Simple app with timer is eating memory away? - c#

Can anybody explain why this tiny app's memory usage keeps increasing ?
static class Program
{
private static System.Timers.Timer _TestTimer;
[STAThread]
static void Main()
{
_TestTimer = new System.Timers.Timer();
_TestTimer.Interval = 30;
_TestTimer.Elapsed += new System.Timers.ElapsedEventHandler(_TestTimer_Elapsed);
_TestTimer.Enabled = true;
Application.EnableVisualStyles();
Application.SetCompatibleTextRenderingDefault(false);
Application.Run(new Form1());
}
static void _TestTimer_Elapsed(object sender, System.Timers.ElapsedEventArgs e)
{
string test = "tick";
Trace.WriteLine(test);
test = null;
}
}
Thanks!
Pika81

You are assuming that the memory usage should not increase. Wrong assumption, that's just not how either the .NET garbage collector or the Windows heap manager work. Both of them work efficiently by using memory that's available for use instead of constantly releasing and reallocating memory.
Let it run for a week. Might go quicker if you make the Interval smaller. Also minimize the form for spectacular effects.

My suggestion would be to crank up Windbg and find out what objects exist in memory.
Agreed that we devs generally use it as the last option but in this case, it would give you the exact reason for the memory increase

I was digging through the source of DefaultTraceListener and I found this:
private void WriteLine(string message, bool useLogFile)
{
if (base.NeedIndent)
{
this.WriteIndent();
}
this.Write(message + "\r\n", useLogFile);
base.NeedIndent = true;
}
So the memory usage is probably growing too slowly for the GC to react immediately.

If you're only looking at the Task Manager to see how much memory your process is using you're probably not getting a very accurate reading.
Have a read of this article:
http://www.itwriting.com/dotnetmem.php
It explains some of the shortfalls with using TaskManager as a means to measure the memory usage of your .Net application.

Related

C# Simple garbage collection code not working

I have a simple WPF application that allocates memory, clears it, and interacts with the garbage collector. Unfortunately I can't ever see the garbage collected automatically clear memory. For example, say I click Alloc button 10 times it allocates a gig, then if I click the New button the allocated memory does not go down. However if I force a garbage collection with GC.Collect (GC button) it does free the memory. I have enabled large collections with gcAllowVeryLargeObjects set to true, as I would like to test with more than 2 gigs of use. Any idea how I can get the garbage collector to automatically collect and free the memory?
Simple code excerpt:
List<byte[]> m_allocs = new List<byte[]>();
private void AllocClick(object sender, RoutedEventArgs e)
{
int oneHundredMegsAsBytes = 100000000;
byte[] array = new byte[oneHundredMegsAsBytes];
Array.Clear(array, 0, oneHundredMegsAsBytes);
m_allocs.Add(array);
}
private void NewClick(object sender, RoutedEventArgs e)
{
m_allocs = new List<byte[]>();
}
private void ClearClick(object sender, RoutedEventArgs e)
{
m_allocs.Clear();
}
private void GCClick(object sender, RoutedEventArgs e)
{
GC.Collect();
GC.WaitForPendingFinalizers();
GC.Collect();
}
You don't.
The GC has been developed to only run when needed. If yours isn't running, then it doesn't need to.
You don't want it to.
GC is expensive, the GC has to stop the program and figure out what is and isn't needed. If it did this at the end of every cycle your program would grind to a crawl.
However...
You could change the high-memory percent to a lower value, which will make the GC get much more aggressive, much earlier. This will probably do you more harm than good.
When experimenting based on the new information from your comments I found a solution. If I press alloc a lot of times, eg till 10 gig use, then click clear and continue allocating more, it eventually drops down the memory usage down to a lower value, eg 2 gig.
So the garbage collector is automatically running with the sample code, it just works when memory usage is higher than what I was testing with and further allocations help.

