Synchronizing a service with a timer - c#

I'm trying to write a service in c# that should be run on a given interval (a timeout) from a given date. If the date is in the future the service should wait to start until the date time is reached.
Example:
If I set a timeout to be 1 hour from 21:00:00 I want the program to run every hour
If I set a timeout to be 1 hour from 3999.01.01 21:00:00 I want the program to until date and from then run each hour
I have sort of achieved that with the following code, but it has some problems!
When I install the service (with installutil) the service is marked as starting because of the 'Thread.Sleep()'. This service appears to be hanging and is "installing" until started.
The code inside 'ServiceTimer_Tick()' might take longer than the expected timeout. How can I prevent the timer stack from increasing if that happens?
Alternatives I've thought of :
include using the 'timeout.Interval' first time and then resetting it subsequent calls, but it doesn't feel right.
I've also considered ditching the entire service idea and compile it as a executable and set up a scheduled tasks.
Shortened example:
public Service()
{
_timeout = new TimeSpan(0,1,0,0);
_timer = new System.Timers.Timer();
_timer.Interval = _timeout.TotalMilliseconds;
_timer.Elapsed += new ElapsedEventHandler(ServiceTimer_Tick);
}
private void ServiceTimer_Tick(object sender, System.Timers.ElapsedEventArgs e)
{
lock (_obj)
{
// Stuff that could take a lot of time
}
}
public static void Main()
{
Run(new Service());
}
protected override void OnStart(string[] args)
{
long current = DateTime.Now.Ticks;
long start = new DateTime(2010,9,15,21,0,0).Ticks;
long timeout = _timeout.Ticks;
long sleep;
if (current > start)
sleep = timeout - ((current % timeout)) + (start % timeout);
else
sleep = start - current;
Thread.Sleep(new TimeSpan(sleep));
_timer.AutoReset = true;
_timer.Enabled = true;
_timer.Start();
}

This is easier with a System.Threading.Timer. You can tell it how long to wait before the first tick, and then how often to tick after that.
So, if you wanted to wait 2 days before starting, and then do something once per hour, you'd write:
Timer MyTimer = new Timer(TimerCallback, null, TimeSpan.FromHours(48), TimeSpan.FromHours(1));
That said, if this is something that only has to run once per hour, then it sounds like what you really want is an executable that you then schedule with Windows Task Scheduler.

You can use a System.Threading.Timer. It supports both a dueTime and a period which is just what you need.

you have to move the timer logic to a separate thread that you spawn from your OnStart routine. Then your logic cannot interfere with the SCM and the service will start normally.
Edit: Just to elaborate - for this task I don't think timers work very well, since you are not taking clock corrections into account which could lead to a skew (or even be incorrect if the user manually changes the clock time). That's why comparing to the clock time in small intervals is imo preferred.
The Run routine of that thread could look like this:
public void run()
{
while (processing)
{
//initiate action on every full hour
if (DateTime.Now.Second == 0 && DateTime.Now.Minute == 0)
{
//Do something here
DoSomething();
//Make sure we sleep long enough that datetime.now.second > 0
Thread.Sleep(1000);
}
Thread.Sleep(100);
}
}

