Refactoring Singleton Overuse - c#

Today I had an epiphany, and it was that I was doing everything wrong. Some history: I inherited a C# application, which was really just a collection of static methods, a completely procedural mess of C# code. I refactored this the best I knew at the time, bringing in lots of post-college OOP knowledge. To make a long story short, many of the entities in code have turned out to be Singletons.
Today I realized I needed 3 new classes, which would each follow the same Singleton pattern to match the rest of the software. If I keep tumbling down this slippery slope, eventually every class in my application will be Singleton, which will really be no logically different from the original group of static methods.
I need help on rethinking this. I know about Dependency Injection, and that would generally be the strategy to use in breaking the Singleton curse. However, I have a few specific questions related to this refactoring, and all about best practices for doing so.
How acceptable is the use of static variables to encapsulate configuration information? I have a brain block on using static, and I think it is due to an early OO class in college where the professor said static was bad. But, should I have to reconfigure the class every time I access it? When accessing hardware, is it ok to leave a static pointer to the addresses and variables needed, or should I continually perform Open() and Close() operations?
Right now I have a single method acting as the controller. Specifically, I continually poll several external instruments (via hardware drivers) for data. Should this type of controller be the way to go, or should I spawn separate threads for each instrument at the program's startup? If the latter, how do I make this object oriented? Should I create classes called InstrumentAListener and InstrumentBListener? Or is there some standard way to approach this?
Is there a better way to do global configuration? Right now I simply have Configuration.Instance.Foo sprinkled liberally throughout the code. Almost every class uses it, so perhaps keeping it as a Singleton makes sense. Any thoughts?
A lot of my classes are things like SerialPortWriter or DataFileWriter, which must sit around waiting for this data to stream in. Since they are active the entire time, how should I arrange these in order to listen for the events generated when data comes in?
Any other resources, books, or comments about how to get away from Singletons and other pattern overuse would be helpful.

Alright, here's my best shot at attacking this question:
(1) Statics
The Problem with static that you may be having is that it means different things in .NET and say, C++. Static basically means it's accessible on the class itself. As for it's acceptability id say it's more of something you'd use to do non-instance specific operations on a class. Or just general things like Math.Abs(...). What you should use for a global config is probably a statically accessed property for holding the current/active configuration. Also maybe some static classes for loading/saving setting the config, however the config should be an Object so it can be passed around manipulated, etc.
public class MyConfiguration
{
public const string DefaultConfigPath = "./config.xml";
protected static MyConfiguration _current;
public static MyConfiguration Current
{
get
{
if (_current == null)
Load(DefaultConfigPath);
return _current;
}
}
public static MyConfiguration Load(string path)
{
// Do your loading here
_current = loadedConfig;
return loadedConfig;
}
// Static save function
//*********** Non-Static Members *********//
public string MyVariable { get; set; }
// etc..
}
(2) Controller/Hardware
You should probably look into a reactive approach, IObserver<> or IObservable<>, it's part of the Reactive Framework (Rx).
Another approach is using a ThreadPool to schedule your polling tasks, as you may get a large number of threads if you have a lot of hardware to pool. Please make sure before using any kind of Threading to learn a lot about it. It's very easy to make mistakes you may not even realize. This Book is an excelent source and will teach you lots.
Either way you should probably build services (just a name really) for managing your hardware which are responsible for collecting information about a service (essentially a model-pattern). From there your central controller can use them to access the data keeping the program logic in the controller, and the hardware logic in the service.
(3) Global Configuration
I may have touched this subject in point #1 but generally that's where we go, if you find yourself typing too much you can always pull it out of there assuming the .Instance is an object.
MyConfiguration cfg = MyConfiguration.Current
cfg.Foo // etc...
(4) Listening For data
Again the reactive framework could help you out, or you could build up an event-driven model that uses triggers for incoming data. This will make sure you're not blocking on a thread till data comes in. It can reduce the complexity of your application greatly.