MemoryCache OutOfMemoryException

I am trying to figure out how the MemoryCache should be used in order to avoid getting out of memory exceptions. I come from ASP.Net background where the cache manages it's own memory usage so I expect that MemoryCache would do the same. This does not appear to be the case as illustrated in the bellow test program I made:
class Program
{
static void Main(string[] args)
{
var cache = new MemoryCache("Cache");
for (int i = 0; i < 100000; i++)
{
AddToCache(cache, i);
}
Console.ReadLine();
}
private static void AddToCache(MemoryCache cache, int i)
{
var key = "File:" + i;
var contents = System.IO.File.ReadAllBytes("File.txt");
var policy = new CacheItemPolicy
{
SlidingExpiration = TimeSpan.FromHours(12)
};
policy.ChangeMonitors.Add(
new HostFileChangeMonitor(
new[] { Path.GetFullPath("File.txt") }
.ToList()));
cache.Add(key, contents, policy);
Console.Clear();
Console.Write(i);
}
}
The above throws an out of memory exception after approximately reaching 2GB of memory usage (Any CPU) or after consuming all my machine's physical memory (x64)(16GB).
If I remove the cache.Add bit the program throws no exception. If I include a call to cache.Trim(5) after every cache add I see that it releases some memory and it keeps aproximately 150 objects in the cache at any given time (from cache.GetCount()).
Is calling cache.Trim my program's responsibility? If so when should it be called (like how can my program know that the memory is getting full)? How do you calculate the percentage argument?
Note: I am planning to use the MemoryCache in a long running windows service so it is critical for it to have proper memory management.
MemoryCache has a background thread that periodically estimates how much memory the process is using and how many keys are in the cache. When it thinks you are getting close to the cachememorylimit, it will Trim the cache. Each time this background thread runs, it checks to see how close you are to the limits, and it will increase the polling frequency under memory pressure.
If you add items very quickly, the background thread doesn't have a chance to run, and you can run out of memory before the cache can trim and GC can run (in a x64 process this can result in massive heap size and multi minute GC pauses). The trim process/memory estimation is also known to have bugs under some conditions.
If your program is prone to out of memory due to rapidly loading an excessive number of objects, something with a bounded size like an LRU cache is a much better strategy. LRU typically uses a policy based on item count to evict the least recently used items.
I wrote a thread safe implementation of TLRU (a time aware least recently used policy), that you can easily use as a drop in replacement for ConcurrentDictionary.
It's available on Github here: https://github.com/bitfaster/BitFaster.Caching
Install-Package BitFaster.Caching
Using it would look like something this for your program, and it will not run out of memory (depending on how big your files are):
class Program
{
static void Main(string[] args)
{
int capacity = 80;
TimeSpan timeToLive = TimeSpan.FromMinutes(5);
var lru = new ConcurrentTLru<int, byte[]>(capacity, timeToLive);
for (int i = 0; i < 100000; i++)
{
var value = lru.GetOrAdd(1, (k) => System.IO.File.ReadAllBytes("File.txt"));
}
Console.ReadLine();
}
}
If you really want to avoid running out of memory, you should also consider reading the files into a RecyclableMemoryStream, and using the Scoped class in BitFaster to make the cached values thread safe and avoid races on dispose.

Why is my C# program faster in a profiler?

