How to encapsulate private fields that only apply to a few methods - c#

I'm working on modeling a business domain object in a class and am wondering what would be the best way to properly encapsulate private fields that only apply to a few methods.
When I started, my code originally looked like this:
public class DiscountEngine
{
public Cart As Cart { get; set;}
public Discount As Discount { get; set;}
public void ApplySKUGroupDiscountToCart()
{
...
}
}
However, ApplySKUGroupDiscountToCart() was starting to get ugly, so I decided to refactor the code into smaller private methods that get called from ApplySKUGroupDiscountToCart(). I started by passing in lots of local variables into the helper method, but then decided to pull out variables common to both routines and make them private modular variables. The new code looks like this:
public class DiscountEngine
{
public Cart As Cart { get; set;}
public Discount As Discount { get; set;}
private int _SKUGroupItemDiscountsApplied = 0
private int _SKUGroupTotalDiscounts = 0
private int _SKUGroupID = 0
public void ApplySKUGroupDiscountToCart()
{
...
}
private void ApplyDiscountToSingleCartItem(ref CartItem cartI,
ref DiscountItem discountI)
{
...
}
}
On the one hand, the three private integer fields are useful for allowing the related methods to share common variables without needing to pass them back and forth as parameters. However, these variables are only applicable to these related methods and any other methods I might add would have no need to see them.
Is there a way to encapsulate the private fields and their related methods while still remaining a part of the DiscountEngine class? Is there a better way altogether of dealing with this problem?

Normally, making a class field private implies "I have enough discipline to ensure that this field is only used in an appropriate manner inside this class". If your class is too big for you to say that with confidence, then maybe the class is trying to do too many different things, and should be split up (see SRP).
Anyway, enough of the theory :-). If you want to stick with one class then you could always encapsulate those three fields into a private nested class, e.g.
public class DiscountEngine
{
public Cart As Cart { get; set;}
public Discount As Discount { get; set;}
private class SKUGroup
{
public int ItemDiscountsApplied = 0
public int TotalDiscounts = 0
public int ID = 0
}
public void ApplySKUGroupDiscountToCart()
{
...
}
private void ApplyDiscountToSingleCartItem(ref CartItem cartI,
ref DiscountItem discountI)
{
...
}
}
That gives you a bit more freedom to pass instances of the class around your code as method parameters.
You could take this a step further, and move any private methods that act on the SKU data into the nested class as well.

First things first, you very likely don't need to pass the parameters to ApplyDiscountToSingleCartItem as ref. Short version: unless you're actually assigning a value to the variable that you want to be visible to the calling code, you don't need ref. Modifying variable and property values on them will be visible to the calling code without passing them as ref.
Second, there is no way to scope a variable in between instance and local, which is what you're asking. The only way to accomplish this would be to refactor this functionality into another class (likely a nested private class).
Don't, however, use instance variables as a way to pass data between functions. If the data becomes "stale" after the function is called, then it should be a parameter, not an instance variable.

I would say the only other way that I can think of to handle this would be to extract all the methods and private variables that are associated with them into a separate class. That way you keep all that encapsulated. But not sure if that would make sense in the context of your domain objects.

You could always create a nested (inner) class to bundle together parameters that have a common use. In this way you could still pass them to your private methods without having to pass around l.ots of arguments - you'd just pass an instance of the private type.

"these variables are only applicable to these related methods and any other methods I might add would have no need to see them."
First of all, keep in mind that one of the first rules of OO development is to build what the customer wants THEN apply OO design like basic OO rules and patterns. Your quote verges on saying you want to plan for the unknown. Be careful that the unknown is "more of the same" not NEW requirements. Otherwise, this class is going to end up becoming a God Object.
If you find you have many members that aren't used by the methods, then divide and conquer.