for starters, you can limit use of singleton through the "Registry" pattern, which effectively means you have one singleton which allows you to get to a bunch of other preconfigured objects.
This is not a "fix" but an improvement, it makes the many objects that are singletons a little more normal and testable. eg... (totally contrived example)
HardwareRegistry.SerialPorts.Serial1.Send("blah");
but the real problem seems to be you are struggling with making a set of objects that work nicely together. There's two kind of steps in OO.... configuring objects, and letting objects do their thing.
so perhaps look at how you can configure non singleton objects to work together, and then hang that off a registry.
Static :-
Plenty of exceptions to the rules here, but in general, avoid it, but it is useful for doing singletons, and creating methods that do "general" computing outside the context of an object. ( like Math.Min )
Data Monitoring :-
its often better to do as you hint at, create a thread with a bunch of preconfigured objects that will do your monitoring. Use message passing to communicate between threads (through a thread safe queue) to limit thread locking problems. Use the registry pattern to access hardware resources.
you want something like a InstrumentListner that uses an InstrumentProtocol (which you subclass for each protocol) to I dunno, LogData. The command pattern may be of use here.
Configuration:-
have your configuration information and use something like the "builder" pattern to translate your configuration into a set of objects set up in a particular way. ie, don't make your classes aware of configuation, make a object that configures objects in a particular way.
Serial Ports :-
I do a bunch of work with these, what I have is a serial connection, which generates a stream of characters which it posts as an event. Then I have something that interprets the protocol stream into meaningful commands. My protocol classes work with a generic "IConnection" of which a SerialConnection inherits..... I also have TcpConnections, MockConnections, etc, to be able to inject test data, or pipe serial ports from one computer to another, etc. So Protocol classes just interpret a stream, have a statemachine, and dispatch commands. The protocol is preconfigured with a Connection, Various things get registered with the protocol, so when it has meaningful data they will be triggered and do their thing. All this is built from a configuration at the beginning, or rebuilt on the fly if something changes.

Since you know about Dependency Injection, have you considered using an IoC container to manage lifetimes? See my answer to a question on static classes.

You (the OP) seem preoccupied with OO design, well, I'll put it this way when thinking about the static variables things. The core concept is encapsulation and reuse; somethings you could care less about reusing but you almost always want the encapsulation. If it's a static variable, it's not really encapsulated, is it? Think about who needs to access it, why, and how far you can HIDE it from client code. Good designs often can change their internals without much breakage to clients, that is what you want to think about. I agree with Scott Meyers (Effective C++) about many things. OOP goes way beyond the class keyword. If you've never heard of it it, look up properties: yes they can be static, and C# has a very good way of using them. As opposed to literally using a static variable. Like I hinted at the start of this list item: think about how not to shoot yourself in the foot later as the class changes with time, that's something many programmers fail to do when designing classes.
Take a look at that Rx framework someone mentioned. The threading model to use, for such a situation as you described, is not readily decidable without more specifics about the use case IMHO. Be sure you know what you're doing with threads. A lot of people can't figure out threads to save their lives; it's no that hard, being tread safe can be when (re)using code. Remember controllers should often be separate from the objects they are controlling (E.g. not the same class); if you don't know it, look up a book on MVC and buy gang of four.
Depends on what you need. For many applications a class that is almost entirely filled with static data, is good enough; like a singleton for free. It can be done very OO. Sometimes you would rather have multiple instances or play with injection, that makes it more complex.
I suggest threads and events. The ease of making code event driven is actually one of the nicer things about C# IMHO.
Hmm, killing off singletons...
In my experience, a lot of the more common uses that young programmers put singletons to, are little more than a waste of the class keyword. Namely something they meant as a stateful module being rolled into a highlander class; and there are some bad singleton implementations out there to match. Whether this is because they failed to learn what they're doing, or only had Java in college, I dunno. Back in C land, it's called a using data at file scope and exposing an API. In C# (and Java) you're kind of bound to it being a class more than many languages. OOP != class keyword; learn the lhs well.
A decently written class can use static data to effectively implement a singleton, and make the compiler do the leg work of keeping it one, or as one as you are ever going to get of anything. Do NOT replace singletons with inheritance unless you seriously know what the heck you are doing. Poorly done inheritance of such things, leads to more brittle code that knows waaaay to much. Classes should be dumb, data is smart. That sounds stupid unless you look at the statement deeply. Using inheritance IMHO for such a thing, is generally a bad thing(tm), languages have the concept of modules/packages for a reason.
If you are up for it, hey you did convert it to singletons ages ago right? Sit down and think a bit: how can I best structure this app, in order to make it work XXX way, then think how doing it XXX way impacts things, for example is doing this one way going to be a source of contention among threads? You can go over a lot of things in an hour like that. When you get older, you'll learn better techniques.
Here is one suggestion for an XXX way to start with: (visualize) write(^Hing) a composite controller class, that works as a manager over the objects it references. Those objects were your singletons, not the the controller holds them, and they are but instances of those classes. This isn't the best design for a lot of applications (particularly can be an issue in heavily threaded ones IMHO), but it will generally solve what causes most younglings to reach for a singleton, and it will perform suitably for a vast array of programs. It's uh, like design pattern CS 102. Forget the singleton you learned in CS 607.
That controlling class, perhaps "Application' would be a more apt ;), basically solves your need for singletons and for storing configuration. How to do it in a sublimely OO way (assuming you do understand OOP) and not shoot yourself in the foot (again), is an exercise for your own education.
If it shows, I am not a fan of the so called singleton pattern, particularly how it is often misused. Moving a code base away from it, often depends on how much refactoring you are prepared to use. Singletons are like global variables: convenient but not butter. Hmm, I think I'll put that in my quotations file, has a nice phrase to it...
Honestly, you know more about the code base and the application in question then anyone here. So no one can really design it for you, and advice speaks less then action, at least where I come from.