Related

Execute a function ever 60 seconds

I want to execute a function every 60 seconds in C#. I could use the Timer class like so:
timer1 = new Timer();
timer1.Tick += new EventHandler(timer1_Tick);
timer1.Interval = 60 * 1000; // in miliseconds
timer1.Start();
Question is I have a long running process. Occasionally it make take several minutes. Is there a way to make the timer smart so if the function is already being executed then it should skip that cycle and come back 60 seconds later and if again it is in execution then again skip and come back 60 seconds later.
I would suggest you to have a class member variable bool variable with value false.
then in click event return if its true at the beginning.
and then set it to true, so that it will tell you that its currently in execution.
then write your logic.
and then once done finally set it to false again.
code will look like this.
private bool isRunning = false;
private void timer1_Tick(object sender, EventArgs e)
{
if (isRunning)
{
return;
}
isRunning = true;
try
{
... //Do whatever you want
}
finally
{
isRunning = false;
}
}
The modern and most clean way to do this is using Microsoft's new Period Timer:
var timer = new PeriodicTimer(TimeSpan.FromSeconds(n));
while (await timer.WaitForNextTickAsync())
{
//Business logic
}
If you need to abort such a ticker, you can pass a cancellation token to the WaitForNextTickAsync method.
Another advantage is this:
The PeriodicTimer behaves like an auto-reset event, in that multiple ticks are coalesced into a single tick if they occur between calls to WaitForNextTickAsync(CancellationToken). Similarly, a call to Dispose() will void any tick not yet consumed. WaitForNextTickAsync(CancellationToken) may only be used by one consumer at a time, and may be used concurrently with a single call to Dispose().
Source: https://learn.microsoft.com/en-us/dotnet/api/system.threading.periodictimer.waitfornexttickasync?source=recommendations&view=net-7.0#remarks
If you need more granularity (like "always at 10 am", use something like https://github.com/HangfireIO/Cronos
Use a timer, set it to 60 second
On Event:
try
Stop timer
Do logic
catch
What ever fail recovery
finally
Start the timer
Logic is run 60 seconds after last finish.
You can use a Stopwatch inside a loop: start the stopwatch, after 60 second call the function, reset the stopwatch, start the loop again.

Timer resets after 60 seconds

Below is the code that I'm attempting to use as an elapsed timer on a desktop task timer that we're building. Right now when this runs it only counts to 60 seconds and then resets and doesn't ever add to the minutes.
//tick timer that checks to see how long the agent has been sitting in the misc timer status, reminds them after 5 mintues to ensure correct status is used
private void statusTime_Tick(object sender, EventArgs e)
{
counter++;
//The timespan will handle the push from the elapsed time in seconds to the label so we can update the user
//This shouldn't require a background worker since it's a fairly small app and nothing is resource heavy
var timespan = TimeSpan.FromSeconds(actualTimer.Elapsed.Seconds);
//convert the time in seconds to the format requested by the user
displaycounter.Text=("Elapsed Time in " + statusName+" "+ timespan.ToString(#"mm\:ss"));
//pull the thread into updating the UI
Application.DoEvents();
}
Quick Fix
I believe the problem is that you are using Seconds which is 0-59. You want to use TotalSeconds with your existing code:
var timespan = TimeSpan.FromSeconds(actualTimer.Elapsed.TotalSeconds);
Comments
However, this doesn't make a lot of sense as you could just use the TimeSpan object directly:
var timespan = actualTimer.Elapsed;
Also, I can't see all your application, but I would expect you do not need to call Application.DoEvents();. As the UI should update automatically when it has the chance... if it doesn't then you want to look at moving whatever code is blocking the UI to a different thread.
Recommendation
With all that said, I would recommend you don't use a timer to track elapsed time at all. Timers can lose accuracy over time. The best approach is to store the current system time when you start the process, then when you need to display the 'timer' do an on-demand calculation at that point.
A very simple example to help explain what I mean:
DateTime start;
void StartTimer()
{
start = DateTime.Now;
}
void UpdateDisplay()
{
var timespan = DateTime.Now.Subtract(start);
displaycounter.Text = "Elapsed Time in " + statusName + " " + timespan.ToString(#"mm\:ss"));
}
You could then use a timer to call your UpdateDisplay method at regular intervals:
void statusTime_Tick(object sender, EventArgs e)
{
UpdateDisplay();
}

Run code at a certain time [duplicate]