I have a relatively large system (~25000 lines so far) for monitoring radio-related devices. It shows graphs and such using latest version of ZedGraph.
The program is coded using C# on VS2010 with Win7.
The problem is:
when I run the program from within VS, it runs slow
when I run the program from the built EXE, it runs slow
when I run the program though Performance Wizard / CPU Profiler, it runs Blazing Fast.
when I run the program from the built EXE, and then start VS and Attach a profiler to ANY OTHER PROCESS, my program speeds up!
I want the program to always run that fast!
Every project in the solution is set to RELEASE, Debug unmanaged code is DISABLED, Define DEBUG and TRACE constants is DISABLED, Optimize Code - I tried either, Warning Level - I tried either, Suppress JIT - I tried either,
in short I tried all the solutions already proposed on StackOverflow - none worked. Program is slow outside profiler, fast in profiler.
I don't think the problem is in my code, because it becomes fast if I attach the profiler to other, unrelated process as well!
Please help!
I really need it to be that fast everywhere, because it's a business critical application and performance issues are not tolerated...
UPDATES 1 - 8 follow
--------------------Update1:--------------------
The problem seems to Not be ZedGraph related, because it still manifests after I replaced ZedGraph with my own basic drawing.
--------------------Update2:--------------------
Running the program in a Virtual machine, the program still runs slow, and running profiler from the Host machine doesn't make it fast.
--------------------Update3:--------------------
Starting screen capture to video also speeds the program up!
--------------------Update4:--------------------
If I open the Intel graphics driver settings window (this thing: http://www.intel.com/support/graphics/sb/img/resolution_new.jpg)
and just constantly hover with the cursor over buttons, so they glow, etc, my program speeds up!.
It doesn't speed up if I run GPUz or Kombustor though, so no downclocking on the GPU - it stays steady 850Mhz.
--------------------Update5:--------------------
Tests on different machines:
-On my Core i5-2400S with Intel HD2000, UI runs slow and CPU usage is ~15%.
-On a colleague's Core 2 Duo with Intel G41 Express, UI runs fast, but CPU usage is ~90% (which isn't normal either)
-On Core i5-2400S with dedicated Radeon X1650, UI runs blazing fast, CPU usage is ~50%.
--------------------Update6:--------------------
A snip of code showing how I update a single graph (graphFFT is an encapsulation of ZedGraphControl for ease of use):
public void LoopDataRefresh() //executes in a new thread
{
while (true)
{
while (!d.Connected)
Thread.Sleep(1000);
if (IsDisposed)
return;
//... other graphs update here
if (signalNewFFT && PanelFFT.Visible)
{
signalNewFFT = false;
#region FFT
bool newRange = false;
if (graphFFT.MaxY != d.fftRangeYMax)
{
graphFFT.MaxY = d.fftRangeYMax;
newRange = true;
}
if (graphFFT.MinY != d.fftRangeYMin)
{
graphFFT.MinY = d.fftRangeYMin;
newRange = true;
}
List<PointF> points = new List<PointF>(2048);
int tempLength = 0;
short[] tempData = new short[2048];
int i = 0;
lock (d.fftDataLock)
{
tempLength = d.fftLength;
tempData = (short[])d.fftData.Clone();
}
foreach (short s in tempData)
points.Add(new PointF(i++, s));
graphFFT.SetLine("FFT", points);
if (newRange)
graphFFT.RefreshGraphComplete();
else if (PanelFFT.Visible)
graphFFT.RefreshGraph();
#endregion
}
//... other graphs update here
Thread.Sleep(5);
}
}
SetLine is:
public void SetLine(String lineTitle, List<PointF> values)
{
IPointListEdit ip = zgcGraph.GraphPane.CurveList[lineTitle].Points as IPointListEdit;
int tmp = Math.Min(ip.Count, values.Count);
int i = 0;
while(i < tmp)
{
if (values[i].X > peakX)
peakX = values[i].X;
if (values[i].Y > peakY)
peakY = values[i].Y;
ip[i].X = values[i].X;
ip[i].Y = values[i].Y;
i++;
}
while(ip.Count < values.Count)
{
if (values[i].X > peakX)
peakX = values[i].X;
if (values[i].Y > peakY)
peakY = values[i].Y;
ip.Add(values[i].X, values[i].Y);
i++;
}
while(values.Count > ip.Count)
{
ip.RemoveAt(ip.Count - 1);
}
}
RefreshGraph is:
public void RefreshGraph()
{
if (!explicidX && autoScrollFlag)
{
zgcGraph.GraphPane.XAxis.Scale.Max = Math.Max(peakX + grace.X, rangeX);
zgcGraph.GraphPane.XAxis.Scale.Min = zgcGraph.GraphPane.XAxis.Scale.Max - rangeX;
}
if (!explicidY)
{
zgcGraph.GraphPane.YAxis.Scale.Max = Math.Max(peakY + grace.Y, maxY);
zgcGraph.GraphPane.YAxis.Scale.Min = minY;
}
zgcGraph.Refresh();