I limit myself to at most two singletons in an application / process. One is usually called SysConfig and houses things that might otherwise end up as global variables or other corrupt concepts. I don't have a name for the second one since, so far, I've never actually reached my limit. :-)
Static member variables have their uses but I view them as I view proctologists. A lifesaver when you need one but the odds should be a "million to one" (Seinfeld reference) that you can't find a better way to solve the problem.
Create a base instrument class that implements a threaded listener. Derived classes of that would have instrument specific drivers, etc. Instantiate a derived class for each instrument then store the object in a container of some sort. At cleanup time just iterate through the container. Each instrument instance should be constructed by passing it some registration information on where to send its output/status/whatever. Use your imagination here. The OO stuff gets quite powerful.

I recently had to tackle a similar problem, and what I did seemed to work well for me, maybe it will help you:
(1) Group all "global" information into a single class. Let's call it Configuration.
(2) For all classes which used to use these static objects, change them to (ultimately) inherit from a new abstract base class which looks something like
abstract class MyBaseClass {
protected Configuration config; // You can also wrap it in a property
public MyBaseClass(Configuration config) {
this.config = config;
}
}
(3) Change all constructors of classes deriving from MyBaseClass accordingly. Then just create one instance of Configuration at start and pass it on everywhere.
Cons:
You need to refactor many of your constructors and every place in which they are called
This won't work well if you do not derive your top-level classes from Object. Well, you can add the config field to the derived class, it's just less elegant.
Pros
Not a lot of effort to just change inheritance and constructors, and bang - you can switch all Configuration.Instance with config.
You get rid of static variables completely; so no problems now if, for example, your application suddenly turns into a library and someone is trying to invoke multiple methods concurrently or whatever.

Great question. A few quick thoughts from me...
static in C# should only be used for data that is exactly the same for all instances of a given class. Since you're currently stuck in Singleton hell you only have one instance of everything anyways, but once you break out of that this is the general rule (at least, it is for me). If you start threading your classes you may want to back off on static usage because then you have potential concurrency issues, but that's something that can be tackled later.
I'm not sure how your hardware actually works, but assuming that there's some basic functionality that's the same across all of them (like, how you interface with them at a raw data level or similar) then this is a perfect instance to create a class hierarchy. The base class implements the low level / similar stuff with virtual methods for descendant classes to override to actually properly interpret the data / feed it onward / whatever.
Good luck.

Related

does dependency injection promotes facades?