I have a service written in C# (.NET 1.1) and want it to perform some cleanup actions at midnight every night. I have to keep all code contained within the service, so what's the easiest way to accomplish this? Use of Thread.Sleep() and checking for the time rolling over?
I wouldn't use Thread.Sleep(). Either use a scheduled task (as others have mentioned), or set up a timer inside your service, which fires periodically (every 10 minutes for example) and check if the date changed since the last run:
private Timer _timer;
private DateTime _lastRun = DateTime.Now.AddDays(-1);
protected override void OnStart(string[] args)
{
_timer = new Timer(10 * 60 * 1000); // every 10 minutes
_timer.Elapsed += new System.Timers.ElapsedEventHandler(timer_Elapsed);
_timer.Start();
//...
}
private void timer_Elapsed(object sender, System.Timers.ElapsedEventArgs e)
{
// ignore the time, just compare the date
if (_lastRun.Date < DateTime.Now.Date)
{
// stop the timer while we are running the cleanup task
_timer.Stop();
//
// do cleanup stuff
//
_lastRun = DateTime.Now;
_timer.Start();
}
}
Check out Quartz.NET. You can use it within a Windows service. It allows you to run a job based on a configured schedule, and it even supports a simple "cron job" syntax. I've had a lot of success with it.
Here's a quick example of its usage:
// Instantiate the Quartz.NET scheduler
var schedulerFactory = new StdSchedulerFactory();
var scheduler = schedulerFactory.GetScheduler();
// Instantiate the JobDetail object passing in the type of your
// custom job class. Your class merely needs to implement a simple
// interface with a single method called "Execute".
var job = new JobDetail("job1", "group1", typeof(MyJobClass));
// Instantiate a trigger using the basic cron syntax.
// This tells it to run at 1AM every Monday - Friday.
var trigger = new CronTrigger(
"trigger1", "group1", "job1", "group1", "0 0 1 ? * MON-FRI");
// Add the job to the scheduler
scheduler.AddJob(job, true);
scheduler.ScheduleJob(trigger);
A daily task? Sounds like it should just be a scheduled task (control panel) - no need for a service here.
Does it have to be an actual service? Can you just use the built in scheduled tasks in the windows control panel.
The way I accomplish this is with a timer.
Run a server timer, have it check the Hour/Minute every 60 seconds.
If it's the right Hour/Minute, then run your process.
I actually have this abstracted out into a base class I call OnceADayRunner.
Let me clean up the code a bit and I'll post it here.
private void OnceADayRunnerTimer_Elapsed(object sender, ElapsedEventArgs e)
{
using (NDC.Push(GetType().Name))
{
try
{
log.DebugFormat("Checking if it's time to process at: {0}", e.SignalTime);
log.DebugFormat("IsTestMode: {0}", IsTestMode);
if ((e.SignalTime.Minute == MinuteToCheck && e.SignalTime.Hour == HourToCheck) || IsTestMode)
{
log.InfoFormat("Processing at: Hour = {0} - Minute = {1}", e.SignalTime.Hour, e.SignalTime.Minute);
OnceADayTimer.Enabled = false;
OnceADayMethod();
OnceADayTimer.Enabled = true;
IsTestMode = false;
}
else
{
log.DebugFormat("Not correct time at: Hour = {0} - Minute = {1}", e.SignalTime.Hour, e.SignalTime.Minute);
}
}
catch (Exception ex)
{
OnceADayTimer.Enabled = true;
log.Error(ex.ToString());
}
OnceADayTimer.Start();
}
}
The beef of the method is in the e.SignalTime.Minute/Hour check.
There are hooks in there for testing, etc. but this is what your elapsed timer could look like to make it all work.
As others already wrote, a timer is the best option in the scenario you described.
Depending on your exact requirements, checking the current time every minute may not be necessary.
If you do not need to perform the action exactly at midnight, but just within one hour after midnight, you can go for Martin's approach of only checking if the date has changed.
If the reason you want to perform your action at midnight is that you expect a low workload on your computer, better take care: The same assumption is often made by others, and suddenly you have 100 cleanup actions kicking off between 0:00 and 0:01 a.m.
In that case you should consider starting your cleanup at a different time. I usually do those things not at clock hour, but at half hours (1.30 a.m. being my personal preference)
I would suggest that you use a timer, but set it to check every 45 seconds, not minute. Otherwise you can run into situations where with heavy load, the check for a particular minute is missed, because between the time the timer triggers and the time your code runs and checks the current time, you might have missed the target minute.
You can also try the TaskSchedulerLibrary here http://visualstudiogallery.msdn.microsoft.com/a4a4f042-ffd3-42f2-a689-290ec13011f8
Implement the abstract class AbstractScheduledTask and call the ScheduleUtilityFactory.AddScheduleTaskToBatch static method
For those that found the above solutions not working, it's because you may have a this inside your class, which implies an extension method which, as the error message says, only makes sense on a non-generic static class. Your class isn't static. This doesn't seem to be something that makes sense as an extension method, since it's acting on the instance in question, so remove the this.
Try this:
public partial class Service : ServiceBase
{
private Timer timer;
public Service()
{
InitializeComponent();
}
protected override void OnStart(string[] args)
{
SetTimer();
}
private void SetTimer()
{
if (timer == null)
{
timer = new Timer();
timer.AutoReset = true;
timer.Interval = 60000 * Convert.ToDouble(ConfigurationManager.AppSettings["IntervalMinutes"]);
timer.Elapsed += new ElapsedEventHandler(timer_Elapsed);
timer.Start();
}
}
private void timer_Elapsed(object source, System.Timers.ElapsedEventArgs e)
{
//Do some thing logic here
}
protected override void OnStop()
{
// disposed all service objects
}
}