}
.
--------------------Update7:--------------------
Just ran it through the ANTS profiler. It tells me that the ZedGraph refresh counts when the program is fast are precisely two times higher compared to when it's slow.
Here are the screenshots:
I find it VERY strange that, considering the small difference in the length of the sections, performance differs twice with mathematical precision.
Also, I updated the GPU driver, that didn't help.
--------------------Update8:--------------------
Unfortunately, for a few days now, I'm unable to reproduce the issue... I'm getting constant acceptable speed (which still appear a bit slower than what I had in the profiler two weeks ago) which isn't affected by any of the factors that used to affect it two weeks ago - profiler, video capturing or GPU driver window. I still have no explanation of what was causing it...
Luaan posted the solution in the comments above, it's the system wide timer resolution. Default resolution is 15.6 ms, the profiler sets the resolution to 1ms.
I had the exact same problem, very slow execution that would speed up when the profiler was opened. The problem went away on my PC but popped back up on other PCs seemingly at random. We also noticed the problem disappeared when running a Join Me window in Chrome.
My application transmits a file over a CAN bus. The app loads a CAN message with eight bytes of data, transmits it and waits for an acknowledgment. With the timer set to 15.6ms each round trip took exactly 15.6ms and the entire file transfer would take about 14 minutes. With the timer set to 1ms round trip time varied but would be as low as 4ms and the entire transfer time would drop to less than two minutes.
You can verify your system timer resolution as well as find out which program increased the resolution by opening a command prompt as administrator and entering:
powercfg -energy duration 5
The output file will have the following in it somewhere:
Platform Timer Resolution:Platform Timer Resolution
The default platform timer resolution is 15.6ms (15625000ns) and should be used whenever the system is idle. If the timer resolution is increased, processor power management technologies may not be effective. The timer resolution may be increased due to multimedia playback or graphical animations.
Current Timer Resolution (100ns units) 10000
Maximum Timer Period (100ns units) 156001
My current resolution is 1 ms (10,000 units of 100nS) and is followed by a list of the programs that requested the increased resolution.
This information as well as more detail can be found here: https://randomascii.wordpress.com/2013/07/08/windows-timer-resolution-megawatts-wasted/
Here is some code to increase the timer resolution (originally posted as the answer to this question: how to set timer resolution from C# to 1 ms?):
public static class WinApi
{
/// <summary>TimeBeginPeriod(). See the Windows API documentation for details.</summary>
[System.Diagnostics.CodeAnalysis.SuppressMessage("Microsoft.Interoperability", "CA1401:PInvokesShouldNotBeVisible"), System.Diagnostics.CodeAnalysis.SuppressMessage("Microsoft.Security", "CA2118:ReviewSuppressUnmanagedCodeSecurityUsage"), SuppressUnmanagedCodeSecurity]
[DllImport("winmm.dll", EntryPoint = "timeBeginPeriod", SetLastError = true)]
public static extern uint TimeBeginPeriod(uint uMilliseconds);
/// <summary>TimeEndPeriod(). See the Windows API documentation for details.</summary>
[System.Diagnostics.CodeAnalysis.SuppressMessage("Microsoft.Interoperability", "CA1401:PInvokesShouldNotBeVisible"), System.Diagnostics.CodeAnalysis.SuppressMessage("Microsoft.Security", "CA2118:ReviewSuppressUnmanagedCodeSecurityUsage"), SuppressUnmanagedCodeSecurity]
[DllImport("winmm.dll", EntryPoint = "timeEndPeriod", SetLastError = true)]
public static extern uint TimeEndPeriod(uint uMilliseconds);
}
Use it like this to increase resolution :WinApi.TimeBeginPeriod(1);
And like this to return to the default :WinApi.TimeEndPeriod(1);
The parameter passed to TimeEndPeriod() must match the parameter that was passed to TimeBeginPeriod().
There are situations when slowing down a thread can speed up other threads significantly, usually when one thread is polling or locking some common resource frequently.
For instance (this is a windows-forms example) when the main thread is checking overall progress in a tight loop instead of using a timer, for example:
private void SomeWork() {
// start the worker thread here
while(!PollDone()) {
progressBar1.Value = PollProgress();