I have a Business Layer, whose only one class should be visible to outer world. So, I have marked all classes as internal except that class. Since that class requires some internal class to instantiate, I need other classes to be marked as public and other classes depend on some other classes and so on. So ultimately almost all of my internal classes are made public.
How do You handle such scenarios?
Also today there is just one class exposed to outer world but in future there may be two or three, so it means I need three facades?
Thanks
Correct, all of your injected dependencies must be visible to your Composition Root. It sounds like you're asking this question: Ioc/DI - Why do I have to reference all layers/assemblies in entry application?
To quote part of that answer from Mark Seeman:
you don't have to add hard references to all required libraries. Instead, you can use late binding either in the form of convention-based assembly-scanning (preferred) or XML configuration.
Also this, from Steven:
If you are very strict about protecting your architectural boundaries using assemblies, you can simply move your Composition Root to a separate assembly.
However, you should ask yourself why doing so would be worth the effort. If it is merely to enforce architectural boundaries, there is no substitute for discipline. My experience is that that discipline is also more easily maintained when following the SOLID principles, for which dependency injection is the "glue".
After doing a lot of research I am writing my findings, so that it may be of some help to newcomers on Dependency Injection
Misunderstandings regarding my current design and Dependency Injection:
Initial approach and problem(s) associated with it:
My business layer was having a composition root inside it, where as
it should be outside the business layer and near to the application
entry point. In composition root I was essentially having a big factory referred as Poor Man's DI by Mark Seemann. In my application starting point, I was creating an instance of this factory class and then creating my only (intended to be) visible class to outside world. This decision clearly violates Liskov's Principle which says that every dependency should be replaceable. I was having a modular design, but my previous approach was tightly coupled, I wasn't able to reap more benefits out of it, despite only some code cleanliness and code maintainability.
A better approach is:
A very helplful link given by Facio Ratio
The Composition root should have been near the application root, all dependency classes should be made public which I referred initially as a problem; making them public I am introducing low coupling and following Liskov's substitution which is good.
You can change the public class to the interface and all other parts of the program will only know about the interface. Here's some sample code to illustrate this:
public interface IFacade
{
void DoSomething();
}
internal class FacadeImpl : IFacade
{
public FacadeImpl(Alfa alfa, Bravo bravo)
{
}
public void DoSomething()
{
}
}
internal class Alfa
{
}
internal class Bravo
{
}
I can see three solutions, none real good. You might want to combine them in someway. But...
First, put some simple parameters (numeric, perhaps) in the constructor that let the caller say what he wants to do, and that the new public class instance can use to grab internal class objects (to self-inject). (You could use special public classes/interfaces used solely to convey information here too.) This makes for an awkward and limited interface, but is great for encapsulation. If the caller prefers adding a few quick parameters to constructing complex injectable objects anyway this might work out well. (It's always a drag when a method wants five objects of classes you never heard of before when the only option you need, or even want, is "read-only" vs "editable".)
Second, you could make your internal classes public. Now the caller has immense power and can do anything. This is good if the calling code is really the heart of the system, but bad if you don't quite trust that code or if the caller really doesn't want to be bothered with all the picky details.
Third, you might find you can pull some classes from the calling code into your assembly. If you're really lucky, the class making the call might work better on the inside (hopefully without reintroducing this problem one level up).
Response to comments:
As I understand it, you have a service calling a method in a public class in your business layer. To make the call, it needs objects of other classes in the business layer. These other classes are and should be internal. For example, you want to call a method called GetAverage and pass it an instance of the (internal) class RoundingPolicy so it knows how to round. My first answer is that you should take an integer value instead of a class: a constant value such as ROUND_UP, ROUND_DOWN, NEAREST_INTEGER, etc. GetAverage would then use this number to generate the proper RoundingPolicy instance inside the business layer, keeping RoundingPolicy internal.
My first answer is the one I'm suggesting. However, it gives the service a rather primitive interface, so my second two answers suggest alternatives.
The second answer is actually what you are trying to avoid. My thinking was that if all those internal classes were needed by the service, maybe there was no way around the problem. In my example above, if the service is using 30 lines of code to construct just the right RoundingPolicy instance before passing it, you're not going to fix the problem with just a few integer parameters. You'd need to give the overall design a lot of thought.
The third answer is a forlorn hope, but you might find that the calling code is doing work that could just as easily be done inside the business layer. This is actually similar to my first answer. Here, however, the interface might be more elegant. My first answer limits what the service can do. This answer suggests the service doesn't want to do much anyway; it's always using one identical RoundingPolicy instance, so you don't even need to pass a parameter.
I may not fully understand your question, but I hope there's an idea here somewhere that you can use.
Still more: Forth Answer:
I considered this a sort of part of my first answer, but I've thought it through and think I should state it explicitly.
I don't think the class you're making the call to needs an interface, but you could make interfaces for all the classes you don't want to expose to the service. IRoundingPolicy, for instance. You will need some way to get real instances of these interfaces, because new IRoundingPolicy() isn't going to work. Now the service is exposed to all the complexities of the classes you were trying to hide (down side) but they can't see inside the classes (up side). You can control exactly what the service gets to work with--the original classes are still encapsulated. This perhaps makes a workable version of my second answer. This might be useful in one or two places where the service needs more elaborate options than my first answer allows.