Execute an operation every x seconds for y minutes in c#

I need to run a function every 5 seconds for 10 minutes.
I use a timer to run it for 5 secs, but how do I limit the timer to only 10 mins?
Just capture the time that you want to stop and end your timer from within the elapsed handler. Here's an example (note: I used a System.Threading.Timer timer. Select the appropriate timer for what you are doing. For example, you might be after a System.Windows.Forms.Timer if you are writing in Winforms.)
public class MyClass
{
System.Threading.Timer Timer;
System.DateTime StopTime;
public void Run()
{
StopTime = System.DateTime.Now.AddMinutes(10);
Timer = new System.Threading.Timer(TimerCallback, null, 0, 5000);
}
private void TimerCallback(object state)
{
if(System.DateTime.Now >= StopTime)
{
Timer.Dispose();
return;
}
// Do your work...
}
}
Have your timer loop something like this:
DateTime endTime = DateTime.Now.AddMinutes(10);
while(endTime < DateTime.Now)
{
// Process loop
}
Divide the Y minutes by the X interval to get how many times it needs to run. After that you just need to count how many times the function has been called.
In your case, 10 min = 600 seconds / 5 seconds = 120 calls needed. Just have a counter keep track of how many times your function has been called.
Timer.Stop() after 120 Ticks.
just use a DateTime variable to track when it should end and set that right before you start. The on your Elapsed event handler, check if the signal time is less than the end time. If it isn't, stop the timer.
You can calculate how times your function will be call, and create decrement counter, after elapsed which you unsubscribe from timer tick. Or you can Run another timer which have tick period - 10 min and on tick you unsubscribe from timer tick calling your function.
Note the start time. In each call, test if currentTime + 5 seconds > startTime + 10 minutes. If so, disable the timer.
I prefer this approach to just running for N ticks, as timers are not guaranteed to fire when you'd like them to. It's possible 120 ticks may run over 10 minutes of real world time.
You can set two timers one that run for 5 secs and the other one that run for 10min and disable the first one
You could use a second timer:
class Program
{
static void Main(string[] args)
{
int interval = 5 * 1000; //milliseconds
int duration = 10 * 60 * 1000; //milliseconds
intervalTimer = new System.Timers.Timer(interval);
durationTimer = new System.Timers.Timer(duration);
intervalTimer.Elapsed += new System.Timers.ElapsedEventHandler(intervalTimer_Elapsed);
durationTimer.Elapsed += new System.Timers.ElapsedEventHandler(durationTimer_Elapsed);
intervalTimer.Start();
durationTimer.Start();
}
static void durationTimer_Elapsed(object sender, System.Timers.ElapsedEventArgs e)
{
intervalTimer.Stop();
durationTimer.Stop();
}
static void intervalTimer_Elapsed(object sender, System.Timers.ElapsedEventArgs e)
{
//call your method
}
private static System.Timers.Timer intervalTimer;
private static System.Timers.Timer durationTimer;
}