Application.DoEvents(); // keep the GUI responisive
}
}
Slowing it down could improve performance:
private void SomeWork() {
// start the worker thread here
while(!PollDone()) {
progressBar1.Value = PollProgress();
System.Threading.Thread.Sleep(300); // give the polled thread some time to work instead of responding to your poll
Application.DoEvents(); // keep the GUI responisive
}
}
Doing it correctly, one should avoid using the DoEvents call alltogether:
private Timer tim = new Timer(){ Interval=300 };
private void SomeWork() {
// start the worker thread here
tim.Tick += tim_Tick;
tim.Start();
}
private void tim_Tick(object sender, EventArgs e){
tim.Enabled = false; // prevent timer messages from piling up
if(PollDone()){
tim.Tick -= tim_Tick;
return;
}
progressBar1.Value = PollProgress();
tim.Enabled = true;
}
Calling Application.DoEvents() can potentially cause allot of headaches when GUI stuff has not been disabled and the user kicks off other events or the same event a 2nd time simultaneously, causing stack climbs which by nature queue the first action behind the new one, but I'm going off topic.
Probably that example is too winforms specific, I'll try making a more general example. If you have a thread that is filling a buffer that is processed by other threads, be sure to leave some System.Threading.Thread.Sleep() slack in the loop to allow the other threads to do some processing before checking if the buffer needs to be filled again:
public class WorkItem {
// populate with something usefull
}
public static object WorkItemsSyncRoot = new object();
public static Queue<WorkItem> workitems = new Queue<WorkItem>();
public void FillBuffer() {
while(!done) {
lock(WorkItemsSyncRoot) {
if(workitems.Count < 30) {
workitems.Enqueue(new WorkItem(/* load a file or something */ ));
}
}
}
}
The worker thread's will have difficulty to obtain anything from the queue since its constantly being locked by the filling thread. Adding a Sleep() (outside the lock) could significantly speed up other threads:
public void FillBuffer() {
while(!done) {
lock(WorkItemsSyncRoot) {
if(workitems.Count < 30) {
workitems.Enqueue(new WorkItem(/* load a file or something */ ));
}
}
System.Threading.Thread.Sleep(50);
}
}
Hooking up a profiler could in some cases have the same effect as the sleep function.
I'm not sure if I've given representative examples (it's quite hard to come up with something simple) but I guess the point is clear, putting sleep() in the correct place can help improve the flow of other threads.
---------- Edit after Update7 -------------
I'd remove that LoopDataRefresh() thread altogether. Rather put a timer in your window with an interval of at least 20 (which would be 50 frames a second if none were skipped):
private void tim_Tick(object sender, EventArgs e) {
tim.Enabled = false; // skip frames that come while we're still drawing
if(IsDisposed) {
tim.Tick -= tim_Tick;
return;
}
// Your code follows, I've tried to optimize it here and there, but no guarantee that it compiles or works, not tested at all
if(signalNewFFT && PanelFFT.Visible) {
signalNewFFT = false;
#region FFT
bool newRange = false;
if(graphFFT.MaxY != d.fftRangeYMax) {
graphFFT.MaxY = d.fftRangeYMax;
newRange = true;
}
if(graphFFT.MinY != d.fftRangeYMin) {
graphFFT.MinY = d.fftRangeYMin;
newRange = true;
}
int tempLength = 0;
short[] tempData;
int i = 0;
lock(d.fftDataLock) {
tempLength = d.fftLength;
tempData = (short[])d.fftData.Clone();
}
graphFFT.SetLine("FFT", tempData);
if(newRange) graphFFT.RefreshGraphComplete();
else if(PanelFFT.Visible) graphFFT.RefreshGraph();
#endregion
// End of your code
tim.Enabled = true; // Drawing is done, allow new frames to come in.
}
}
Here's the optimized SetLine() which no longer takes a list of points but the raw data:
public class GraphFFT {
public void SetLine(String lineTitle, short[] values) {
IPointListEdit ip = zgcGraph.GraphPane.CurveList[lineTitle].Points as IPointListEdit;
int tmp = Math.Min(ip.Count, values.Length);
int i = 0;
peakX = values.Length;
while(i < tmp) {
if(values[i] > peakY) peakY = values[i];
ip[i].X = i;
ip[i].Y = values[i];
i++;
}
while(ip.Count < values.Count) {
if(values[i] > peakY) peakY = values[i];
ip.Add(i, values[i]);
i++;
}
while(values.Count > ip.Count) {
ip.RemoveAt(ip.Count - 1);
}
}
}
I hope you get that working, as I commented before, I hav'nt got the chance to compile or check it so there could be some bugs there. There's more to be optimized there, but the optimizations should be marginal compared to the boost of skipping frames and only collecting data when we have the time to actually draw the frame before the next one comes in.