Is there a better way than using static classes or singletons for MVVM?

I've found that in a lot of cases, it seems (at least superficially) to make sense to use Singletons or Static classes for models in my WPF-MVVM applications. Mostly, this is because most of my models need to be accessed throughout the application. Making my models static makes for a simple way of satisfying this requirement.
And yet, I'm conflicted because everyone on the planet seems to hate singletons. So I'm wondering I there isn't a better way, or if I'm doing something obviously wrong?
There are a couple of issues with Singletons. I'll outline them below, and then propose some alternative solutions. I am not a "Never use a singleton, or you're a crap coder" kind of guy as I believe they do have their uses. But those uses are rare.
Thread safety. If you have a global-static Singleton, then it has to be thread-safe because anything can access it at any time. This is additional overhead.
Unit Testing is more difficult with Singletons.
It's a cheap replacement for global variables (I mean, that's what a singleton is at the end of the day, although it may have methods and other fancy things).
See, it's not that Singleton's are "horrid abominations" per-se, but that it's the first design pattern many new programmers get to deal with and its' convenience obfuscates its' pitfalls (Just stick some gears on it and call it steam-punk).
In your case, you're referring to Models and these are always "instances" as they naturally reflect the data. Perhaps you are worried about the cost of obtaining these instances. Believe me, they should be negligible (down to data-access design, obviously).
So, alternatives? Pass the Model to the places that require it. This makes unit testing easier, and allows you to swap out the fundamentals of that model in a heart-beat. This also means you might want to have a look at interfaces - these denote a contract. You can then create concrete objects that implement these interfaces and voila - you're code is easily unit-testable, and modifiable.
In the singleton world, a single change to that singleton could fundamentally break everything in the code-base. Not a good thing.
I think the accepted solution to this problem is to use dependency injection. With dependency injection, you can define your models as regular, non-static classes and then have an inversion of control container "inject" an instance of your model when you want it.
There is a nice tutorial at wpftutorial.net that shows how to do dependency injection in WPF: http://wpftutorial.net/ReferenceArchitecture.html
The only static class I use is a MessageBroker because I need the same instance all through the application.
But even then it is very possible to use Unity (or another Dependency Injection/Container) to manage instances of classes that you only need one of.
This allows you to inject different versions when needed (e.g. during unit tests)
BTW: static is not the same as singleton. But I am not getting into that here. Just search stackoverflow for more fun questions on that :)