Best Timer for using in a Windows service

Locked. This question and its answers are locked because the question is off-topic but has historical significance. It is not currently accepting new answers or interactions.
I need to create some windows service which will execute every N period of time.
The question is:
Which timer control should I use: System.Timers.Timer or System.Threading.Timer one? Does it influence on something?
I am asking because I heard many evidences to non correct work of System.Timers.Timer in windows services.
Thank you.
Both System.Timers.Timer and System.Threading.Timer will work for services.
The timers you want to avoid are System.Web.UI.Timer and System.Windows.Forms.Timer, which are respectively for ASP applications and WinForms. Using those will cause the service to load an additional assembly which is not really needed for the type of application you are building.
Use System.Timers.Timer like the following example (also, make sure that you use a class level variable to prevent garbage collection, as stated in Tim Robinson's answer):
using System;
using System.Timers;
public class Timer1
{
private static System.Timers.Timer aTimer;
public static void Main()
{
// Normally, the timer is declared at the class level,
// so that it stays in scope as long as it is needed.
// If the timer is declared in a long-running method,
// KeepAlive must be used to prevent the JIT compiler
// from allowing aggressive garbage collection to occur
// before the method ends. (See end of method.)
//System.Timers.Timer aTimer;
// Create a timer with a ten second interval.
aTimer = new System.Timers.Timer(10000);
// Hook up the Elapsed event for the timer.
aTimer.Elapsed += new ElapsedEventHandler(OnTimedEvent);
// Set the Interval to 2 seconds (2000 milliseconds).
aTimer.Interval = 2000;
aTimer.Enabled = true;
Console.WriteLine("Press the Enter key to exit the program.");
Console.ReadLine();
// If the timer is declared in a long-running method, use
// KeepAlive to prevent garbage collection from occurring
// before the method ends.
//GC.KeepAlive(aTimer);
}
// Specify what you want to happen when the Elapsed event is
// raised.
private static void OnTimedEvent(object source, ElapsedEventArgs e)
{
Console.WriteLine("The Elapsed event was raised at {0}", e.SignalTime);
}
}
/* This code example produces output similar to the following:
Press the Enter key to exit the program.
The Elapsed event was raised at 5/20/2007 8:42:27 PM
The Elapsed event was raised at 5/20/2007 8:42:29 PM
The Elapsed event was raised at 5/20/2007 8:42:31 PM
...
*/
If you choose System.Threading.Timer, you can use as follows:
using System;
using System.Threading;
class TimerExample
{
static void Main()
{
AutoResetEvent autoEvent = new AutoResetEvent(false);
StatusChecker statusChecker = new StatusChecker(10);
// Create the delegate that invokes methods for the timer.
TimerCallback timerDelegate =
new TimerCallback(statusChecker.CheckStatus);
// Create a timer that signals the delegate to invoke
// CheckStatus after one second, and every 1/4 second
// thereafter.
Console.WriteLine("{0} Creating timer.\n",
DateTime.Now.ToString("h:mm:ss.fff"));
Timer stateTimer =
new Timer(timerDelegate, autoEvent, 1000, 250);
// When autoEvent signals, change the period to every
// 1/2 second.
autoEvent.WaitOne(5000, false);
stateTimer.Change(0, 500);
Console.WriteLine("\nChanging period.\n");
// When autoEvent signals the second time, dispose of
// the timer.
autoEvent.WaitOne(5000, false);
stateTimer.Dispose();
Console.WriteLine("\nDestroying timer.");
}
}
class StatusChecker
{
int invokeCount, maxCount;
public StatusChecker(int count)
{
invokeCount = 0;
maxCount = count;
}
// This method is called by the timer delegate.
public void CheckStatus(Object stateInfo)
{
AutoResetEvent autoEvent = (AutoResetEvent)stateInfo;
Console.WriteLine("{0} Checking status {1,2}.",
DateTime.Now.ToString("h:mm:ss.fff"),
(++invokeCount).ToString());
if(invokeCount == maxCount)
{
// Reset the counter and signal Main.
invokeCount = 0;
autoEvent.Set();
}
}
}
Both examples comes from the MSDN pages.
Don't use a service for this. Create a normal application and create a scheduled task to run it.
This is the commonly held best practice. Jon Galloway agrees with me. Or maybe its the other way around. Either way, the fact is that it is not best practices to create a windows service to perform an intermittent task run off a timer.