Related

Passing runtime parameters throughout application

I have a legacy C# library (a set of interrelated algorithms) in which there is a global god object which is passed to all classes. This god object (simply called Manager :D ) has a Parameters member, and an ObjectCollection member (among lots of others).
public class Manager
{
public Parameters {get; private set;}
public ObjectCollection {get; private set;}
...
...
}
I am unable to test the algorithms because everything takes the manager as dependency, and initializing that means I have to initialize everything. So I want to refactor this design.
Parameters has more than 100 fields in it, the values control the different algorithms. The ObjectCollection has the entities required for the overall execution of the engine, stored by Id, by Name, etc.
The following are the approaches I've though of, but not satisfied with:
Pass Parameters and ObjectCollection (or IParameters and IObjectCollection) instead of the Manager, but I don't think this solves any issue. I wouldn't know which of the parameters the algorithms would depend on.
Splitting the parameters class to smaller ones also is difficult as one parameter may affect many algorithms, so a logical separation is difficult. Plus the dependencies for each algorithm may end up to be many.
A singleton pattern like is usually done for a Logger, but that too is not testable.
Some of the parameters control the algorithm logic, some of the parameters are just required for the algorithm. I'm thinking of making each algorithm a separate class implementing an interface, and at the application start, deciding which algorithm to instantiate based on the parameter. I might end up splitting the current set of algorithm classes to many more, and I'm afraid I'll end up complicating it more and losing the structure of the algorithms.
Is there any standard way to deal with this, or is just splitting big classes to smaller ones and passing dependencies by constructor the only general advice?
In order to allow yourself to make small steps I'd start with a single algorithm and identify the parameters it requires. These can then be exposed in an interface so...
public interface IAmTheParametersForAlgorithm1
{
int OneThing {get;}
int AnotherThing {get;}
}
Then you can alter Manager so that it implements that interface and as in #marcel's answer expose those parameters directly on Manager.
Now you can test Algorithm1 with a very small mock or self-shunt because you don't need to initialise a gigantic Manager in order to run your test. And Algorithm1 no longer knows it takes a Manager object.
public Manager : IAmTheParametersForAlgorithm1 {}
public class Algorithm1
{
public Algorithm1(IAmTheParametersForAlgorithm1 parameters){}
}
Bit by bit you can continue expanding this to each of the sets of parameters and dealing with small, specific interfaces will allow you to identify where different algorithms have common parameters.
public Manager :
IAmTheParametersForAlgorithm1,
IAmTheParametersForAlgorithm2,
IAmTheParametersForAlgorithm3,
IAmTheParametersForAlgorithm4 {}
It also means that as you identify algorithms whose parameters are no longer accessed outside of their interface you can stop injecting Manager into those algorithms, take the parameters out of Manager, and create a new class which only provides those parameters.
This means you can keep your application running the whole time you're making this change if you aren't able to dedicate time to make one gigantic breaking change
For the Parameters, I would go with something like this:
public class Parameters
{
public int MyProperty1 { get; set; }
public int MyProperty2 { get; set; }
public int MyProperty3 { get; set; }
}
public class AlgorithmParameters1
{
private Parameters parameters;
public int MyProperty1 { get { return parameters.MyProperty1; } }
public int MyProperty3 { get { return parameters.MyProperty3; } }
public AlgorithmParameters1(Parameters parameters)
{
this.parameters = parameters;
}
}
public class Algorithm1
{
public void Run(AlgorithmParameters1 parameters)
{
//Access only MyProperty1 and MyProperty3...
}
}
Usage would look like:
var parameters = new Parameters()
{
MyProperty1 = 4,
MyProperty2 = 5,
MyProperty3 = 6,
};
new Algorithm1().Run(new AlgorithmParameters1(parameters));
By the way, I don't see how you could differ between parameters that control an algorithm and are required for it. By control do you mean they are used to make a decision which algorithm to take?