Cross-DDL Extension of an Entityclass

What I want to archieve:
Service assembly (project) that holds EntityClasses - pure Data.
GUI assembly that extends those Entities for its own pourposes - Runtime information for GUI.
What I tried:
Derivation (Gui defines class ExtendedEntity : Service.BaseEntity)
seems to be the most common and only practicable way to me, but:
Converting Service.BaseEntity to ExtendedEntity after retrieving Data from the Service is painful. can 'workaround' this by using reflection to generate new ExtendedEntity instances based on base entity instances, but that can't be the 'proper' solution.
Partial classes
is exactly what I'm looking for, except the fact, that it does not work cross-assembly.
I'd greatly appreciate any hints helping me to find a proper & clean solution without reflection cheating =)
This is not a direct answer, but you may want to think a little more about your design. Why does your GUI need intimate knowledge of the mechanics of data storage? Typically we work very hard to make sure that the the UI and the data access are loosely coupled, so we can make changes to either without fear of breaking what already work. The design you are looking to implement can lead to unforeseen problems later.
One common pattern that works well for this type of thing is called the Repository pattern. Essentially the service assembly (repository) would contain all of the knowledge required to push data into and out of a particular data store. The 'shape' of the data is well known, and shared between the GUI and the repository. The service assembly would make the CRUD operations available to the GUI, and the GUI would would hold a reference to the repository, and call methods on it to fetch, create and update the data it needs.
Here are some links to get started on the ideas of loose coupling, the repository pattern, and dependency injection.
Cohesion and coupling
What is dependency injection
What's a good repository pattern tutorial
Is decompilation an option? If yes you can use e.g. PostSharp or Mono Cecil to rewrite the classes in question and add the there the code you want to have them.
I am curios why you do not want to use the standard OO approach like derivation. It is definitely not hacking.
The "cleanest" OO solution is to use aggregation and encapsulate the Entity classes inside objects where you can fully control what you can do with the data and how you want to manipulate or query it. You have reached "heaven" when your aggregation class does not need to expose the internal Entity class anymore because your class is powerful enough to support all necessary operations with the right abstractions.
If the classes you want to extend are sealed then you need to think hard why the writers of these classes did not want you to extend them.
Eric Lippert has a nice post about the usages of the sealed keyword.
...
Now, I recognize that developers are highly practical people who just
want to get stuff done. Being able to extend any class is convenient,
sure. Typical developers say "IS-A-SHMIZ-A, I just want to slap a
Confusticator into the Froboznicator class". That developer could
write up a hash table to map one to the other, but then you have to
worry about when to remove the items, etc, etc, etc -- it's not rocket
science, but it is work.
Obviously there is a tradeoff here. The tradeoff is between letting
developers save a little time by allowing them to treat any old object
as a property bag on the one hand, and developing a well-designed,
OOPtacular, fully-featured, robust, secure, predictable, testable
framework in a reasonable amount of time -- and I'm going to lean
heavily towards the latter. Because you know what? Those same
developers are going to complain bitterly if the framework we give
them slows them down because it is half-baked, brittle, insecure, and
not fully tested!
...
Yours,
Alois Kraus
You could have your GUI assembly define extension methods on the entity classes. With appropriate using directives, this would mean the consuming code would not know or care where the methods were actually defined.
A slight annoyance would be the non-existence of extension properties, so even things that are conceptually properties would have to be implemented as methods.
It would look a little like this:
In Service assembly
public class FooDTO
{
public string Name { get; set; }
}
In GUI assembly
internal static class Extensions
{
// Artificial example!
public static int GetNameLength(this FooDTO foo)
{
return foo.Name.Length;
}
}
// Consuming code
int myFooNameLength = myFooDTO.GetNameLength();