"If you're writing a Windows Service that runs a timer, you should re-evaluate your solution."
–Jon Galloway, ASP.NET MVC community program manager, author, part time superhero
Either one should work OK. In fact, System.Threading.Timer uses System.Timers.Timer internally.
Having said that, it's easy to misuse System.Timers.Timer. If you don't store the Timer object in a variable somewhere, then it is liable to be garbage collected. If that happens, your timer will no longer fire. Call the Dispose method to stop the timer, or use the System.Threading.Timer class, which is a slightly nicer wrapper.
What problems have you seen so far?
I agree with previous comment that might be best to consider a different approach. My suggest would be write a console application and use the windows scheduler:
This will:
Reduce plumbing code that replicates scheduler behaviour
Provide greater flexibility in terms
of scheduling behaviour (e.g. only
run on weekends) with all scheduling logic abstracted from application code
Utilise the command line arguments
for parameters without having to
setup configuration values in config
files etc
Far easier to debug/test during development
Allow a support user to execute by invoking
the console application directly
(e.g. useful during support
situations)
As already stated both System.Threading.Timer and System.Timers.Timer will work. The big difference between the two is that System.Threading.Timer is a wrapper arround the other one.
System.Threading.Timer will have more exception handling while
System.Timers.Timer will swallow all the exceptions.
This gave me big problems in the past so I would always use 'System.Threading.Timer' and still handle your exceptions very well.
I know this thread is a little old but it came in handy for a specific scenario I had and I thought it worth while to note that there is another reason why System.Threading.Timer might be a good approach.
When you have to periodically execute a Job that might take a long time and you want to ensure that the entire waiting period is used between jobs or if you don't want the job to run again before the previous job has finished in the case where the job takes longer than the timer period.
You could use the following:
using System;
using System.ServiceProcess;
using System.Threading;
public partial class TimerExampleService : ServiceBase
{
private AutoResetEvent AutoEventInstance { get; set; }
private StatusChecker StatusCheckerInstance { get; set; }
private Timer StateTimer { get; set; }
public int TimerInterval { get; set; }
public CaseIndexingService()
{
InitializeComponent();
TimerInterval = 300000;
}
protected override void OnStart(string[] args)
{
AutoEventInstance = new AutoResetEvent(false);
StatusCheckerInstance = new StatusChecker();
// Create the delegate that invokes methods for the timer.
TimerCallback timerDelegate =
new TimerCallback(StatusCheckerInstance.CheckStatus);
// Create a timer that signals the delegate to invoke
// 1.CheckStatus immediately,
// 2.Wait until the job is finished,
// 3.then wait 5 minutes before executing again.
// 4.Repeat from point 2.
Console.WriteLine("{0} Creating timer.\n",
DateTime.Now.ToString("h:mm:ss.fff"));
//Start Immediately but don't run again.
StateTimer = new Timer(timerDelegate, AutoEventInstance, 0, Timeout.Infinite);
while (StateTimer != null)
{
//Wait until the job is done
AutoEventInstance.WaitOne();
//Wait for 5 minutes before starting the job again.
StateTimer.Change(TimerInterval, Timeout.Infinite);
}
//If the Job somehow takes longer than 5 minutes to complete then it wont matter because we will always wait another 5 minutes before running again.
}
protected override void OnStop()
{
StateTimer.Dispose();
}
}
class StatusChecker
{
public StatusChecker()
{
}
// This method is called by the timer delegate.
public void CheckStatus(Object stateInfo)
{
AutoResetEvent autoEvent = (AutoResetEvent)stateInfo;
Console.WriteLine("{0} Start Checking status.",
DateTime.Now.ToString("h:mm:ss.fff"));
//This job takes time to run. For example purposes, I put a delay in here.
int milliseconds = 5000;
Thread.Sleep(milliseconds);
//Job is now done running and the timer can now be reset to wait for the next interval
Console.WriteLine("{0} Done Checking status.",
DateTime.Now.ToString("h:mm:ss.fff"));
autoEvent.Set();
}
}

Categories

Resources