If you closely study the graphs in the video at iZotope, you'll notice that they too are skipping frames, and sometimes are a bit jumpy. That's not bad at all, it's a trade-off you make between the processing power of the foreground thread and the background workers.
If you really want the drawing to be done in a separate thread, you'll have to draw the graph to a bitmap (calling Draw() and passing the bitmaps device context). Then pass the bitmap on to the main thread and have it update. That way you do lose the convenience of the designer and property grid in your IDE, but you can make use of otherwise vacant processor cores.
---------- edit answer to remarks --------
Yes there is a way to tell what calls what. Look at your first screen-shot, you have selected the "call tree" graph. Each next line jumps in a bit (it's a tree-view, not just a list!). In a call-graph, each tree-node represents a method that has been called by its parent tree-node (method).
In the first image, WndProc was called about 1800 times, it handled 872 messages of which 62 triggered ZedGraphControl.OnPaint() (which in turn accounts for 53% of the main threads total time).
The reason you don't see another rootnode, is because the 3rd dropdown box has selected "[604] Mian Thread" which I didn't notice before.
As for the more fluent graphs, I have 2nd thoughts on that now after looking more closely to the screen-shots. The main thread has clearly received more (double) update messages, and the CPU still has some headroom.
It looks like the threads are out-of-sync and in-sync at different times, where the update messages arrive just too late (when WndProc was done and went to sleep for a while), and then suddenly in time for a while. I'm not very familiar with Ants, but does it have a side-by side thread timeline including sleep time? You should be able to see what's going on in such a view. Microsofts threads view tool would come in handy for this:
When I have never heard or seen something similar; I’d recommend the common sense approach of commenting out sections of code/injecting returns at tops of functions until you find the logic that’s producing the side effect. You know your code and likely have an educated guess where to start chopping. Else chop mostly all as a sanity test and start adding blocks back. I’m often amazed how fast one can find those seemingly impossible bugs to track. Once you find the related code, you will have more clues to solve your issue.
There is an array of potential causes. Without stating completeness, here is how you could approach your search for the actual cause:
Environment variables: the timer issue in another answer is only one example. There might be modifications to the Path and to other variables, new variables could be set by the profiler. Write the current environment variables to a file and compare both configurations. Try to find suspicious entries, unset them one by one (or in combinations) until you get the same behavior in both cases.
Processor frequency. This can easily happen on laptops. Potentially, the energy saving system sets the frequency of the processor(s) to a lower value to save energy. Some apps may 'wake' the system up, increasing the frequency. Check this via performance monitor (permon).
If the apps runs slower than possible there must be some inefficient resource utilization. Use the profiler to investigate this! You can attache the profiler to the (slow) running process to see which resources are under-/ over-utilized. Mostly, there are two major categories of causes for too slow execution: memory bound and compute bound execution. Both can give more insight into what is triggering the slow-down.
If, however, your app actually changes its efficiency by attaching to a profiler you can still use your favorite monitor app to see, which performance indicators do actually change. Again, perfmon is your friend.
If you have a method which throws a lot of exceptions, it can run slowly in debug mode and fast in CPU Profiling mode.
As detailed here, debug performance can be improved by using the DebuggerNonUserCode attribute. For example:
[DebuggerNonUserCode]
public static bool IsArchive(string filename)
{
bool result = false;
try
{
//this calls an external library, which throws an exception if the file is not an archive
result = ExternalLibrary.IsArchive(filename);
}
catch
{
}
return result;
}