Maintaining encapsulation when wrapping native libraries

I'm writing a C# library to wrap a Win32 API (the waveOut... family of functions), and have reached a point where I'm unsure how to manage the interaction between different parts of my code without breaking encapsulation. So far, I have a setup like this:
public class AudioDevice
{
...
private WaveOutSafeHandle hWaveOut;
...
}
// All native method calls happen in wrapper methods here, providing
// uniformity of access, exceptions on error MMRESULTs, etc.
static class NativeWrappers
{
...
internal static WaveOutSafeHandle OpenDevice(...) { ... waveOutOpen(...) ... }
...
}
// Native methods live in a class of their own, and are only called
// from NativeWrappers
static class NativeMethods
{
...
internal static extern MMResult waveOutOpen(...);
...
}
The most important point in this code is that the handle wrapped by a Device is not visible to anything outside a Device.
Now I want to add an AudioBlock class, which will wrap the native WAVEHDR structure and the audio sample data. The problem I'm encountering is that from here on out, pretty much every other native function I'm interested in (waveOut[Un]PrepareHeader, waveOutWrite) needs both a handle and a WAVEHDR. It seems that either a device will have to touch a WAVEHDR, or a block will have to have access to a handle. Either approach means that some class interacts with something it conceptually has no business knowing about.
There are, of course, several ways to get around this:
Make handles and/or WAVEHDRs internal rather than private.
Make AudioBlock a nested class of Device.
Have a third class (I hesitate to even think the name (foo)Manager) which maintains (for example) a mapping from blocks to headers, which, given a block, a device can use to help it play samples without touching the block's internals.
There may be others; I'm hoping so :)
My objections (right or wrong) to these approaches:
They might not be public in the strictest sense of the word, but using internal members seems like a copout to me. What are effectively implementation details are still visible to parts of the library which don't need them. I keep thinking "what interface do I want to present to anyone either using or modifying this code?"
This almost works in my head. By regarding a block as an "implementation detail" of a device, it seems more acceptable to allow it to rely on a device's internals. Except that a block really is an independent entity; it's not tied to a single device and isn't used to help implement a device's logic.
This gets the closest to the level of separation I want to maintain, but is starting to stray into overengineering territory, as I so often do :P It also introduces the artificial idea that blocks have to be centrally allocated from somewhere to keep the mapping intact.
So, does anyone have any recommendations for (re)structuring this code? Valid answers include "Your objection #X is a steaming crock," as long as you can persuade me :) ETA: For example, if you think trying to enforce this kind of thing is better done by social means (documentation, conventions) than technical ones (access modifiers, assembly boundaries), please let me know and point me to some references.
They might not be public in the strictest sense of the word, but using internal members seems like a copout to me.
Personally, I'd just make the wrappers internal, and treat your whole set of classes as a single public API.
I understand the desire to avoid this - it forces you to create classes, which, for you during your development, violate the single responsibility principles.
However, from the POV of the "outside" world, anybody using your software will see each class you provide having a single, clear responsibility, and a single purpose. The API can be at least as clean as the ones you're wrapping (probably much simpler, given the managed code).
My main motivation for doing this, in this situation, is one of practicality. Yes, I agree with the guidelines you're trying to follow here - but, they're guidelines, and guidelines are something worth following provided they don't cause more harm than good. I commend you for trying to keep this as clean and elegant as possible, but unfortunately, it sounds like, in this situation, trying to make this "more elegant" is going to lead to more code, which will equate to less maintainable.
I'd stick with the shortest, simplest solution here - making the native wrappers internal, so you can get to the data structures you need in your wrapper classes. Just document what you're doing, and why.

Creating a Catch-All AppToolbox Class - Is this a Bad Practice?