Object Oriented - Class Variables

I am pretty new to OOP and looking into things in a bit more depth, but I have a bit of confusion between these 3 methods in C# and which one is best and what the differences are between 2 of them.
Example 1
So lets start with this one, which (so I understand) is the wrong way to do it:
public class MyClass
{
public string myAttribute;
}
and in this way I can set the attribute directly using:
myObject.myAttribute = "something";
Example 2
The next way I have seen and that seems to be recomended is this:
public class MyClass
{
public string myAttribute { get; set;}
}
With getters and setters, this where I dont understand the difference between the first 2 as the variable can still be set directly on the object?
Example 3
The third way, and the way that I understand the theory behind, is creating a set function
public class MyClass
{
string myAttribute;
public void setAttribute(string newSetting)
{
myAttribute = newSetting;
//obviously you can apply some logic in here to remove unwanted characters or validate etc.
}
}
So, what are the differences between the three? I assume example 1 is a big no-no so which is best out of 2 and 3, and why use one over the other?
Thanks
The second
public class MyClass
{
public string MyAttribute { get; set;}
}
is basically shorthand for:
public class MyClass
{
private string myPrivateAttribute;
public string MyAttribute
{
get {return myPrivateAttribute;}
set {myPrivateAttribute = value;}
}
}
That is an auto-implemented property, which is exactly the same as any regular property, you just do not have to implement it, when the compiler can do that for you.
So, what is a property? It's nothing more than a couple of methods, coupled with a name. I could do:
public class MyClass
{
private string myPrivateAttribute;
public string GetMyAttribute()
{
return myPrivateAttribute;
}
public void SetMyAttribute(string value)
{
myPrivateAttribute = value;
}
}
but then instead of writing
myClass.MyAttribute = "something";
string variable = myClass.MyAttribute;
I would have to use the more verbose, but not necessarily clearer form:
myClass.SetMyAttribute("something");
string variable = myClass.GetMyAttribute();
Note that nothing constraints the contents of the get and set methods (accessors in C# terminology), they are methods, just like any other. You can add as much or as little logic as you need inside them. I.e. it is useful to make a prototype with auto-implemented properties, and later to add any necessary logic (e.g. log property access, or add lazy initalization) with an explicit implementation.
What your asking here has to do with encapsulation in OOP languages.
The difference between them is in the way you can access the propriety of an object after you created an object from your class.
In the fist example you can access it directly new MyClass().MyAttribute whether you get or set it's value.
In the second example you declare 2 basic functions for accessing it:
public string MyAttribute
{
get {return myPrivateAttribute;}
set {myPrivateAttribute = value;}
}
In the third example you declare your own method for setting the value. This is useful if you want to customize the setter. For example you don't want to set the value passed, but the value multiplied by 2 or something else...
I recommend some reading. You can find something here and here.
Property is a syntactic sugar over private attribute with get and set methods and it's realy helpful and fast to type;
You may treat automatic property with { get; set;} as a public attribute. It has no additional logic but you may add it later without uset ever notice it.
Just exchange
public string MyLine { get; set;}
to
string myLine;
public string MyLine
{
get { return myLine; }
set { myLine = value + Environment.NewLine; }
}
for example if you need so.
You can also easily create read only property as { get; private set }.
So use Properties instead of public attributes every time just because its easier and faster to write and it's provides better encapsulation because user should not be used get and set methods if you decide to use it in new version of yours programm.
One of the main principles of OOP is encapsulation, and this is essentially the difference between the first example and the other 2.
The first example you have a private field which is exposed directly from the object - this is bad because you are allowing mutation of internal data from outside the object and therefore have no control over it.
The other 2 examples are syntactically equivalent, the second being recommended simply because it's less code to write. However, more importantly they both restrict access & control mutation of the internal data so give you complete control over how the data should be managed - this is ecapsulation.

Best pattern to ensure clean code when passing variable frequently within class

Say I have a class with a number of methods - some private, some public.
In one of the public methods, I create a list of objects. This is then used across a number of other methods, which have simply been abstracted out to make code simpler.
So I might have:
public class MyClass
{
public void CreateList()
{
List<MyClass> MyList = new List<MyClass>();
... populate list
DedupeList();
ValidateList();
}
void DedupeList()
{
// do something using MyList
}
void ValidateList()
{
// do something using MyList
}
}
I was wondering what the best approach would be in this instance.
Make the list created by CreateList() a class level variable;
Pass the list a parameter to each of the sub-methods.
Ok, so it depends on what you're trying to achieve and what your classes responsibility is.
If you class represents a real thing which represents part of your domain, and which has state, then your private methods act on that state and I would therefore choose the former.
So
public class Basket
{
private IList<string> Contents;
public Basket()
{
Contents = new Contents();
}
public void Add(string Item)
{
Contents.Add(Item);
}
public void Empty()
{
Contents.Clear();
}
}
This is a trite example, but all I could think of.
If however your class doesn't represent an object with state, such as the calculator below which takes some input, acts on it, and returns it without storing anything, then the latter is better.
That said, there are other considerations, such as keeping code clean and easy to read (should be very high on your priority list), limiting the number of parameters etc being passed (any more than three is often regarded as messy). Example below of when I would elect to pass parameters.
public class InvestmentCalculator
{
pubilc IEnumerable<Stock> CalculateInvestmentValue(IEnumerable<Stock> Stocks)
{
foreach (var stock in stocks)
{
var itemValue = GetSotckValueFromMarket(stock);
stock.UpdateValue(itemValue)
AddProjection(stock);
}
}
public decimal GetStockValueFromMarket(Stock stock)
{
//Do something
}
public decimal AddProjection(Stock stock)
{
//Do something
}
}
I hope that this helps
It depends on meaning of the list. You have to find some answers. Should it be a part of the class or just a temporary variable that should live just along the method call? Is it a part of behavior of the class? How about threading? Even you may rethink if DedupeList and ValidateList methods have to be part of this class or do they deserve a separate class?
I recommend you to read "Implementation Patterns" by Kent Beck and "Clean Code" by Robert C. Martin. There are dozens of very helpful tips for these kind of little but frequent cases.