High memory usage for small application

im just building a very simple event based proxy monitor top disable the proxy settings depending on if a network location is available.
the issue is that the application is a tiny 10KB and has minimal interface, but yet it uses 10MB of ram.
The code is pretty simple:
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Windows.Forms;
using System.Net;
using System.Net.NetworkInformation;
using Microsoft.Win32;
namespace WCSProxyMonitor
{
class _Application : ApplicationContext
{
private NotifyIcon NotificationIcon = new NotifyIcon();
private string IPAdressToCheck = "10.222.62.5";
public _Application(string[] args)
{
if (args.Length > 0)
{
try
{
IPAddress.Parse(args[0]); //?FormatException
this.IPAdressToCheck = args[0];
}
catch (Exception)
{}
}
this.enableGUIAspects();
this.buildNotificationContextmenu();
this.startListening();
}
private void startListening()
{
NetworkChange.NetworkAddressChanged += new NetworkAddressChangedEventHandler(networkChangeListener);
}
public void networkChangeListener(object sender, EventArgs e)
{
//foreach (NetworkInterface nic in NetworkInterface.GetAllNetworkInterfaces())
//{
//IPInterfaceProperties IPInterfaceProperties = nic.GetIPProperties();
//}
//Attempt to ping the domain!
PingOptions PingOptions = new PingOptions(128, true);
Ping ping = new Ping();
//empty buffer
byte[] Packet = new byte[32];
//Send
PingReply PingReply = ping.Send(IPAddress.Parse(this.IPAdressToCheck), 1000, Packet, PingOptions);
//Get the registry object ready.
using (RegistryKey RegistryObject = Registry.CurrentUser.OpenSubKey("Software\\Microsoft\\Windows\\CurrentVersion\\Internet Settings", true))
{
if (PingReply.Status == IPStatus.Success)
{
this.NotificationIcon.ShowBalloonTip(3000, "Proxy Status", "proxy settings have been enabled", ToolTipIcon.Info);
RegistryObject.SetValue("ProxyEnable", 1, RegistryValueKind.DWord);
}
else
{
this.NotificationIcon.ShowBalloonTip(3000, "Proxy Status", "proxy settings have been disabled", ToolTipIcon.Info);
RegistryObject.SetValue("ProxyEnable", 0, RegistryValueKind.DWord);
}
}
}
private void enableGUIAspects()
{
this.NotificationIcon.Icon = Resources.proxyicon;
this.NotificationIcon.Visible = true;
}
private void buildNotificationContextmenu()
{
this.NotificationIcon.ContextMenu = new ContextMenu();
this.NotificationIcon.Text = "Monitoring for " + this.IPAdressToCheck;
//Exit comes first:
this.NotificationIcon.ContextMenu.MenuItems.Add(new MenuItem("Exit",this.ExitApplication));
}
public void ExitApplication(object Sender, EventArgs e)
{
Application.Exit();
}
}
}
My questions are:
Is this normal for an application built on C#
What can I do to reduce the amount of memory being used.
the application is built on the framework of .NET 4.0
Regards.
It doesn't use anywhere near 10 MB of RAM. It uses 10 MB of address space. Address space usage has (almost) nothing whatsoever to do with RAM.
When you load the .NET framework, space for all the code is reserved in your address space. It is not loaded into RAM. The code is loaded into RAM in 4kb chunks called "pages" on an as-needed basis, but space for those pages has to be reserved in the address space so that the process is guaranteed that there is a space in the address space for all the code it might need.
Furthermore, when each page is loaded into RAM, if you have two .NET applications running at the same time then they share that page of RAM. The memory manager takes care of ensuring that shared code pages are only loaded once into RAM, even if they are in a thousand different address spaces.
If you're going to be measuring memory usage then you need to learn how memory works in a modern operating system. Things have changed since the 286 days.
See this related question:
Is 2 GB really my maximum?
And my article on the subject for a brief introduction to how memory actually works.
http://blogs.msdn.com/b/ericlippert/archive/2009/06/08/out-of-memory-does-not-refer-to-physical-memory.aspx
If you just start your application and then check the amount of memory usage the number may be high. .Net Application preload about 10 MB of memory when the application is started. After your app runs for a while you should see the memory usage drop. Also, just because you see a particular amount of memory in use by your app in the Task Manager it doesn't mean it is using that amount. .Net can also share memory for some components as well as preallocate memory. If you are really concerned get a real profiler for your application.
Your app itself is small, but it references classes the .NET framework. They need to be loaded into memory too. When you use Process Explorer from Sysinternals you can see what dlls are loaded and, if you select some more columns, also how much memory they use. That should help explain where some of the memory footprint is coming from, other reasons as described in the other answers may still be valid.
You could try a GC.Collect() to see how much memory is used after that, not recommended to fiddle with the GC in production code tho.
Regards GJ
Yes this is normal for C# applications, starting the CLR takes some doing.
As for reducing this the less DLL's you load the better so see what references you can remove.
Example I see you are importing Linq but did not see any in a quick scan of code, can you remove this and reduce the number of DLL's you project depends on.
I also see that you are using windows forms, 10M is not large for any application using forms.

