddress postalAddress) { ... }
public ContactInfo(Tuple<EmailAddress,PostalAddress> emailAndPostalAddress) { ... }
}
And Contact class:
public class Contact
{
public Contact(
PersonalName personalName,
ContactInfo contactInfo
)
{
...
}
}
Let's try use it:
var contact = new Contact(
new PersonalName("James", "Bond"),
new ContactInfo(
new EmailAddress("agent#007.com")
)
);
Console.WriteLine(contact.PersonalName()); // James Bond
Console.WriteLine(contact.ContactInfo().???) // here we have problem, because ContactInfo have three possible state and if we want print it we would write `if` cases
Let's add Match method in ContactInfo class
public class ContactInfo
{
// constructor
public TResult Match<TResult>(
Func<EmailAddress,TResult> f1,
Func<PostalAddress,TResult> f2,
Func<Tuple<EmailAddress,PostalAddress>> f3
)
{
if (_emailAddress != null)
{
return f1(_emailAddress);
}
else if(_postalAddress != null)
{
...
}
...
}
}
In the match method, we can write this code, because the state of the contact class is controlled with constructors and it may have only one of the possible states.
Let's create an auxiliary class, so that each time do not write as many code.
public abstract class Union<T1,T2,T3>
where T1 : class
where T2 : class
where T3 : class
{
private readonly T1 _t1;
private readonly T2 _t2;
private readonly T3 _t3;
public Union(T1 t1) { _t1 = t1; }
public Union(T2 t2) { _t2 = t2; }
public Union(T3 t3) { _t3 = t3; }
public TResult Match<TResult>(
Func<T1, TResult> f1,
Func<T2, TResult> f2,
Func<T3, TResult> f3
)
{
if (_t1 != null)
{
return f1(_t1);
}
else if (_t2 != null)
{
return f2(_t2);
}
else if (_t3 != null)
{
return f3(_t3);
}
throw new Exception("can't match");
}
}
We can have such a class in advance for several types, as is done with delegates Func, Action. 4-6 generic type parameters will be in full for Union class.
Let's rewrite ContactInfo class:
public sealed class ContactInfo : Union<
EmailAddress,
PostalAddress,
Tuple<EmaiAddress,PostalAddress>
>
{
public Contact(EmailAddress emailAddress) : base(emailAddress) { }
public Contact(PostalAddress postalAddress) : base(postalAddress) { }
public Contact(Tuple<EmaiAddress, PostalAddress> emailAndPostalAddress) : base(emailAndPostalAddress) { }
}
Here the compiler will ask override for at least one constructor. If we forget to override the rest of the constructors we can't create object of ContactInfo class with another state. This will protect us from runtime exceptions during Matching.
var contact = new Contact(
new PersonalName("James", "Bond"),
new ContactInfo(
new EmailAddress("agent#007.com")
)
);
Console.WriteLine(contact.PersonalName()); // James Bond
Console
.WriteLine(
contact
.ContactInfo()
.Match(
(emailAddress) => emailAddress.Address,
(postalAddress) => postalAddress.City + " " postalAddress.Zip.ToString(),
(emailAndPostalAddress) => emailAndPostalAddress.Item1.Name + emailAndPostalAddress.Item2.City + " " emailAndPostalAddress.Item2.Zip.ToString()
)
);
That's all.
I hope you enjoyed.
Example taken from the site F# for fun and profit

Categories

Resources