C# static class and data members question

I am not sure how to implement what I have in mind using C# .Net 3.5. I have a static class called Common which contains common methods. One of the method is PrepareReportParameters. This method accepts a string ReportParams and parse it to get the parameter values. I load this ReportParams string into a Dictionary . And then verify whether the required elements exist. I check that like:
if (ReportParamList.ContainsKey("PAccount"))
{
ReportParamList.TryGetValue("PAccount", out PrimaryAccount);
}
where PrimaryAccount is a static variable in my Common class. And I can access this elsewhere as Common.PrimaryAccount.
Though, this approcah of accessing the report parameters will work but I want PrimaryAccount to be accessed as Common.ReportParameters.PrimaryAccount.
Here is the problem, I don't know what type ReportParameters should be and how can I have all the report parameters added to this type? How should I define ReportParameters? Does it sound feasible or it doesn't make any sense. Please H E L P!
It sounds like you're basically used to using global variables to pass around state. That's generally a really bad idea.
Why doesn't your method just return the primary account value? That can then be passed to other things which need it.
If you find yourself with a lot of static members - and in particular if other classes are fetching mutable static variables - consider whether there's a more OO design you could apply. It'll be easier to understand, easier to test, and easier to maintain.
EDIT: Okay, so currently you have:
public static class Common
{
public static int PrimaryAccount;
// other static fields
public static void PrepareReportParameters(string reportParameters)
{
// Code to set the fields
}
}
Instead of that, use a normal class:
public class ReportParameters
{
public int PrimaryAccount { get; private set; }
// Other properties
private ReportParameters(int primaryAccount, ....)
{
this.PrimaryAccount = primaryAccount;
}
// Could use a constructor instead, but I prefer methods when they're going to
// do work
public static ReportParameters Parse(string report)
{
// Parse the parameter, save values into local variables, then
return new ReportParameters(primaryAccount, ...);
}
}
Then call this from the rest of your code, and pass the ReportParameters reference to anything that needs it.
You could create a class called ReportParameters with the relevant strongly-typed properties, and give Common a static instance of it?
I'm not sure this is the best design. Theres a certain amount of 'code smell' to having Common.PrimaryAccount only to be allowed to be accessed after PrepareReportParameters is called. Maybe you'd consider an instance class, passing in the parameters in the constructor?