Never sure where to place functions like:
String PrettyPhone( String phoneNumber ) // return formatted (999) 999-9999
String EscapeInput( String inputString ) // gets rid of SQL-escapes like '
I create a Toolbox class for each application that serves as a repository for functions that don't neatly fit into another class. I've read that such classes are bad programming practice, specifically bad Object Oriented Design. However, said references seem more the opinion of individual designers and developers more than an over-arching consensus. So my question is, Is a catch-all Toolbox a poor design pattern? If so, why, and what alternative is there?
Great question. I always find that any sufficiently complex project require "utility" classes. I think this is simply because the nature of object-oriented programming forces us to place things in a neatly structured hierarchical taxonomy, when this isn't always feasible or appropriate (e.g. try creating an object model for mammals, and then squeeze the platypus in). This is the problem which motivates work into aspect oriented programming (c.f. cross cutting concern). Often what goes into a utility class are things that are cross-cutting concerns.
One alternative to using toolbox or utility classes, are to use extension methods to provide additional needed functionality to primitive types. However, the jury is still out on whether or not that constitutes good software design.
My final word on the subject is: go with it if you need, just make sure that you aren't short-cutting better designs. Of course, you can always refactor later on if you need to.
I think a static helper class is the first thing that comes to mind. It is so common that some even refer to it as part of the object-oriented design. However, the biggest problem with helper classes is that they tend to become a large dump. I think i saw this happen on a few of the larger projects i was involved in. You're working on a class and don't know where to stick this and that function so you put it in your helper class. At which point your helpers don't communicate well what they do. The name 'helper' or 'util' itself in the class name doesn't mean anything. I think nearly all OO gurus advocate against helpers since you can very easily replace them with more descriptive classes if you give it enough thought. I tend to agree with this approach as I believe that helpers violate the single responsibility principle. Honestly, take this with a grain of salt. I'm a little opinionated on OOP :)
In these examples I would be more inclined to extend String:
class PhoneNumber extends String
{
public override string ToString()
{
// return (999) 999-9999
}
}
If you write down all the places you need these functions you can figure out what actually uses it and then add it to the appropriate class. That can sometimes be difficult but still something you should aim for.
EDIT:
As pointed out below, you cannot override String in C#. The point I was trying to make is that this operation is made on a phone number so that is where the function belongs:
interface PhoneNumber
{
string Formatted();
}
If you have different formats you can interchange implementations of PhoneNumber without littering your code with if statements, e.g.,
Instead of:
if(country == Countries.UK) output = Toolbox.PhoneNumberUK(phoneNumber);
else ph = Toolbox.PhoneNumberUS(phoneNumber);
You can just use:
output = phoneNumber.Formatted();
There is nothing wrong with this. One thing is try to break it up into logical parts. By doing this you can keep your intellisense clean.
MyCore.Extensions.Formatting.People
MyCore.Extensions.Formatting.Xml
MyCore.Extensions.Formatting.Html
My experience has been that utility functions seldom occur in isolation. If you need a method for formatting telephone numbers, then you will also need one for validating phone numbers, and parsing phone numbers. Following the YAGNI principle, you certainly wouldn't want to write such things until they're actually needed, but I think it's helpful to just go ahead and separate such functionality into individual classes. The growth of those classes from single methods into minor subsystems will then happen naturally over time. I have found this to be the easiest way to keep the code organized, understandable, and maintainable over the long term.
When I create an application, I typically create a static class that contains static methods and properties that I can't figure out where to put anywhere else.
It's not an especially good design, but that's sort of the point: it gives me a place to localize a whole class of design decisions that I haven't thought out yet. Generally as the application grows and is refined through refactoring, it becomes clearer where these methods and properties actually ought to reside. Mercifully, the state of refactoring tools is such that those changes are usually not exceptionally painful to make.
I've tried doing it the other way, but the other way is basically implementing an object model before I know enough about my application to design the object model properly. If I do that, I spend a fair amount of time and energy coming up with a mediocre solution that I have to revisit and rebuild from the ground up at some point in the future. Well, okay, if I know I'm going to be refactoring this code, how about I skip the step of designing and building the unnecessarily complicated classes that don't really work?
For instance, I've built an application that is being used by multiple customers. I figured out pretty early on that I needed to have a way of separating out methods that need to work differently for different customers. I built a static utility method that I could call at any point in the program where I needed to call a customized method, and stuck it in my static class.
This worked fine for months. But there came a point at which it was just beginning to look ugly. And so I decided to refactor it out into its own class. And as I went through my code looking at all the places where this method was being called, it became extremely clear that all of the customized methods really needed to be members of an abstract class, the customers' assemblies needed to contain a single derived class that implements all of the abstract methods, and then the program just needed to get the name of the assembly and the namespace out of its configuration and create an instance of the custom features class at startup. It was really simple for me to find all of the methods that had to be customized, since all I needed to do was find every place that my load-a-custom-feature method was being called. It took me the better part of an afternoon to go through the entire codebase and rationalize this design, and the end result is really flexible and robust and solves the right problem.
The thing is, when I first implemented that method (actually it was three or four interrelated methods), I recognized that it wasn't the right answer. But I didn't know enough to decide what the right answer was. So I went with the simplest wrong answer until the right answer became clear.
I think the reason it's frowned upon is because the "toolbox" can grow and you will be loading a ton of resources every time you want to call a single function.
It's also more elegant to have the methods that apply to the objects in the actual class - just makes more sense.
That being said, I personally don't think it's a problem, but would avoid it simply for the reasons above.
I posted a comment, but thought I'd elaborate a bit more.
What I do is create a Common library with namespaces: [Organisation].[Product].Common as the root and a sub namespace Helpers.
A few people on here mention things like creating a class and shoving some stuff they don't know where else to put in there. Wrong. I'd say, even if you need one helper method, it is related to something, so create a properly named (IoHelper, StringHelper, etc.) static helper class and put it in the Helpers namespace. That way, you get some structure and you get some sort of separation of concerns.
In the root namespace, you can use instance utility classes that do require state (they exist!). And needless to say also use an appropriate class name, but don't suffix with Helper.

Categories

Resources