Process Memory Size - Different Counters

I'm trying to find out how much memory my own .Net server process is using (for monitoring and logging purposes).
I'm using:
Process.GetCurrentProcess().PrivateMemorySize64
However, the Process object has several different properties that let me read the memory space used:
Paged, NonPaged, PagedSystem, NonPagedSystem, Private, Virtual, WorkingSet
and then the "peaks": which i'm guessing just store the maximum values these last ones ever took.
Reading through the MSDN definition of each property hasn't proved too helpful for me. I have to admit my knowledge regarding how memory is managed (as far as paging and virtual goes) is very limited.
So my question is obviously "which one should I use?", and I know the answer is "it depends".
This process will basically hold a bunch of lists in memory of things that are going on, while other processes communicate with it and query it for stuff. I'm expecting the server where this will run on to require lots of RAM, and so i'm querying this data over time to be able to estimate RAM requirements when compared to the sizes of the lists it keeps inside.
So... Which one should I use and why?
If you want to know how much the GC uses try:
GC.GetTotalMemory(true)
If you want to know what your process uses from Windows (VM Size column in TaskManager) try:
Process.GetCurrentProcess().PrivateMemorySize64
If you want to know what your process has in RAM (as opposed to in the pagefile) (Mem Usage column in TaskManager) try:
Process.GetCurrentProcess().WorkingSet64
See here for more explanation on the different sorts of memory.
OK, I found through Google the same page that Lars mentioned, and I believe it's a great explanation for people that don't quite know how memory works (like me).
http://shsc.info/WindowsMemoryManagement
My short conclusion was:
Private Bytes = The Memory my process has requested to store data. Some of it may be paged to disk or not. This is the information I was looking for.
Virtual Bytes = The Private Bytes, plus the space shared with other processes for loaded DLLs, etc.
Working Set = The portion of ALL the memory of my process that has not been paged to disk. So the amount paged to disk should be (Virtual - Working Set).
Thanks all for your help!
If you want to use the "Memory (Private Working Set)" as shown in Windows Vista task manager, which is the equivalent of Process Explorer "WS Private Bytes", here is the code. Probably best to throw this infinite loop in a thread/background task for real-time stats.
using System.Threading;
using System.Diagnostics;
//namespace...class...method
Process thisProc = Process.GetCurrentProcess();
PerformanceCounter PC = new PerformanceCounter();
PC.CategoryName = "Process";
PC.CounterName = "Working Set - Private";
PC.InstanceName = thisProc.ProcessName;
while (true)
{
String privMemory = (PC.NextValue()/1000).ToString()+"KB (Private Bytes)";
//Do something with string privMemory
Thread.Sleep(1000);
}
To get the value that Task Manager gives, my hat's off to Mike Regan's solution above. However, one change: it is not: perfCounter.NextValue()/1000; but perfCounter.NextValue()/1024; (i.e. a real kilobyte). This gives the exact value you see in Task Manager.
Following is a full solution for displaying the 'memory usage' (Task manager's, as given) in a simple way in your WPF or WinForms app (in this case, simply in the title). Just call this method within the new Window constructor:
private void DisplayMemoryUsageInTitleAsync()
{
origWindowTitle = this.Title; // set WinForms or WPF Window Title to field
BackgroundWorker wrkr = new BackgroundWorker();
wrkr.WorkerReportsProgress = true;
wrkr.DoWork += (object sender, DoWorkEventArgs e) => {
Process currProcess = Process.GetCurrentProcess();
PerformanceCounter perfCntr = new PerformanceCounter();
perfCntr.CategoryName = "Process";
perfCntr.CounterName = "Working Set - Private";
perfCntr.InstanceName = currProcess.ProcessName;
while (true)
{
int value = (int)perfCntr.NextValue() / 1024;
string privateMemoryStr = value.ToString("n0") + "KB [Private Bytes]";
wrkr.ReportProgress(0, privateMemoryStr);
Thread.Sleep(1000);
}
};
wrkr.ProgressChanged += (object sender, ProgressChangedEventArgs e) => {
string val = e.UserState as string;
if (!string.IsNullOrEmpty(val))
this.Title = string.Format(#"{0} ({1})", origWindowTitle, val);
};
wrkr.RunWorkerAsync();
}`
Is this a fair description? I'd like to share this with my team so please let me know if it is incorrect (or incomplete):
There are several ways in C# to ask how much memory my process is using.
Allocated memory can be managed (by the CLR) or unmanaged.
Allocated memory can be virtual (stored on disk) or loaded (into RAM pages)
Allocated memory can be private (used only by the process) or shared (e.g. belonging to a DLL that other processes are referencing).
Given the above, here are some ways to measure memory usage in C#:
1) Process.VirtualMemorySize64(): returns all the memory used by a process - managed or unmanaged, virtual or loaded, private or shared.
2) Process.PrivateMemorySize64(): returns all the private memory used by a process - managed or unmanaged, virtual or loaded.
3) Process.WorkingSet64(): returns all the private, loaded memory used by a process - managed or unmanaged
4) GC.GetTotalMemory(): returns the amount of managed memory being watched by the garbage collector.
Working set isn't a good property to use. From what I gather, it includes everything the process can touch, even libraries shared by several processes, so you're seeing double-counted bytes in that counter. Private memory is a much better counter to look at.
I'd suggest to also monitor how often pagefaults happen. A pagefault happens when you try to access some data that have been moved from physical memory to swap file and system has to read page from disk before you can access this data.

Categories

Resources