what is the meaning of data hiding

One of the most important aspects of OOP is data hiding. Can somebody explain using a simple piece of code what data hiding is exactly and why we need it?
Data or Information Hiding is a design principal proposed by David Paranas.
It says that you should hide the
design decisions in one part of the
program that are likely to be changed
from other parts of the program, there
by protecting the other parts from
being affected by the changes in the
first part.
Encapsulation is programming language feature which enables data hiding.
However note that you can do data\information hiding even without encapsulation. For example using modules or functions in non Object Oriented programming languages. Thus encapsulation is not data hiding but only a means of achieving it.
While doing encapsulation if you ignore the underlying principal then you will not have a good design. For example consider this class -
public class ActionHistory
{
private string[] _actionHistory;
public string[] HistoryItems
{
get{return _actionHistory; }
set{ _actionHistory = value; }
}
}
This calls encapsulates an array. But it does not hide the design decision of using a string[] as an internal storage. If we want to change the internal storage later on it will affect the code using this class as well.
Better design would be -
public class ActionHistory
{
private string[] _actionHistory;
public IEnumerable<string> HistoryItems
{
get{return _actionHistory; }
}
}
I'm guessing by data hiding you mean something like encapsulation or having a variable within an object and only exposing it by get and modify methods, usually when you want to enforce some logic to do with setting a value?
public class Customer
{
private decimal _accountBalance;
public decimal GetBalance()
{
return _accountBalance;
}
public void AddCharge(decimal charge)
{
_accountBalance += charge;
if (_accountBalance < 0)
{
throw new ArgumentException(
"The charge cannot put the customer in credit");
}
}
}
I.e. in this example, I'm allowing the consuming class to get the balance of the Customer, but I'm not allowing them to set it directly. However I've exposed a method that allows me to modify the _accountBalance within the class instance by adding to it via a charge in an AddCharge method.
Here's an article you may find useful.
Information hiding (or more accurately encapsulation) is the practice of restricting direct access to your information on a class. We use getters/setters or more advanced constructs in C# called properties.
This lets us govern how the data is accessed, so we can sanitize inputs and format outputs later if it's required.
The idea is on any public interface, we cannot trust the calling body to do the right thing, so if you make sure it can ONLY do the right thing, you'll have less problems.
Example:
public class InformationHiding
{
private string _name;
public string Name
{
get { return _name; }
set { _name = value; }
}
/// This example ensures you can't have a negative age
/// as this would probably mess up logic somewhere in
/// this class.
private int _age;
public int Age
{
get { return _age; }
set { if (value < 0) { _age = 0; } else { _age = value; } }
}
}
Imagine that the users of your class are trying to come up with ways to make your class no longer fulfill its contract. For instance, your Banking object may have a contract that ensures that all Transactions are recorded in a log. Suppose mutation of the Bank's TransactionLog were publically accessible; now a consuming class could initiate suspect transactions and modify the log to remove the records.
This is an extreme example, but the basic principles remain the same. It's up to the class author to maintain the contractual obligations of the class and this means you either need to have weak contractual obligations (reducing the usefulness of your class) or you need to be very careful about how your state can be mutated.
What is data hiding?
Here's an example:
public class Vehicle
{
private bool isEngineStarted;
private void StartEngine()
{
// Code here.
this.isEngineStarted = true;
}
public void GoToLocation(Location location)
{
if (!this.isEngineStarted)
{
this.StartEngine();
}
// Code here: move to a new location.
}
}
As you see, the isEngineStarted field is private, ie. accessible from the class itself. In fact, when calling an object of type Vehicle, we do need to move the vehicle to a location, but don't need to know how this will be done. For example, it doesn't matter, for the caller object, if the engine is started or not: if it's not, it's to the Vehicle object to start it before moving to a location.
Why do we need this?
Mostly to make the code easier to read and to use. Classes may have dozens or hundreds of fields and properties that are used only by them. Exposing all those fields and properties to the outside world will be confusing.
Another reason is that it is easier to control a state of a private field/property. For example, in the sample code above, imagine StartEngine is performing some tasks, then assigning true to this.isEngineStarted. If isEngineStarted is public, another class would be able to set it to true, without performing tasks made by StartEngine. In this case, the value of isEngineStarted will be unreliable.
Data Hiding is defined as hiding a base class method in a derived class by naming the new class method the same name as the base class method.
class Person
{
public string AnswerGreeting()
{
return "Hi, I'm doing well. And you?";
}
}
class Employee : Person
{
new public string AnswerGreeting()
{
"Hi, and welcome to our resort.";
}
}
In this c# code, the new keyword prevents the compiler from giving a warning that the base class implementation of AnswerGreeting is being hidden by the implementation of a method with the same name in the derived class. Also known as "data hiding by inheritance".
By data hiding you are presumably referring to encapsulation. Encapsulation is defined by wikipedia as follows:
Encapsulation conceals the functional
details of a class from objects that
send messages to it.
To explain a bit further, when you design a class you can design public and private members. The class exposes its public members to other code in the program, but only the code written in the class can access the private members.
In this way a class exposes a public interface but can hide the implementation of that interface, which can include hiding how the data that the class holds is implemented.
Here is an example of a simple mathematical angle class that exposes values for both degrees and radians, but the actual storage format of the data is hidden and can be changed in the future without breaking the rest of the program.
public class Angle
{
private double _angleInDegrees;
public double Degrees
{
get
{
return _angleInDegrees;
}
set
{
_angleInDegrees = value;
}
}
public double Radians
{
get
{
return _angleInDegrees * PI / 180;
}
set
{
_angleInDegrees = value * 180 / PI;
}
}
}

Categories

Resources